
Improving Attack Graph Visualization
through Data Reduction and Attack Grouping ⋆

John Homer1, Ashok Varikuti1, Xinming Ou1, and Miles A. McQueen2

1 Kansas State University, USA
2 Idaho National Laboratory, USA

Abstract. Various tools exist to analyze enterprise network systems and to produce attack graphs detailing how
attackers might penetrate into the system. These attack graphs, however, are often complex and difficult to com-
prehend fully, and a human user may find it problematic to reach appropriate configuration decisions. This paper
presents methodologies that can 1) automatically identifyportions of an attack graph that do not help a user to
understand the core security problems and so can be trimmed,and 2) automatically group similar attack steps as
virtual nodes in a model of the network topology, to immediately increase the understandability of the data. We be-
lieve both methods are important steps toward improving visualization of attack graphs to make them more useful
in configuration management for large enterprise networks.We implemented our methods using one of the existing
attack-graph toolkits. Initial experimentation shows that the proposed approaches can 1) significantly reduce the
complexity of attack graphs by trimming a large portion of the graph that is not needed for a user to understand the
security problem, and 2) significantly increase the accessibility and understandability of the data presented in the
attack graph by clearly showing, within a generated visualization of the network topology, the number and type of
potential attacks to which each host is exposed.

Key words: attack graph, attack graph visualization, dominator, graph clustering, network security analysis

1 Introduction

Attack graphs have been developed to aid in identification and correction of misconfigurations in enterprise network
systems, by providing a visual representation of potentialattack paths [1–8]. Much work has already been done in the
generation of attack graphs, producing more efficient techniques for building them [6, 7]. Attack graphs, however, are
difficult for a human to utilize effectively because of theircomplexity [9–11]. Even a network of moderate size can
have dozens of possible attack paths, overwhelming a human user with the amount of information presented. It is not
easy for a human to determine from the information in the attack graph which configuration settings should be changed
to best address the identified security problems. Without a clear understanding of the existing security problems, it is
difficult for a human user to evaluate possible configurationchanges and to verify that optimal changes are made.

Previous works have introduced improvements in the visualization of attack paths and the overall presentation
of attack graph data. Noel,et al. suggested that complexity can be reduced through the use of protection domains
to represent groups of machines with unrestricted interconnectivity [9, 10]. Lippmann,et al. introduced visualization
approaches to emphasize critical attack steps while clearly showing host-to-host reachability [11].

In this paper, we show that by utilizing the logical semantics of an attack graph, one can 1) distinguish attack steps
based on their usefulness for a human to quickly understand the core security problems in an enterprise network, and
trim those that do not contribute much for this purpose; 2) identify attack steps that share similar semantics, and thus
can be grouped and presented as a single virtual node. These techniques can further improve the visualization of attack
graphs to make them more useful in practice.

For our implementation, we use the MulVAL attack graph tool suite [7, 12], which provides reasonable perfor-
mance and scalability for enterprise networks of a realistic size. MulVAL produces complete logical attack graphs,
which are easily mapped back to a visualization of the network topology, based on the input data.

⋆ This work is partially supported by the National Science Foundation under Grant No. 0716665, and U.S. Department of Energy.
Any opinions, findings and conclusions or recomendations expressed in this paper are those of the authors and do not necessarily
reflect the views of the U.S. government agencies.



Enterprise Network

Control 
Network 
(EMS)

Communication Servers

Operating 
Station

Data 
Historian

Web Server

VPN Server

Citrix 
Server

User 
Workstations

File Server

Internet

DMZ
CORP Internal

Fig. 1. An example enterprise network

Figure 1 depicts an example enterprise network that is basedon a real (and much bigger) system; we will return
to this example throughout the paper. The network includes three subnets: a DMZ (Demilitarized Zone), an internal
subnet, and an EMS (Energy Management System) subnet, whichis a control-system network for power grids. In this
example, we will assume that host-grouping has already beenapplied, based on similar configurations; the workStation
node, for example, might be an abstracted grouping of one hundred workstation machines with comparable setups.
Both the web server and the VPN server are directly accessible from the Internet. The web server can access the file
server through the NFS file-sharing protocol; the VPN serveris allowed access to all hosts in the internal subnet (but
not the EMS subnet). Outside access to the EMS subnet is only allowed from the Citrix server in the internal subnet,
and even then only to the data historian. In this example, we assume that the attacker’s goal is to gain privileges to
execute code on the commServer. From the commServer, an attacker could send commands to physical facilities such
as power-generating turbines, which can cause grave damageto critical infrastructures.

A visualization of the MulVAL attack graph is shown in Figure2, identifying a large number of potential attack
paths in this network. This visualization is produced by mapping the full MulVAL logical attack graph to the network
subnet topology, using GraphViz to construct the image, andapplying clustering techniques similar to Noelet al.’s
approach [10]. The black solid lines represent connectivity between subnets and gateways (router, firewall,et al.).
Machines in the same subnet (represented as a rectangular cluster) have unrestricted access to each other. The red
dotted lines indicate attack propagation paths as mapped from the full logical attack graph. This visualization omits a
large amount of information from the original full attack graph, such as pre- and postconditions for each attack step.
We believe a simple visualization of attack paths directly on the network topology will be useful in practice, since
it relates the information conveyed by the attack graph to the concrete entities in an enterprise network, and a sys-
tem administrator will likely find it easier to understand than the full attack graph. The full logical attack graph (see
Appendix A) contains all of the same information shown in Figure 2, portraying all possible paths by which the comm-
Server could be compromised; the breadth of this information, however, leads to a graph so large and complicated as
to be unreadable by a human user.

Even after this simplification, the attack paths in the visualization may still overwhelm a user. In this paper we will
focus on how to further reduce the complexity through two techniques. First, we observe that there are a number of

2



INTERNET

DMZ

CORP

EMS

attacker

webServer

vpnServer

fileServer

workStation

printer

citrixServer

operatingStation

dataHistorian

commServer

innerFirewall

outerFirewall

Fig. 2. Attack graph visualization

logically valid attack steps that probably need not be shwonto the user for him/her to understand the security problem.
For example, an attacker who has gained privileges on the workStation machine in the internal subnet has opportunity
to exploit the webServer in the DMZ. Though possible, this attack step is intuitively unhelpful to understanding the
security problem: the attacker would have to compromise DMZto gain privilege on workStation in the first place.
Showing users the attack steps “back” to DMZ does not provideany additional insights. In reality, these attack steps are
likely to be useless to the attacker as well. Another exampleof would be attacking the fileServer from the citrixServer;
Since we assume the commServer is the attacker’s goal, an attacker with privileges on the citrixServer already has all of
the necessary privileges to attack the EMS subnet through the dataHistorian. The user gains nothing useful by knowing
that the attacker can further attack the fileServer from the Citrix server. Second, we observe that the complexity of
the attack graph does not necessarily reflect complexity in security vulnerabilities. Employing a compromised user
account, an attacker can access the citrixServer from the vpnServer, workStation, and fileServer; using a Trojan horse
attack, an attacker can gain access to the citrixServer fromthe fileServer. (The edge from fileServer to citrixServer
represents both potential attack steps). Although there are four distinct attack steps that can enable an attacker to

3



compromise the citrixServer, these attack steps utilize only two distinct exploitations. This fact is obscured in the
attack graph by the separate attack steps leading to citrixServer from different host machines.

We believe that the attack graph complexity can be further reduced. In order to make an attack graph a useful
tool for configuration management, we identify as a researchchallenge the need for presenting the security problems
expressed by an attack graph in a manner that enables a human user to more quickly grasp the core of the security
problem. Our contributions are:

1. We developed an algorithm to identify portions of an attack graph that are not helpful for a user to understand the
core security problems, and reduce the amount of data presented to the user by trimming those portions. When
the amount of information presented in the attack graph is reduced, we believe that core security problems will be
more quickly identifiable from the attack graph.

2. We developed a method to create virtual nodes to representgroupings of similar exploitations. In this approach,
each attack step edge leading into a host represents a uniqueattack on that machine. We believe that this approach
will increase the understandability of the attack graph data by more clearly displaying the exploitability of each
host.

Our approach to trimming attack steps ensures that all distinct attack paths will be retained in the trimmed attack
graph, while removing data not beneficial to the understanding of core security problems. Host-grouping techniques
have already been shown to be effective for reducing complexity [6, 9, 10]. We show that further gains can be made
in grouping similar exploits from multiple sources, which makes clearly visible the number of exploits available on a
given machine and all of the possible sources for each potential exploit. It is easy then to see all attack steps that can
be eliminated by resolving the vulnerability enabling a specific exploit.

The trimming algorithm is presented in Section 2. The exploit grouping approach is presented in Section 3. We
will discuss related work in Section 4 and conclude with a discussion of future work on these approaches in Section 5.

2 Identifying and Removing “Useless” Attack Steps

In examining the attack graph, we found that many of the attack steps, while valid from a logical point of view, are
not helpful for a human user to comprehend the core security problems in the network configurations. They share a
common characteristic which is they do not reveal the most important vulnerability in the system since the attacker does
not penetrate “deeper” into the enterprise network along those steps. While these steps contain important information
that would be useful if one wished to block every possible attack path, they can also be distracting to a human reader
and often hides the root causes of the security problems. It is thus beneficial to remove these less useful attack steps
from the attack graph so that the security problems become easier to grasp for a human reader.

We refer to attack steps that are not useful for a human readerto understand the underlying security problems as
“useless” attack steps. Generally, these “useless” attacksteps involve an attack on a machine further from the goal
machine than the machine from which the attack is made. In theexample described earlier, for instance, one valid
attack step enables an attacker with privileges on the workStation to gain privileges on the webServer, but this attack
would not bring the attacker any closer to the presumed goal of accessing the commServer.

Our classification of “useful” and “useless” edges is meant to reflect a prioritization of the data contained in
the attack graph. We can then provide a simplification of the original attack graph, highlighting attack reachability
between hosts to enable a human user to more quickly comprehend fundamental vulnerabilities in the network. It is
important to emphasize that the so-called “useless” attacksteps are valid and important to consider when determining
upon appropriate countermeasures. However, when the user is first presented with the attack graph, understanding
these paths is not crucial for understanding overall security threats. It would be more beneficial if the user can quickly
understand the core security problems from a simplified attack graph. For example, in Figure 3 the attacker’s starting
machine is host1, and his goal is to compromise host4. There are two paths:1 → 2 → 3 → 4 and1 → 3 → 4.
Intuitively the attack step from machine3 to machine2 is not useful, since it does not help the attacker to reach his
goal. We would like to trim those steps.

The immediately obvious solution for identifying these “useless” attack steps is to implement a breadth-first search
algorithm to compute the distance of machine from the goal machine, as measured by the minimum number of inter-
host attack steps necessary to reach the goal from that machine. Machine2 in the above example would have a distance

4



11

22

33

44

Fig. 3. Example useless attack steps

INTERNET

DMZ

CORP

EMS

Fig. 4. Subnet graph, built from example in Section 1

of 2 and machine3 would have a distance of1. Attack steps that move from a machine to another machine with the
same or greater distance (e.g. 3→ 2) could then be labelled “useless” and trimmed. While this approach would work
in some cases, in many cases useful attack paths would be trimmed. For example, this algorithm would also trim the
step1 → 2, and thus lose the complete attack path1 → 2 → 3 → 4. Actually only attack paths with the shortest
length will be preserved and all other paths will be trimmed.This approach can lose valuable information, especially
in cases when an attacker might follow a longer attack path due to ease of exploit or better stealthiness along the longer
path.

Another seemingly correct solution is to perform a simple depth-first search and trim the back edges in the DFS
tree. However, depending on the order of traversing a node’smultiple children, both edge2 → 3 and3→ 2 could be
back edges in the DFS tree. So this method does not work either.

We have developed a two-level approach to identifying and removing “useless” attack steps. First, we create a
directed graph with subnets as nodes and possible inter-subnet attack steps as edges. From this directed graph, we then
construct a dominator tree to recognize dominance and post-dominance relationships between subnets with respect to
presumed attacker location and his goal. The subnet where the attacker is located will be the source node and the subnet
where the goal machine is located will be the sink node. Letd, n, p be vertices in a directed graph. Thend dominates
n if every path from the source node ton must go throughd. We writed dom n for this fact. Also,p post-dominates
n if every path fromn to the sink node must go throughp. We writep postdom n for this fact. In the subnet graph of
Figure 4, assuming that INTERNET is the source and EMS is the goal, some examples of dominance relationships are
DMZ dom CORP and CORPdom EMS. We also have EMSpostdom CORP and CORPpostdom DMZ.

For any two subnets X and Y, we then identify as “useless” all inter-subnet attack stepsX → Y whereY dom X

or X postdom Y . If Y dom X , then an attacker who has gained privileges in subnetX must already have privileges
in subnetY (or the attacker would not have been able to transition toX). If X postdom Y , then moving fromX to Y

will not help the attacker either since he would have to return toX in order to reach his goal. Therefore, any transitions
between two hosts in different subnets that fits one or both ofthese cases is “useless” and will be trimmed from the
attack graph. They are distracting for a human reader tryingto comprehend other, more enlightening attack paths. In
the attack graph shown in Figure 2, every transition from theCORP subnet to the DMZ will be trimmed since DMZ
dominates CORP. On the other hand, the transition from CORP to the control network subnet EMS will be retained.

After applying the inter-subnet transition trimming, we then address intra-subnet transitions. An attack step be-
tween two machinesA → B in the same subnet is retained in only two cases. First, if thesubnet contains the goal
machine, the transition is retained only ifB is the goal. Any other transition within this subnet will be trimmed. In
reality, an attacker might need to transition to other machines in the same subnet for the purpose of,eg. obtaining more
computing power. However, these attack steps are not usefulfor a human to grasp the core security problem. Second,
if the subnet does not contain the goal machine, the transition is useful only ifB would provide an attacker with access
to another subnet that would be deemed useful according to the subnet dominator tree, and even then only if that same
access is not available fromA. In the attack graph shown in Figure 2, the transition from fileServer to workStation
is useless, since the workStation would not provide an attacker with new, useful access; however, the transition from
fileServer to citrixServer is useful, since, from citrixServer, an attacker could access the EMS subnet.

5



INTERNET

DMZ

CORP

EMS

attacker

webServer

vpnServer

fileServer

workStation

printer

citrixServer

operatingStation

dataHistorian

commServer

innerFirewall

outerFirewall

Fig. 5.Attack graph with both inter- and intra-subnet trimming applied

Figure 5 shows the resulting graph after both levels of trimming levels are applied to the sample network. The
attack graph now shows three key attack paths to reach the Citrix server, from which subnet EMS is accessible:

Internet→ web server→ file server→ Citrix server

Internet→ VPN server→ workstation→ Citrix server

Internet→ VPN server→ Citrix server

A careful reader might ask why the second attack attack path is retained, given the existence of a shorter path (3). As
mentioned above, shorter attack paths cannot always subsume longer ones, since the exploits along the path may be
different.

3 Abstraction of Attack Traces

Even after identifying and removing “useless” attack steps, many edges will likely remain in the visualization. Hu-
mans assessing the data presented in the attack graph will benefit from the reduced amount of data, but still face other
obstacles to clear and straightforward understanding of the underlying security issues in the current network config-
uration. One hindrance to easy understanding of attack graph data can be the number of edges directed into a single
host machine in the attack graph. In Figure 5, for example, the citrixServer node in the Corp subnet is the destination
point of four attack steps (shown in three edges), even after“useless” attack steps have been trimmed from the graph.
It is not immediately clear to the user how many different possible exploitations are being represented, and how many
sources for exploitations of the citrixServer are repetitions of a single attack type.

6



Our solution to this difficulty is to create an abstraction ofeach exploitation with multiple sources, from which only
one edge will lead into the exploited node. In this way, it is much easier for a human user to see how many exploitations
are possible on a given host and what potential attack steps could be eliminated by resolving the conditions enabling a
specific exploitation. Potential exploits with only one source, on the other hand, will be represented by a direct attack
step edge between the two machines, to maintain as much simplicity in the graph as possible.

In the attack graph shown in Figure 5, three of the edges that lead to the citrixServer represent different source
points but only a single security issue in the network, namely the uncertain reliability of the user with account “or-
dinaryUser.” If this user account is compromised, an attacker could gain access to the citrixServer from any of the
three host machines with edges leading to the abstracted exploitation node. By creating a virtual node to represent
the existence of this security concern, it is much easier to see now that if the reliability of this user account can be
verified, most of the possible attacks leading to citrixServer will be eliminated. Our attack graph visualization will
show transitions to an abstracted exploit node as blue lines, while red lines will indicate direct host-to-host attacksas
well as attacks from an abstracted exploit node.

The full attack graph, shown in Figure 2, included a number of“useless” attack steps that are removed by the
trimming algorithm. The trimming also reduces the number ofmultiple-source attacks and thus the number of abstract
exploit nodes that can be created. For optimal effectiveness, this exploit abstraction technique is applied only to the
trimmed attack graph. The final attack graph is shown in Figure 6.

DMZ

CORP

EMS

INTERNET

vpnServer

webServer

fileServer

workStation printer

principal
compromised

citrixServer

dataHistorian

commServer

attacker

operatingStation

innerFirewall

outerFirewall

Fig. 6. Attack graph, trimmed, with virtual exploitation nodes

7



4 Related Work

A number of other previous works addressed the problem of howto use attack graphs to better manage the security of
enterprise networks [13–17]. The observations and insights from these previous works helped us develop the approach
in this paper, and our work either complements or improves upon them. Our contribution is the development of formal,
logic-based approaches to simplifying an attack graph for ahuman to better understand.

Noel, et al. proposed a number of techniques for reducing complexity in attack graphs [10]. We adopted some
of the approaches in our work, such as using clustering techniques to show the subnet topology of the network. Our
approaches address complementary problems in visualization, namely identification and removal of attack paths that
are not useful for a human to better understand the core security problems, and better represent attacks by grouping
similar exploits targeted at a single host. Noel,et al. also presents a notion of graph trimming, by removing redundant
exploits and allowing them to be implicitly conveyed in the graph. However, they do not systematically address how
to identify and trim the “useless” attack steps described inthis paper.

Lippmann,et al. have built on the multiple-prerequisite graphs produced bythe NetSPA system with a goal of re-
ducing attack graph complexity [11]. Their visualization employs spatial grouping and color-coding to represent levels
of potential compromise. Groups of machines with similar levels of exploitability can then be collapsed, reducing the
overall complexity of the graph. Our approach differs in that we do not group machines with similar vulnerabilities,
but rather create abstract representations of attacks, with edges leading to the potentially affected machines.

5 Conclusion

We have proposed two techniques for improving visualization of attack graphs — reducing the amount of data by iden-
tifying attack steps that are not crucial for a human to quickly understand the core security problems, and grouping
similar attacks targeted at a single host to better represent the number and type of security problems. These techniques,
in combination with visualization techniques developed byprevious researchers, will display attack graphs to a more
human-readable manner. This is crucial for using attack graphs to further automate enterprise network security man-
agement, since a human can only trust a tool if she/he understands its output. Our techniques will help a human user
quickly identify the core security problems in an enterprise network without being overwhelmed by the amount of
information contained in the full attack graphs.

8



References

1. Laura P. Swiler, Cynthia Phillips, David Ellis, and Stefan Chakerian. Computer-attack graph generation tool. InDARPA
Information Survivability Conference and Exposition (DISCEX II’01), volume 2, June 2001.

2. Oleg Sheyner, Joshua Haines, Somesh Jha, Richard Lippmann, and Jeannette M. Wing. Automated generation and analysisof
attack graphs. InProceedings of the 2002 IEEE Symposium on Security and Privacy, pages 254–265, 2002.

3. Paul Ammann, Duminda Wijesekera, and Saket Kaushik. Scalable, graph-based network vulnerability analysis. InProceedings
of 9th ACM Conference on Computer and Communications Security, Washington, DC, November 2002.

4. Sushil Jajodia, Steven Noel, and Brian O’Berry. Topological analysis of network attack vulnerability. In V. Kumar, J. Srivas-
tava, and A. Lazarevic, editors,Managing Cyber Threats: Issues, Approaches and Challanges, chapter 5. Kluwer Academic
Publisher, 2003.

5. Richard Lippmann and Kyle W. Ingols. An annotated review of past papers on attack graphs. Technical report, MIT Lincoln
Laboratory, March 2005.

6. Kyle Ingols, Richard Lippmann, and Keith Piwowarski. Practical attack graph generation for network defense. In22nd Annual
Computer Security Applications Conference (ACSAC), Miami Beach, Florida, December 2006.

7. Xinming Ou, Wayne F. Boyer, and Miles A. McQueen. A scalable approach to attack graph generation. In13th ACM Confer-
ence on Computer and Communications Security (CCS), pages 336–345, 2006.

8. Wei Li, Rayford B. Vaughn, and Yoginder S. Dandass. An approach to model network exploitations using exploitation graphs.
SIMULATION, 82(8):523–541, 2006.

9. Steven Noel and Sushil Jajodia. Managing attack graph complexity through visual hierarchical aggregation. InVizSEC/DMSEC
’04: Proceedings of the 2004 ACM workshop on Visualization and data mining for computer security, pages 109–118, New
York, NY, USA, 2004. ACM Press.

10. Steven Noel, Michael Jacobs, Pramod Kalapa, and Sushil Jajodia. Multiple coordinated views for network attack graphs. In
IEEE Workshop on Visualization for Computer Security (VizSEC 2005), 2005.

11. Richard Lippmann, Leevar Williams, and Kyle Ingols. An interactive attack graph cascade and reachability display.In IEEE
Workshop on Visualization for Computer Security (VizSEC 2007), 2007.

12. Xinming Ou, Sudhakar Govindavajhala, and Andrew W. Appel. MulVAL: A logic-based network security analyzer. In14th
USENIX Security Symposium, 2005.

13. Somesh Jha, Oleg Sheyner, and Jeannette M. Wing. Two formal analyses of attack graphs. InProceedings of the 15th IEEE
Computer Security Foundations Workshop, pages 49–63, Nova Scotia, Canada, June 2002.

14. Richard P. Lippmann, Kyle W. Ingols, Chris Scott, Keith Piwowarski, Kendra Kratkiewicz, Michael Artz, and Robert Cunning-
ham. Evaluating and strengthening enterprise network security using attack graphs. Technical Report ESC-TR-2005-064, MIT
Lincoln Laboratory, October 2005.

15. Richard Lippmann, Kyle Ingols, Chris Scott, Keith Piwowarski, Kendra Kratkiewicz, Mike Artz, and Robert Cunningham. Val-
idating and restoring defense in depth using attack graphs.In Military Communications Conference (MILCOM), Washington,
DC, U.S.A., October 2006.

16. Vaibhav Mehta, Constantinos Bartzis, Haifeng Zhu, Edmund Clarke, and Jeannette Wing. Ranking attack graphs. InProceed-
ings of Recent Advances in Intrusion Detection (RAID), September 2006.

17. Lingyu Wang, Anoop Singhal, and Sushil Jajodia. Measuring network security using attack graphs. InThird Workshop on
Quality of Protection (QoP), 2007.

18. Thomas Lengauer and Robert Endre Tarjan. A fast algorithm for finding dominators in a flowgraph.ACM Trans. Program.
Lang. Syst., 1(1):121–141, 1979.

9



A MulVAL Logical Attack Graph

1:execCode(commServer,root)

2:RULE 2 (remote exploit of a server program):1

3:netAccess(commServer,iccpProtocol,iccpPort) 139:networkServiceInfo(commServer,iccpService,iccpProtocol,iccpPort,root)140:vulExists(commServer,iccpVulnerability,iccpService,remoteExploit,privEscalation)

4:RULE 5 (multi-hop access):0.56:RULE 5 (multi-hop access):0.5

5:hacl(commServer,commServer,iccpProtocol,iccpPort)7:hacl(dataHistorian,commServer,iccpProtocol,iccpPort)8:execCode(dataHistorian,root)

9:RULE 2 (remote exploit of a server program):1

10:netAccess(dataHistorian,sqlProtocol,sqlPort) 137:networkServiceInfo(dataHistorian,oracleSqlServer,sqlProtocol,sqlPort,root)138:vulExists(dataHistorian,oracleSqlVulnerability,oracleSqlServer,remoteExploit,privEscalation)

11:RULE 5 (multi-hop access):0.5 131:RULE 5 (multi-hop access):0.5 133:RULE 5 (multi-hop access):0.5135:RULE 5 (multi-hop access):0.5

132:hacl(citrixServer,dataHistorian,sqlProtocol,sqlPort)13:execCode(citrixServer,normalAccount)

14:RULE 0 (When a principal is compromised any machine he has an account on will also be compromised):0.5

15:canAccessHost(citrixServer)

79:principalCompromised(ordinaryEmployee)

130:hasAccount(ordinaryEmployee,citrixServer,normalAccount)

16:RULE 7 (Access a host through executing code on the machine):1

17:RULE 7 (Access a host through executing code on the machine):1

113:RULE 8 (Access a host through a log-in service):1

18:execCode(citrixServer,root)

19:RULE 4 (Trojan horse installation):0.2

20:accessFile(citrixServer,write,’/usr/local/share’)

21:RULE 15 (NFS semantics):1

22:accessFile(fileServer,write,’/export’) 112:nfsMounted(citrixServer,’/usr/local/share’,fileServer,’/export’,read)

23:RULE 16 (NFS shell):0.626:RULE 16 (NFS shell):0.629:RULE 16 (NFS shell):0.6 106:RULE 16 (NFS shell):0.6 109:RULE 16 (NFS shell):0.6

27:hacl(citrixServer,fileServer,nfsProtocol,nfsPort)28:nfsExportInfo(fileServer,’/export’,write,citrixServer)30:hacl(webServer,fileServer,nfsProtocol,nfsPort) 31:nfsExportInfo(fileServer,’/export’,write,webServer)32:execCode(webServer,apache)

33:RULE 2 (remote exploit of a server program):1

34:netAccess(webServer,httpProtocol,httpPort) 104:networkServiceInfo(webServer,httpd,httpProtocol,httpPort,apache)105:vulExists(webServer,’CAN-2002-0392’,httpd,remoteExploit,privEscalation)

35:RULE 5 (multi-hop access):0.595:RULE 5 (multi-hop access):0.5 97:RULE 5 (multi-hop access):0.599:RULE 5 (multi-hop access):0.5101:RULE 6 (direct network access):1

36:hacl(vpnServer,webServer,httpProtocol,httpPort)37:execCode(vpnServer,normalAccount)

38:RULE 0 (When a principal is compromised any machine he has an account on will also be compromised):0.5

39:canAccessHost(vpnServer) 94:hasAccount(ordinaryEmployee,vpnServer,normalAccount)

40:RULE 7 (Access a host through executing code on the machine):1 41:RULE 8 (Access a host through a log-in service):1

42:netAccess(vpnServer,vpnProtocol,vpnPort)91:logInService(vpnServer,vpnProtocol,vpnPort)

43:RULE 5 (multi-hop access):0.5 45:RULE 5 (multi-hop access):0.547:RULE 5 (multi-hop access):0.586:RULE 5 (multi-hop access):0.5 88:RULE 6 (direct network access):1

44:hacl(vpnServer,vpnServer,vpnProtocol,vpnPort) 46:hacl(webServer,vpnServer,vpnProtocol,vpnPort)87:hacl(workStation,vpnServer,vpnProtocol,vpnPort) 49:execCode(workStation,normalAccount)

50:RULE 0 (When a principal is compromised any machine he has an account on will also be compromised):0.5

51:canAccessHost(workStation)

83:hasAccount(ordinaryEmployee,workStation,normalAccount)

52:RULE 7 (Access a host through executing code on the machine):1

53:RULE 7 (Access a host through executing code on the machine):1

59:RULE 8 (Access a host through a log-in service):1

54:execCode(workStation,root)

55:RULE 4 (Trojan horse installation):0.2

56:accessFile(workStation,write,’/usr/local/share’)

57:RULE 15 (NFS semantics):1

58:nfsMounted(workStation,’/usr/local/share’,fileServer,’/export’,read)

60:netAccess(workStation,tcp,sshProtocol) 75:logInService(workStation,tcp,sshProtocol)

61:RULE 5 (multi-hop access):0.5 63:RULE 5 (multi-hop access):0.5 65:RULE 5 (multi-hop access):0.569:RULE 5 (multi-hop access):0.5 71:RULE 5 (multi-hop access):0.573:RULE 5 (multi-hop access):0.5

64:hacl(citrixServer,workStation,tcp,sshProtocol) 66:hacl(fileServer,workStation,tcp,sshProtocol)67:execCode(fileServer,root)

68:RULE 4 (Trojan horse installation):0.2

70:hacl(vpnServer,workStation,tcp,sshProtocol) 74:hacl(workStation,workStation,tcp,sshProtocol)

76:RULE 12 ():1

77:networkServiceInfo(workStation,sshd,tcp,sshProtocol,sshPort)

80:RULE 10 (password sniffing):0.8 82:RULE 10 (password sniffing):0.8 84:RULE 11 (incompetent user):0.2

85:inCompetent(ordinaryEmployee)

89:hacl(attacker,vpnServer,vpnProtocol,vpnPort) 103:attackerLocated(attacker)

92:RULE 13 ():1

93:networkServiceInfo(vpnServer,vpnService,vpnProtocol,vpnPort,root)

96:hacl(webServer,webServer,httpProtocol,httpPort) 100:hacl(workStation,webServer,httpProtocol,httpPort)102:hacl(attacker,webServer,httpProtocol,httpPort)

110:hacl(workStation,fileServer,nfsProtocol,nfsPort)111:nfsExportInfo(fileServer,’/export’,write,workStation)

114:netAccess(citrixServer,sshProtocol,sshPort) 127:logInService(citrixServer,sshProtocol,sshPort)

115:RULE 5 (multi-hop access):0.5117:RULE 5 (multi-hop access):0.5119:RULE 5 (multi-hop access):0.5121:RULE 5 (multi-hop access):0.5 123:RULE 5 (multi-hop access):0.5125:RULE 5 (multi-hop access):0.5

118:hacl(citrixServer,citrixServer,sshProtocol,sshPort)120:hacl(fileServer,citrixServer,sshProtocol,sshPort)122:hacl(vpnServer,citrixServer,sshProtocol,sshPort) 126:hacl(workStation,citrixServer,sshProtocol,sshPort)

128:RULE 12 ():1

129:networkServiceInfo(citrixServer,sshd,sshProtocol,sshPort,root)

134:hacl(commServer,dataHistorian,sqlProtocol,sqlPort)136:hacl(dataHistorian,dataHistorian,sqlProtocol,sqlPort)

Fig. 7. Full logical attack graph, as generated by MulVAL

10


