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Abstract. Various tools exist to analyze enterprise network systemasta produce attack graphs detailing how
attackers might penetrate into the system. These attaghgraowever, are often complex and difficult to com-
prehend fully, and a human user may find it problematic tohregapropriate configuration decisions. This paper
presents methodologies that can 1) automatically idemifitions of an attack graph that do not help a user to
understand the core security problems and so can be trimemeld?) automatically group similar attack steps as
virtual nodes in a model of the network topology, to immeglaincrease the understandability of the data. We be-
lieve both methods are important steps toward improvingalization of attack graphs to make them more useful
in configuration management for large enterprise netwdklsimplemented our methods using one of the existing
attack-graph toolkits. Initial experimentation showstttiee proposed approaches can 1) significantly reduce the
complexity of attack graphs by trimming a large portion af tiraph that is not needed for a user to understand the
security problem, and 2) significantly increase the acbéigiand understandability of the data presented in the
attack graph by clearly showing, within a generated vigadilbon of the network topology, the number and type of
potential attacks to which each host is exposed.
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1 Introduction

Attack graphs have been developed to aid in identificati@hamrection of misconfigurations in enterprise network
systems, by providing a visual representation of poteattakck paths [1-8]. Much work has already been done in the
generation of attack graphs, producing more efficient tieghes for building them [6, 7]. Attack graphs, however, are
difficult for a human to utilize effectively because of theamplexity [9—11]. Even a network of moderate size can
have dozens of possible attack paths, overwhelming a husemaith the amount of information presented. It is not
easy for a human to determine from the information in theckttmaph which configuration settings should be changed
to best address the identified security problems. Witholgar einderstanding of the existing security problems, it is
difficult for a human user to evaluate possible configuratioanges and to verify that optimal changes are made.

Previous works have introduced improvements in the vizattin of attack paths and the overall presentation
of attack graph data. Noedt al. suggested that complexity can be reduced through the useot#gtion domains
to represent groups of machines with unrestricted inteveotivity [9, 10]. Lippmannet al. introduced visualization
approaches to emphasize critical attack steps while glshdwing host-to-host reachability [11].

In this paper, we show that by utilizing the logical semanti€an attack graph, one can 1) distinguish attack steps
based on their usefulness for a human to quickly understenddre security problems in an enterprise network, and
trim those that do not contribute much for this purpose; Bty attack steps that share similar semantics, and thus
can be grouped and presented as a single virtual node. Tdasedues can further improve the visualization of attack
graphs to make them more useful in practice.

For our implementation, we use the MulVAL attack graph tagtes[7, 12], which provides reasonable perfor-
mance and scalability for enterprise networks of a realsitie. MulVAL produces complete logical attack graphs,
which are easily mapped back to a visualization of the ndtwapology, based on the input data.

* This work is partially supported by the National Sciencer#ation under Grant No. 0716665, and U.S. Department ofgyner
Any opinions, findings and conclusions or recomendatiopsessed in this paper are those of the authors and do notsagitys
reflect the views of the U.S. government agencies.
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Fig. 1. An example enterprise network

Figure 1 depicts an example enterprise network that is basedreal (and much bigger) system; we will return
to this example throughout the paper. The network includesetsubnets: a DMZ (Demilitarized Zone), an internal
subnet, and an EMS (Energy Management System) subnet, wstaatontrol-system network for power grids. In this
example, we will assume that host-grouping has already &yggled, based on similar configurations; the workStation
node, for example, might be an abstracted grouping of ondrednworkstation machines with comparable setups.
Both the web server and the VPN server are directly acceshitan the Internet. The web server can access the file
server through the NFS file-sharing protocol; the VPN seivatlowed access to all hosts in the internal subnet (but
not the EMS subnet). Outside access to the EMS subnet is bolyeal from the Citrix server in the internal subnet,
and even then only to the data historian. In this example, ssarae that the attacker’s goal is to gain privileges to
execute code on the commServer. From the commServer, akettaould send commands to physical facilities such
as power-generating turbines, which can cause grave damagécal infrastructures.

A visualization of the MulVAL attack graph is shown in Figu2eidentifying a large number of potential attack
paths in this network. This visualization is produced by piag the full MulVAL logical attack graph to the network
subnet topology, using GraphViz to construct the image, apmlying clustering techniques similar to Natlal.'s
approach [10]. The black solid lines represent connegtlvittween subnets and gateways (router, firevetll.).
Machines in the same subnet (represented as a rectangus&rglhave unrestricted access to each other. The red
dotted lines indicate attack propagation paths as mappedttie full logical attack graph. This visualization omits a
large amount of information from the original full attackagh, such as pre- and postconditions for each attack step.
We believe a simple visualization of attack paths directiytioe network topology will be useful in practice, since
it relates the information conveyed by the attack graph édbncrete entities in an enterprise network, and a sys-
tem administrator will likely find it easier to understanéiththe full attack graph. The full logical attack graph (see
Appendix A) contains all of the same information shown inufig2, portraying all possible paths by which the comm-
Server could be compromised; the breadth of this informatiowever, leads to a graph so large and complicated as
to be unreadable by a human user.

Even after this simplification, the attack paths in the viiadion may still overwhelm a user. In this paper we will
focus on how to further reduce the complexity through twdtégues. First, we observe that there are a number of
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Fig. 2. Attack graph visualization

logically valid attack steps that probably need not be shiwdhe user for him/her to understand the security problem.
For example, an attacker who has gained privileges on thkStation machine in the internal subnet has opportunity
to exploit the webServer in the DMZ. Though possible, thtack step is intuitively unhelpful to understanding the
security problem: the attacker would have to compromise Dblgain privilege on workStation in the first place.
Showing users the attack steps “back” to DMZ does not prosigeadditional insights. In reality, these attack steps are
likely to be useless to the attacker as well. Another examipleould be attacking the fileServer from the citrixServer;
Since we assume the commServer is the attacker’s goal aakettwvith privileges on the citrixServer already has all of
the necessary privileges to attack the EMS subnet throwgtidtaHistorian. The user gains nothing useful by knowing
that the attacker can further attack the fileServer from tiiexGerver. Second, we observe that the complexity of
the attack graph does not necessarily reflect complexitg@urity vulnerabilities. Employing a compromised user
account, an attacker can access the citrixServer from thBeqwer, workStation, and fileServer; using a Trojan horse
attack, an attacker can gain access to the citrixServer thenfileServer. (The edge from fileServer to citrixServer
represents both potential attack steps). Although thexdf@ur distinct attack steps that can enable an attacker to



compromise the citrixServer, these attack steps utilizg two distinct exploitations. This fact is obscured in the
attack graph by the separate attack steps leading to a@imeBfrom different host machines.

We believe that the attack graph complexity can be furthéonced. In order to make an attack graph a useful
tool for configuration management, we identify as a reseehelfienge the need for presenting the security problems
expressed by an attack graph in a manner that enables a higmatounore quickly grasp the core of the security
problem. Our contributions are:

1. We developed an algorithm to identify portions of an &tg@ph that are not helpful for a user to understand the
core security problems, and reduce the amount of data pgegsémthe user by trimming those portions. When
the amount of information presented in the attack graphdsced, we believe that core security problems will be
more quickly identifiable from the attack graph.

2. We developed a method to create virtual nodes to reprgsenpings of similar exploitations. In this approach,
each attack step edge leading into a host represents a witquak on that machine. We believe that this approach
will increase the understandability of the attack grapladiat more clearly displaying the exploitability of each
host.

Our approach to trimming attack steps ensures that alhdissittack paths will be retained in the trimmed attack
graph, while removing data not beneficial to the understamdf core security problems. Host-grouping techniques
have already been shown to be effective for reducing contplf 9, 10]. We show that further gains can be made
in grouping similar exploits from multiple sources, whiclakes clearly visible the number of exploits available on a
given machine and all of the possible sources for each pat@xiploit. It is easy then to see all attack steps that can
be eliminated by resolving the vulnerability enabling acfie exploit.

The trimming algorithm is presented in Section 2. The expgloduping approach is presented in Section 3. We
will discuss related work in Section 4 and conclude with @dssion of future work on these approaches in Section 5.

2 ldentifying and Removing “Useless” Attack Steps

In examining the attack graph, we found that many of the kts&eps, while valid from a logical point of view, are
not helpful for a human user to comprehend the core securitlylems in the network configurations. They share a
common characteristic which is they do not reveal the mogbmant vulnerability in the system since the attacker does
not penetrate “deeper” into the enterprise network alongetsteps. While these steps contain important information
that would be useful if one wished to block every possiblacttpath, they can also be distracting to a human reader
and often hides the root causes of the security problemsthiLis beneficial to remove these less useful attack steps
from the attack graph so that the security problems becosierda grasp for a human reader.

We refer to attack steps that are not useful for a human rd¢aderderstand the underlying security problems as
“useless” attack steps. Generally, these “useless” atttgbs involve an attack on a machine further from the goal
machine than the machine from which the attack is made. Irextagnple described earlier, for instance, one valid
attack step enables an attacker with privileges on the wati® to gain privileges on the webServer, but this attack
would not bring the attacker any closer to the presumed dasia@essing the commServer.

Our classification of “useful” and “useless” edges is meantefflect a prioritization of the data contained in
the attack graph. We can then provide a simplification of thgimal attack graph, highlighting attack reachability
between hosts to enable a human user to more quickly commptdhedamental vulnerabilities in the network. It is
important to emphasize that the so-called “useless” agtagss are valid and important to consider when determining
upon appropriate countermeasures. However, when the sidiesti presented with the attack graph, understanding
these paths is not crucial for understanding overall sgctimieats. It would be more beneficial if the user can quickly
understand the core security problems from a simplifieckigaaph. For example, in Figure 3 the attacker’s starting
machine is host, and his goal is to compromise hastThere are two paths: — 2 — 3 — 4 andl — 3 — 4.
Intuitively the attack step from machirdeto machine2 is not useful, since it does not help the attacker to reach his
goal. We would like to trim those steps.

The immediately obvious solution for identifying theseéless” attack steps is to implement a breadth-first search
algorithm to compute the distance of machine from the goalhime, as measured by the minimum number of inter-
host attack steps necessary to reach the goal from that neadhachine in the above example would have a distance



=

Fig. 3. Example useless attack steps Fig. 4. Subnet graph, built from example in Section 1

of 2 and machin& would have a distance df Attack steps that move from a machine to another machirte tvé
same or greater distanoed. 3 — 2) could then be labelled “useless” and trimmed. While thisrapch would work

in some cases, in many cases useful attack paths would baddnior example, this algorithm would also trim the
stepl — 2, and thus lose the complete attack path» 2 — 3 — 4. Actually only attack paths with the shortest
length will be preserved and all other paths will be trimmElis approach can lose valuable information, especially
in cases when an attacker might follow a longer attack pa¢itaease of exploit or better stealthiness along the longer
path.

Another seemingly correct solution is to perform a simplptl€first search and trim the back edges in the DFS
tree. However, depending on the order of traversing a nadaltiple children, both edg2 — 3 and3 — 2 could be
back edges in the DFS tree. So this method does not work either

We have developed a two-level approach to identifying amaoreng “useless” attack steps. First, we create a
directed graph with subnets as nodes and possible inteiesatiack steps as edges. From this directed graph, we then
construct a dominator tree to recognize dominance anddmsinance relationships between subnets with respect to
presumed attacker location and his goal. The subnet whegdtticker is located will be the source node and the subnet
where the goal machine is located will be the sink node.d et p be vertices in a directed graph. Thédominates
n if every path from the source nodetomust go throughl. We writed dom n, for this fact. Also,p post-dominates
n if every path fromn to the sink node must go throughWe writep postdom n for this fact. In the subnet graph of
Figure 4, assuming that INTERNET is the source and EMS is tiad, gome examples of dominance relationships are
DMZ dom CORP and COREom EMS. We also have EMBostdom CORP and CORPostdom DMZ.

For any two subnets X and Y, we then identify as “uselessradirisubnet attack step§ — Y whereY dom X
or X postdomY'. If Y dom X, then an attacker who has gained privileges in subhetust already have privileges
in subnetY” (or the attacker would not have been able to transitiok JoIf X postdomY’, then moving fromX toY
will not help the attacker either since he would have to retarX in order to reach his goal. Therefore, any transitions
between two hosts in different subnets that fits one or bothede cases is “useless” and will be trimmed from the
attack graph. They are distracting for a human reader tigrgpmprehend other, more enlightening attack paths. In
the attack graph shown in Figure 2, every transition fromG&@RP subnet to the DMZ will be trimmed since DMZ
dominates CORP. On the other hand, the transition from CORIfetcontrol network subnet EMS will be retained.

After applying the inter-subnet transition trimming, westhaddress intra-subnet transitions. An attack step be-
tween two machinegl — B in the same subnet is retained in only two cases. First, iEthmet contains the goal
machine, the transition is retained onlyBfis the goal. Any other transition within this subnet will i@rtmed. In
reality, an attacker might need to transition to other maebin the same subnet for the purposegfobtaining more
computing power. However, these attack steps are not usefalhuman to grasp the core security problem. Second,
if the subnet does not contain the goal machine, the trandgiuseful only ifB would provide an attacker with access
to another subnet that would be deemed useful according teutnet dominator tree, and even then only if that same
access is not available fromh. In the attack graph shown in Figure 2, the transition froeSérver to workStation
is useless, since the workStation would not provide an lattagith new, useful access; however, the transition from
fileServer to citrixServer is useful, since, from citrix8er, an attacker could access the EMS subnet.
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Fig. 5. Attack graph with both inter- and intra-subnet trimming kb

Figure 5 shows the resulting graph after both levels of tringrevels are applied to the sample network. The
attack graph now shows three key attack paths to reach thg &atver, from which subnet EMS is accessible:

Internet — web server — file server — Clitrix server
Internet — VPN server — workstation — Clitrix server
Internet — VPN server — Clitrix server

A careful reader might ask why the second attack attack patttained, given the existence of a shorter pathAs
mentioned above, shorter attack paths cannot always sebkunger ones, since the exploits along the path may be
different.

3 Abstraction of Attack Traces

Even after identifying and removing “useless” attack stepany edges will likely remain in the visualization. Hu-
mans assessing the data presented in the attack graph méflitieom the reduced amount of data, but still face other
obstacles to clear and straightforward understandingeofittderlying security issues in the current network config-
uration. One hindrance to easy understanding of attackhgiaga can be the number of edges directed into a single
host machine in the attack graph. In Figure 5, for exampkcthiixServer node in the Corp subnet is the destination
point of four attack steps (shown in three edges), even ‘afsaiess” attack steps have been trimmed from the graph.
It is notimmediately clear to the user how many differentgilole exploitations are being represented, and how many
sources for exploitations of the citrixServer are repatisi of a single attack type.



Our solution to this difficulty is to create an abstractiomath exploitation with multiple sources, from which only
one edge will lead into the exploited node. In this way, it isalmeasier for a human user to see how many exploitations
are possible on a given host and what potential attack stepd be eliminated by resolving the conditions enabling a
specific exploitation. Potential exploits with only one smj on the other hand, will be represented by a direct attack
step edge between the two machines, to maintain as muchigimpi the graph as possible.

In the attack graph shown in Figure 5, three of the edges #aal {o the citrixServer represent different source
points but only a single security issue in the network, ngntie® uncertain reliability of the user with account “or-
dinaryUser.” If this user account is compromised, an attadould gain access to the citrixServer from any of the
three host machines with edges leading to the abstractddittiopn node. By creating a virtual node to represent
the existence of this security concern, it is much easieetorew that if the reliability of this user account can be
verified, most of the possible attacks leading to citrix@emwvill be eliminated. Our attack graph visualization will
show transitions to an abstracted exploit node as blue, limeite red lines will indicate direct host-to-host attacss
well as attacks from an abstracted exploit node.

The full attack graph, shown in Figure 2, included a numbefustless” attack steps that are removed by the
trimming algorithm. The trimming also reduces the numbenaftiple-source attacks and thus the number of abstract
exploit nodes that can be created. For optimal effectivertéss exploit abstraction technique is applied only to the
trimmed attack graph. The final attack graph is shown in Edgur
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Fig. 6. Attack graph, trimmed, with virtual exploitation nodes



4 Related Work

A number of other previous works addressed the problem oftbavge attack graphs to better manage the security of
enterprise networks [13—17]. The observations and insifgbin these previous works helped us develop the approach
in this paper, and our work either complements or improvesidpem. Our contribution is the development of formal,
logic-based approaches to simplifying an attack graph farraan to better understand.

Noel, et al. proposed a number of techniques for reducing complexityttacck graphs [10]. We adopted some
of the approaches in our work, such as using clustering tqabe to show the subnet topology of the network. Our
approaches address complementary problems in visualizatamely identification and removal of attack paths that
are not useful for a human to better understand the coreigepuoblems, and better represent attacks by grouping
similar exploits targeted at a single host. Natkl. also presents a notion of graph trimming, by removing rednhd
exploits and allowing them to be implicitly conveyed in thegh. However, they do not systematically address how
to identify and trim the “useless” attack steps describetiismpaper.

Lippmann,et al. have built on the multiple-prerequisite graphs producetheyNetSPA system with a goal of re-
ducing attack graph complexity [11]. Their visualizationgoys spatial grouping and color-coding to representeve
of potential compromise. Groups of machines with similaels of exploitability can then be collapsed, reducing the
overall complexity of the graph. Our approach differs inttve do not group machines with similar vulnerabilities,
but rather create abstract representations of attacks gdies leading to the potentially affected machines.

5 Conclusion

We have proposed two techniques for improving visualiratibattack graphs — reducing the amount of data by iden-
tifying attack steps that are not crucial for a human to qyickderstand the core security problems, and grouping
similar attacks targeted at a single host to better reptéisemumber and type of security problems. These technjques
in combination with visualization techniques developegbsvious researchers, will display attack graphs to a more
human-readable manner. This is crucial for using attackhgao further automate enterprise network security man-
agement, since a human can only trust a tool if she/he uraghelsits output. Our techniques will help a human user
quickly identify the core security problems in an enterpnigtwork without being overwhelmed by the amount of
information contained in the full attack graphs.
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MulVAL Logical Attack Graph

Fig. 7. Full logical attack graph, as generated by MulVAL



