From Attack Graphs to Automated Configuration
Management — An Iterative Approach

John Homer
Kansas State University
Manhattan, KS
jhomer@ksu.edu

Abstract—Various tools exist to analyze enterprise net-
work systems and to produce attack graphs detailing
how attackers might penetrate into the system. These
attack graphs, however, are often complex and difficult
to comprehend fully, and a human user may find it
problematic to reach appropriate configuration decisions.
This paper presents methodologies that can 1) automat-
ically identify portions of an attack graph that do not
help a user to understand the core security problems
and so can be trimmed, and 2) enable a user to use
the information in an attack graph to reach appropriate
configuration decisions, through a configuration generator
that can be iteratively trained by the user to understand
a wide range of constraints in configuring an enterprise
system, such as usability requirements and trade-offs that
need to be made between the cost of security hardening
measures and the cost of potential damage. We believe both
methods are important steps toward achieving automatic
configuration management for large enterprise networks.
We implemented our methods using one of the existing
attack-graph toolkits. Initial experimentation shows that
the proposed approaches can 1) significantly reduce the
complexity of attack graphs by trimming a large portion
of the graph that is not needed for a user to understand the
security problem, and 2) automatically provide reasonable
suggestions for resolving the security problem.

I. INTRODUCTION

Enterprise networks continue to grow in both size
and complexity. With this increase, concerns for security
grow apace. Vulnerabilities are regularly discovered in a
wide variety of software applications, and it is impossible
to continually and manually verify that a network has
no vulnerabilities to outside attacks. Tools have been
developed to identify and report known vulnerabilities
in running software versions, firewall policies, and other
system settings. Attack graphs provide a visual rep-
resentation of potential attack paths employing these
vulnerabilities that could be followed to exploit system
resources [22], [1], [6], [11].

Xinming Ou
Kansas State University
Manhattan, KS
xou@ksu.edu

Miles A. McQueen
Idaho National Laboratory
Idaho Falls, ID
miles.mcqueen @inl.gov

Much work has already been done in the genera-
tion of attack graphs, steadily producing more efficient
techniques for building them [19], [S]. Attack graphs,
however, are difficult for a human to utilize effectively
because of their complexity [17]. Even a network of
moderate size can have dozens of possible attack paths,
overwhelming a human user with the amount of infor-
mation presented. In all of this complexity, it becomes
very hard to determine causality in the attack paths and
identify which vulnerabilities carry the highest potential
for network exploitation. It is not easy for a human to
determine from the information in the attack graph which
configuration settings need to be changed to address the
identified security problems.

To make things more complicated, the requirements
for usability are often at odds with those for security.
Configuration management would be a trivial problem
if one only needed to consider security requirements
— then all that would be needed is to shut down the
whole enterprise system. When changing configurations
to block discovered attack paths, one must balance the
system’s security and usability so that the security risks
are appropriately controlled in a cost-effective manner.

We identify the following two research challenges for
making an attack graph a useful tool for configuration
management.

C1: Presenting the security problems expressed by an
attack graph in a manner that enables a human user
to quickly grasp the core of the security problem.
Automatically provide suggestions for configura-
tion changes that mitigate the threats presented
in an attack graph, through an automatic decision
procedure that can be trained by a human user.

C2:

C1 is important because the balance between security
and usability inevitably involves subjective judgment and
a human needs to be involved in reaching the final

Simplified

Attack
Graph
Training
Guidance
Attack
Input Graph ::> Configuration |—!
Configuration’ | Builder Com Generator [
plete
Attack
Graph

Fig. 1.

decision. Without a clear understanding of the existing
security problems, it is difficult for a human user to
evaluate the proposed configuration changes and provide
appropriate guidance.

C2 is important because it alleviates a human user’s
burden of searching for the best way to configure a
system given a large number of complex security and
usability constraints. Since configuration management is
such an important and complex problem, it is unlikely
that an automatic tool can take over a human system
administrator’s role overnight. Rather, we envision an

Iterative configuration generation

incremental process whereby automated tools can assist a
human user to manage an enterprise network, increasing
the degree of automation as the tool is trained. The cost
for changing a specific configuration parameter and the
cost caused by a potential attacker privilege will vary
from one organization to another. There is no one-size-
fits-all configuration solution for all enterprise systems,
and an automatic tool need to learn from a human user’s
guidance. This vision is depicted in Figure 1.

We developed a systematic approach that can realize
such a vision. Our contributions are:

1) We developed an algorithm that can identify por-
tions of an attack graph that are not helpful for a
user to understand the core security problems, and
simplify attack graphs by trimming those portions.

2) We developed an approach that can transform the
configuration problem into a SAT solving problem,
in polynomial time. This enables us to leverage a
modern SAT solving technique, MinCostSAT [9],
to find a mitigation solution that is optimal ac-
cording to the various cost functions defined by the
human user regarding human labor needed to carry
out configuration changes, the possible loss in the
system’s usability, and the potential damage caused
by a successful attack. Such cost functions serve
as training guidance to the configuration generator
and can evolve incrementally and iteratively.

The rest of the paper is organized as follows: Sec-
tion II explains the attack graph semantics; Section III
introduces a key example we will employ throughout
the paper; Section IV presents our attack graph sim-
plification algorithm and its application to the example;
Section V defines our transformation of the problem into
a SAT solving problem and demonstrates its effective-
ness; Section VI discusses future work on this topic;
Section VII addresses related work; and Section VIII
concludes.

II. ATTACK GRAPH SEMANTICS

We use the MulVAL attack graph tool suite [20], [19]
for our work. MulVAL has reasonable performance and
scalability for enterprise networks of a realistic size. The
reasoning logic in MulVAL is specified declaratively
in Datalog, which makes it easier for us to build our
methodologies on top of the core MulVAL reasoning
engine. But the techniques we present in this paper
could be applied to other attack graphs that have similar
semantics.

Fig. 2. A dependency attack graph

Figure 2 is a simple attack graph. ci, c2, c3 represent
configuration conditions. For example, c; could mean
the existence of a software vulnerability on machine
A, ¢ could mean the reachability from machine B
to machine A, and so on. pi,py represent potential
privileges an attacker can gain. For example, p; could
mean an attacker can execute arbitrary code on machine
A, and py could mean an attacker can execute arbitrary
code on machine B. ey, ez, e3 are exploits that link
the causality relations between various configuration
conditions and attacker privileges. For example, e; is an
exploit that requires all of ps, ¢y, cy to be true, with the
consequence being p;. The arcs in the attack graph point
to the causes for potential attacker privileges. The arcs
from an exploit vertex form the logical AND relations,
meaning all of the preconditions must be true to enable
the exploit. We symbolize those vertices as ellipses. The
arcs from a privilege node (e.g. p;) form the logical OR
relation, since the out-neighbours of the vertex represent
alternative ways to gain the privilege. We symbolize
those vertices as diamonds. The vertices representing
configuration conditions are sink nodes in the graph and
we symbolize them as boxes. The dependency attack
graph in Figure 2 shows that attackers can gain privilege
p1 in two different ways. They can launch exploit e
if all of the conditions ¢y, ce and py are true. Or they
can launch exploit ey if conditions cy and c3 are true.
Privilege p2 can be enabled only by exploit e3, for which
the only precondition is cs.

This diagram is just to give the reader a basic under-
standing of the logic semantics in the attack graphs we
use and does not correspond to any realistic scenarios.
The attack graphs computed for real enterprise systems
will be much larger.

III. AN EXAMPLE

Figure 3 shows an example enterprise network that is
based on a real (and much bigger) system. We are not
able to disclose the real system due to the sensitivity
of the information. However, the specific problems we
encountered when applying attack-graph techniques are
the same for both the real and the adapted system.

Subnets: There are three subnets in the enterprise sys-
tem: a DMZ (Demilitarized Zone), an internal subnet,
and an EMS (Energy Management System) subnet,
which is a control-system network for power grids.

Hosts: The functionalities of most of the hosts are self-
explanatory. One functionality of the EMS network is
to gather real-time statistics, such as voltage, load, etc.,

Control Network (EMS)

Internet

Fig. 3.

from the physical power transmission and generation
facilities. This information is the basis for generating
various control signals to maintain appropriate operation
of the power grid, and it is also useful for business
transactions such as power brokerage between producers
and consumers. The communication servers in the EMS
subnet are responsible for communicating with the power
grid physical infrastructures. The data historian is a
database server that provides the power-grid statistics to
be used for the various business/operation purposes.

Accessibility:
Src Dst Network access allowed
Internet | DMZ all to web server
all to VPN server
DMZ | internal web server to file server
VPN server to all
internal | EMS | Citrix server to data historian

The out-bound accessibility, such as from internal
subnet to Internet, is ignored in the table. Note that the
Internet can only directly access DMZ, and the Citrix
server is the only host in the internal subnet that can
access the EMS network, and it can only access the data
historian.

Enterprise Network

An example enterprise network

Threats: For this kind of system, security of the control
system network is of paramount concern, since privileges
on those machines could enable an attacker to assume
control of physical infrastructures and drive them to a
failed state (such as causing the turbine of a power
generator to spin at a high speed until self-destruction).
A number of mechanisms in this example are in place to
reduce such threats as shown in the accessibility table.

Vulnerabilities: There are plenty of vulnerabilities in the
system. The data historian runs a proprietary commu-
nication protocol with the communication servers that
can be very easily compromised. All the machines in
the system may have software vulnerabilities in their
various services and software applications. The users of
the enterprise network may not be careful to protect their
log-in credentials and could leak their user name and
password to an attacker through various means, including
social engineering. The VPN server in the DMZ can
access every machine in the internal subnet. The web
server in the DMZ can access the file server through the
NFS file-sharing protocol. These vulnerabilities could
affect the security of the enterprise network and the
control system network.

A. Problems in the attack graph

The MulVAL attack-graph toolkit identified a large
number of potential attack paths on this example. The
size of the attack graph (150 nodes, 173 arcs) prohibits
a full illustration of the graph in this paper. However,
in reading the attack graph, we found that many of the
attack steps, while valid from a logical point of view,
are not helpful for a human user to comprehend the core
security problems in the configurations. We describe a
few of them below.

1) The attacker, after compromising the VPN server,
can further compromise the web server.

2) The attacker, after compromising the workstation,
can further compromise the web server.

3) The attacker, after compromising the Citrix server,
can further compromise the file server.

All these attack steps are valid, but they are not very
enlightening. For example, for case 1, after an attacker
compromises a VPN server, there is probably not much
value for him to attack the web server. In case 2, the
attacker moves “back” from the internal subnet to DMZ,
which he must have visited already in order to reach
the internal subnet. If we assume the attacker’s goal is
to obtain privileges on the control network, case 3 also
does not show the top-priority security problem since the
Citrix server is the only stepping stone into the control
network. If the attacker has already compromised the
Citrix server, he can attack the control network directly
from there.

There are many such attack steps in the generated
attack graph. They share a common characteristic which
is they do not reveal the most important vulnerability in
the system since the attacker does not penetrate “deeper”
into the enterprise network along those steps. While
these steps contain important information that would be
useful if one wished to block every possible attack path,
they can also be distracting to a human reader and often
hides the root causes of the security problems. It is thus
beneficial to remove these less useful attack steps from
the attack graph so that the security problems become
easier to grasp for a human reader. Note that this is not
a simple problem of cycle detection and elimination. Not
all cycles in attack graphs can be eliminated since some
of them are useful. Detecting useless cycles in an attack
graph is not a trivial problem [19].

We refer to attack steps that are not useful for a human
reader to understand the underlying security problems as
“useless attack steps.” It is important to emphasize that
those attack steps are valid and important to consider

when determining upon appropriate countermeasures.
For example, the attack step from VPN server to the web
server (case 1) indicates that there is an alternative path
to reach the web server. So even after blocking access
from Internet to web server, and blocking access from
VPN server to the internal subnet, an attacker can still
potentially compromise the internal subnet if he can first
compromise the VPN server, then compromise the web
server, and from web server penetrate deeper into the
internal subnet. However, when the user is first presented
with the attack graph, this additional path is not crucial
for understanding overall security threats. It would be
beneficial if the user can quickly understand the core
security problems from a simplified attack graph.

IV. SIMPLIFYING ATTACK GRAPHS

In order to trim the useless attack steps, we first need
to identify them automatically. We say an attack step
is associated with a transition A — B if it indicates
that privileges on machine A enable an attacker to gain
privileges on machine B. A useless attack step is one
that is associated with a useless transition, which we
will define shortly. We have observed a large number
of useless attack steps in the attack graph produced for
the example network, as well as attack graphs for other
system scenarios studied before, and notice that there are
two basic types of useless attack steps.

Useless intra-subnet transitions In one type of situ-
ations, the attack steps indicate an attacker’s privilege
on machine A can enable him to further compromise
machine B in the same subnet, but privileges on machine
B cannot help the attacker penetrate deeper into the
enterprise system. Case (1) and (3) in the example are in
this category. Since the VPN server can already access
all the machines in the internal subnet, moving from
the VPN server to the web server does not increase
the attacker’s ability to attack machines in the internal
subnet. Similarly, since the file server cannot directly
access the control network, attacking it from the Citrix
server, which can access the control network, does not
increase the attacker’s ability to further compromise the
control network.

Useless inter-subnet transitions In the second type of
situations, the attacker’s privileges on machine A in
subnet S enables him to attack a machine B in another
subnet So, but S is “deeper” into the enterprise network
than S,. Case (2) in the example is in this category.
Intuitively, the internal subnet is “deeper” than the DMZ
subnet in the enterprise system. Thus, attacking from the
workstation in the internal subnet to the web server in the

Fig. 4. A subnet graph

DMZ does not increase an attacker’s ability to penetrate
deeper into the system.

We need a few more definitions to formally charac-
terize what transitions are useless.

Definition 1 A subnet graph of an enterprise network
is (V,E), where V is the set of subnets' and E is the
set of edges between subnets. (S1,52) € E if there is
a machine Hy in Sy such that Hi can reach Hy in S
using some protocol and port.

Figure 4 shows an example subnet graph. It is slightly
different from the subnet structure of the enterprise
system in Fig 3, in that it has two internal subnets S1
and S2. We assume that the attacker is initially located in
subnet Internet and he would like to gain some privileges
in a “goal” subnet (e.g., Goal). This can be generalized
to include cases where an attacker has multiple start
locations and multiple goals in mind. In such cases we
only need to introduce a dummy source node in the graph
that has an edge to all the initial-location subnets, and a
sink node that has an edge from each goal subnet. The
information needed to build the subnet graph is most
likely already available from an attack-graph toolkit,
since it needs to analyze the topology of the enterprise
network along with the firewalls, router configurations,
etc., to compute reachability relations between hosts. We
actually wrote very simple code to derive the subnet
graph structure from the input tuples to the MulVAL
reasoning engine.

From the subnet graph, it can be seen that there is
some ordering on the subnets. For example, S1 and S2
are deeper than DMZ, since machines from the Internet

"We adopt the normal meaning of a subnet as a group of machines
that are physically connected behind a switch with unrestricted access
to each other (except for simple filtering to prevent source-IP spoofing
or ARP spoofing).

can only access the DMZ, and machines in S1 and S2
can only be directly accessed from the DMZ. S1 is also
deeper than S2 since S1 can directly access the Goal
subnet. When producing attack graphs, such topological
order is not taken into account, which is the reason why
many useless and distracting attack steps are included.

We compute the dominator and post-dominator trees
on the subnet graph to identify such topological order.
Let d,n be vertices in a directed graph. d dominates
n if every path from the source node to n must go
through d. We write d dom n for this fact. p post-
dominates n if every path from n to the sink node must
go through p. We write p postdom n for this fact. In
the subnet graph of Figure 4, assuming that Internet is
the source and Goal is the sink, we have DMZ dom S1
and DMZ dom S2. We also have S1 postdom S2 and
S1 postdom DMZ. Computing the dominators and post-
dominators in a graph can be done in almost linear
time [8].

Definition 2 A fransition between subnets S1 — So is
useless if either Sy dom S1 or S1 postdom Ss.

Intuitively, if an attacker moves from subnet S to one
of its dominators .So, this is not a useful step since
he already must have reached S in order to be in
S1. Likewise, if S7 post-dominates .So, the attacker will
necessarily return to S; at some later point. We will
eliminate such attack steps since they are distracting
for a human reader trying to comprehend other, more
enlightening attack paths. In the example of Section III,
the transition from the internal subnet to the DMZ is
useless since the DMZ dominates the internal subnet.
The transition from the internal subnet to the control
network subnet is useful.

Definition 3 An outgoing set of a host H is the set of
tuples (host, protocol, port) such that host is not in the
same subnet as H and can be reached directly from
H through protocol and port. We use outgoing(H) to
denote this set.

Definition 4 A transition between two hosts Hy —
Hy in the same subnet S is useful if either Ho
is one of the target machines, or there exists
s = (host,protocol,port),s € outgoing(Hs),s &
outgoing(H,), host is in subnet S" and S — S’ is useful.

Definition 5 A transition between two hosts Hy — Hy
in two different subnets S| and Sy is useful if the
transition S1 — So is useful.

The transitions between hosts that are not useful,
based on the above definitions, are considered useless
and will be trimmed from the attack graph. In Sec-
tion III’s example, the transition from the VPN server
to the web server is useless since the two machines are
in the same subnet (DMZ), and no machine outside the
DMZ can be reached by the web server and not the
VPN server. The transition from the workstation to the
web server is also useless since the transition from the
internal subnet to the DMZ subnet is useless. But the
transition from the web server to the file server is useful
since the transition from the DMZ to the internal subnet
is useful. And the transition from the file server to the
Citrix server is useful since the Citrix server can reach
the data historian in the control network subnet and the
file server cannot, and the transition from the internal
subnet to control network subnet is useful.

A. Implementation

The MulVAL attack-graph toolkit uses Datalog to
specify its reasoning logic. An attack step is just an
instantiation of a Datalog rule. Thus instead of trimming
useless attack steps from the produced attack graphs, we
add one more constraint to each MulVAL rule such that
the constraint will fail for useless attack steps. This is
best illustrated through an example. The following is a
MulVAL rule for multi-host network access.
netAccess (H2, Protocol, Port) :-

execCode (H1, _Perm),

reachable (H1, H2, Protocol, Port).

This rule states that if an attacker can execute arbitrary
code on machine H1 at some permission level, and
machine H1 can reach machine H2 through Protocol
and Port, then the attacker can access machine H2
through Protocol and Port. In this way, privileges
on H1 can enable an attacker to access H2. The host
transition associated with this rule is H1 — H2. All the
terms such as H1 and Protocol are variables that can
be instantiated with concrete terms for a specific attack
step. MulVAL’s reasoning engine can automatically find
all the true instantiations derivable from the rules and
input tuples.

We add one new subgoal, advances (H1, H2), to
this rule:
netAccess (H2, Protocol, Port) :-
execCode (H1, _Perm),
reachable (H1, H2, Protocol, Port),
advances (H1, H2).

The advances predicate specifies that the transition
H1 — H2 has to be valid for the rule to be success-

fully fired. We then write separate declarations for the
advances predicate (also in Datalog) so that it returns
true only when the transition H1 — H2 is useful. There is
also a “non-trimming” option, in which the advances
predicate will always return true and so a complete attack
graph can be obtained.

The information needed to compute the advances
predicate includes the machine reachability information,
which is already computed by the MulVAL engine,
and the information about what machine is in which
subnet, which is included in the input to MulVAL. We
wrote a simple program to compute dominator and post-
dominator trees for the subnet graph in Python. The
computation for determining useless transitions was im-
plemented as Datalog programs. We employ the tabling
techniques in XSB [21] (the underlying logic engine for
MulVAL) with the advances tuple, to ensure that each
tuple is computed only once. This tabling guarantees that
very little is added to MulVAL’s runtime.

B. Experimentation results

We applied the above trimming algorithm to the exam-
ple shown in Section III and got satisfactory results. As
previously noted, the untrimmed attack graph contained
150 nodes and 173 edges; after applying the trimming
algorithm, the attack graph contained only 99 nodes and
106 edges.

Applying the algorithm to the example trims all three
cases previously described in Section III, among many
other useless edges. It is important to note that all useful
nodes and edges are retained, so the attack graph now
shows three key attack paths to reach the Citrix server,
from which the control network subnet is accessible:

 Internet — web server — file server — Citrix server
o Internet — VPN server — workstation —
Citrix server

o Internet — VPN server — Citrix server
This algorithm constrains the attack graph to include
only useful edges both within each subnet and between
different subnets. In this way, we eliminate the recog-
nizably useless edges, reducing the number of edges and
nodes appearing in the attack graph and thus simplifying
the information produced.

C. Summary

Network configuration is a difficult task to manage be-
cause of the complexity. Human intervention is required
to make appropriate decisions in consideration of both
network security and usability. To aid in this decision,
we have described how to present data that more clearly

indicates the problematic aspects of the current config-
uration. A human user can utilize this smaller result set
more quickly to the same level of effectiveness, which
can help to realize the vision depicted in Figure 1.

V. RECONFIGURATION USING SAT SOLVING

Trimming attack graphs reduces the amount of data
shown to a human user, simplifying the presentation of
possible attack paths through an enterprise network, but
the trimming algorithm cannot suggest possible solutions
to the vulnerabilities thus exposed. Since any network
misconfiguration is technically resolvable (if only by
removing all inter-machine access), options for recon-
figuration must be dependent on the cost of the changes
needed, as measured in time required and impairment to
current usability. We developed an approach based on
advanced SAT solving techniques that can automatically
suggest optimal configuration changes that can address
the security problems presented in an attack graph. We
use the complete attack graphs, not the trimmed ones,
for automatic configuration generation, since we would
like the suggested configuration changes to address all
the attack possibilities discovered. Our approach allows a
user to provide feedback to the SAT solver so that con-
straints on usability, cost of deployment, and potential
damage due to successful attacks can all be optimized
in a unified framework.

A. Transforming attack graphs to Boolean formulas

We first extract the causality relationships represented
in a dependency attack graph and express them as a
Boolean formula. This is best explained through an
example. In the dependency attack graph of Fig 2, the
AND node e; means that the exploit e; is successful
since all of its children ps,cy,co are enabled, and the
result of the exploit is that the attacker can gain privilege
p1. This can be expressed by the following formula.

p2ANc1Nca = p1
Or, equivalently,
—p2 V e Voo Vopy

We do this for all the AND nodes in the attack graph,
and get the following clauses:

er = —p2V e VocesVp
ea = ~—cgV ey Vopr
e3 = —c3Vp2

Let ¢ = e Aea Aes, then ¢ is a Boolean formula in
CNF whose size is linear in the size of the attack graph?.
Some of the Boolean variables, such as ¢y, co, c3, repre-
sent configuration conditions in the enterprise systems
(they are sink nodes in the attack graph). Some of the
variables, such as p; and p9, represent an attacker’s priv-
ilege. ¢ encodes all the causality relationships between
configuration settings and the various attacker privileges
in the attack graph. For example, if all of cj,co, c3 are
assigned the truth value 7' (as in the current configu-
ration), then both p; and py have to be assigned T' to
make a satisfying assignment for the formula. Therefore,
if one wishes both p; and p»2 to be false (meaning an
attacker can gain neither privilege p; or p2), some of
c1,co,c3 have to be assigned F', meaning some of the
current configuration settings need to be changed. Let
1 = ¢ A—p1 A—po; then seeking a satisfying assignment
to ¢ amounts to finding configuration settings that can
prevent an attacker from gaining privileges p; and ps.

When a sink-node variable is assigned F', we say that
it is “disabled”. For example, if a sink node represents an
existence of a software vulnerability on a machine, the
negation of that node means patching the vulnerability.
If a sink node represents a reachability relationship
between two machines, the negation of the node means
blocking the access between the two machines (e.g., by
changing firewall settings).

If we feed ¢ to a SAT solver, we could get a satisfying
assignment that disables all the sink nodes c1, c2, c3. This
is certainly not an optimal solution, and is analogous
to the trivial solution to securing an enterprise system
— blocking all access and shutting everything down. A
more careful observation on the attack graph reveals that
if one just disables c3 but leaves c¢; and co true, it can
still prevent all the attack paths in the system and it is
probably a cheaper solution than disabling all the sink
nodes, since less changes are needed. Indeed, the truth-
value assignment (¢; — T,co — T,c3 — F,p; —
F,ps — F) is also a satisfying assignment for). Thus,
we not only want to find a satisfying assignment for ,
but one that is also, in some sense, optimal.

One might think that the optimal solution should be
a satisfying assignment that disables the fewest sink
nodes. But this may not be the case depending on the
various meanings of those nodes. For example, if c3
means HTTP accessibility to the enterprise’s web server,

“In MulVAL’s attack graphs an AND node has only one parent, so
each AND node is transformed into exactly one clause. An MulVAL
attack graph’s size is quadratic in the size of the network (number
of hosts) [19].

disabling it may have a high cost due to disrupted
business operation. On the other hand, c¢; could mean the
accessibility from the web server to the internal subnet,
and cy could mean a vulnerability on a server for which a
patch is already available. Blocking web server access to
internal subnet and patching the vulnerability may have a
lower cost than blocking HTTP access to the web server.
Then one might choose to disable c¢; and co to prevent
an attacker from obtaining privilege p;. However, the
truth-value assignment (¢; — F,co — F,c3 — T,p; —
F,ps — F) won’t be a satisfying assignment to v, since
the constraints on ¢ will force py to be true if c3 is
assigned the truth value T'. This means that if we choose
to disable only c; and ca, the attacker would still be able
to gain privilege ps. But suppose po represents a privilege
that is more tolerable than disallowing the HTTP access
to the web server. Do we still want to require that py has
to be false?

In configuring an enterprise network, we not only want
to compare the cost of various hardening measures, but
also want to compare those costs against the potential
damage a successful attack may incur. If the cost of the
hardening measures is too much higher than the cost
of the potential damage, it could be a better solution
simply to acknowledge and tolerate the possibility that
an attacker can obtain some privilege on the enterprise
system. Thus, we need to relax the requirement that all
attack paths in the attack graph need to be prevented.
In the above example, we may want to tolerate the
possibility that an attacker can gain privilege po. Thus the
formula will become 1) = ¢ A —p;. The reconfiguration
problem can be cast into the problem of finding a
satisfying assignment for ¢/’ such that the combined cost
of the hardening measures and the potential damage is
minimized. The optimal results may contain some trade-
off between applying hardening measures and tolerating
possible attacks. Some of the attacker privileges will
remain possible in the solution, in the form of 7' as-
signment to the corresponding Boolean variables.

B. MinCostSAT

MinCostSAT is a SAT problem which minimizes
the cost of the satisfying assignment [9]. Mathemat-
ically, given a Boolean formula with n variables
r1,T2,...,T, With cost ¢; > 0, find a variable assign-
ment X € {0,1}" such that X satisfies 1) and minimizes

n
C = E C; g
i=1

where x; € {0,1} and 1 < i < n.

MinCostSAT has been thoroughly studied by the SAT
solving community [2], [14], [9], [4]. Although the
problem is NP-hard, modern SAT solvers have been
very successful in practice, being able to handle Boolean
formulas with millions of variables and clauses in sec-
onds. We use the MinCostChaff solver [4] which is a
MinCostSAT solver based on the zChaff SAT solver [13].

The MinCostSAT problem minimizes the cost for
variables that are assigned 7'. This matches the semantics
for internal-node variables, whose 7' assignment means
an attacker can gain some privilege and thus will incur
some cost. But for sink-node variables, the cost is
incurred when it is disabled, or assigned F'. Thus we
first transform our formula so that we use the negation
of a Boolean variable to represent a sink node. This
way when the variable is assigned 7', it means the
corresponding sink node is disabled which will incur
some cost. For the example we used, the new formula
derived from the attack graph will be gB =é1 N ey Aes,
where

er = pVaVeaVp
e2 = caVe3Vpr
e3 = c3Vpr

Here ¢, ¢3, ¢35 are the new Boolean variables for the sink
nodes, whose 7' assignment will mean the sink node is
disabled. Let 1) = ¢A—p1, the MinCostSAT solution to
would be the desired solution for the enterprise system’s
reconfiguration, if we have defined the costs correctly
for all variables.

C. Cost function declaration and iterative refinement

For the MinCostSAT algorithm to produce desired
configuration suggestions, numeric costs for each config-
uration change and each possible attacker privilege need
to be specified consistently. How to assign those costs
is not obvious since many of the factors are subjective
judgments. However, those subjective judgments are
important in reaching configuration decisions and thus
must be quantified and incorporated into an automatic
configuration generator. We propose an incremental ap-
proach for a user to specify and refine those costs as
logical declarations. This way a user does not need to
have all the costs ready before he can use the tool. He
can start with a very general and coarse-grained policy.

For example, one may decide that blocking access
using firewall rules has a lower cost than patching
a vulnerable service application, and that patching a
service application has a lower cost than disabling it.
One may also decide that allowing an attacker privileges
on the internal subnet has a higher cost than privileges

on the DMZ. The following rules can describe such a
policy.

cost (reachable (H1, H2, Protocol,

cost (vulExists (H, VulID, Program),

cost (networkService (H, Program,

Protocol, Port, User),

cost (execCode (H, Privilege), 400) :-
inSubnet (H, internal).

cost (execCode (H, Privilege), 250) :-
inSubnet (H, dmz).

Port),
100) .

10) .

200) .

Such Prolog declarations for cost functions are easier
to understand than the raw mapping from Boolean vari-
ables to numbers. One can leverage the expressive power
of Prolog to assign cost values to various configuration
conditions and attacker privileges, to whatever degree of
detail desired by the user. Using only a single clause,
identical costs can be assigned, for example, to all
machines in the internal subnet reachable from the VPN
server. It is straightforward to compute the cost for
each variable from such declarations in the XSB Prolog
system. After the MinCostSAT solver returns a satisfying
assignment to the boolean variables, the assignment is
mapped back to the corresponding configuration changes
and potential attacker privileges still remaining in the
system. This assignment will have a provably minimum
cost according to the cost function specified by the
system administrator.

When viewing the results, it is likely that the system
administrator will find the need for changes in some cost
values to enforce previously unspecified policy assump-
tions. For example, even though changing firewall rules
to block access is generally cheaper than patching, if the
blocked access is the HTTP traffic to the company’s web
server, it may have a much higher cost in terms of loss in
business revenues. When the system administrator sees
a suggestion that access to the web server be blocked,
he will realize that the cost function he specified does
not encompass all the local requirements. He can then
modify the cost declaration so that the Boolean variable
for reachable (internet, webServer, 80)
is assigned a higher cost.

tep,

cost (reachable (internet, webServer,
tcp, 80), 300).

The system administrator may need to do this for a
number of rounds to refine the cost assignments until
viable changes to the configuration are suggested. Then
he can save the cost declaration as his configuration
policy and use it again next time he needs to make
changes in the enterprise system to address new security
problems, at which time he will likely be able to obtain

a satisfactory result from the MinCostSAT solver with
little modification to the iteratively-developed policy.

D. User queries

With the expressiveness of Boolean formulas and the
power of a SAT solver, a system administrator can ask
questions like “what is the best way to reconfigure my
system if I want to guarantee that the file server will
not be compromised?” This can be done by forcing
the Boolean variable z that corresponds to the privilege
execCode (fileServer, someUser) to be false,
i.e. conjoining —x to the original formula. He can also
ask questions like “Can I make the file server secure
while allowing web server to be accessed from the
Internet?” We have implemented mechanisms that allow
an system administrator to specify those additional con-
straints for the various queries he would like to conduct.
Those constraints can be straightforwardly specified in
Datalog and automatically transformed into additional
clauses in the Boolean formula to be solved by the
MinCostSAT solver. This kind of constraint can also
become a part of the configuration policy. For exam-
ple, a user might decide that the web server must be
accessible from the Internet. If this setting is forced
to be true, MinCostSAT will never return a suggested
reconfiguration that requires this access to be removed.
Similarly, potential attacker privileges can be forced to
be always false; for example, a user might decide that
an attacker should never access the data historian, and
so this access could be forced to be false, meaning that
MinCostSAT will never allow it to be true. This effect
could also be simulated by assigning unrealistically high
costs for those variables, but by forcing them to be true
or false, there will never be a suggestion that reverses
this specification.

E. Experiment on the example of Section III

Looking at the example in Section III, we began with a
simple configuration policy that assigned an equal cost to
all changes in basic settings and to all potential attacker
privileges. Based on this policy, running MinCostSAT
produces recommendations to remove access from the
internet to the webServer and vpnServer as well as
removing network services from citrixServer, vpnServer,
and workStation, essentially cutting off all outside con-
nections to the network. We then started refining the cost
functions to make it aware of realistic requirements on
usability. In our testing, it took only three to four iterative
steps to produce a realistic suggestion. We began by
assigning high costs to changes in desired network access

permissions and network services, as well as varying
costs for allowing an attacker access to machines in
various subnets, with highest costs in the control network
subnet, lower in the internal subnet, and still lower in
the DMZ. In this way, the policy asserted that there
were higher potential costs in allowing an attacker access
further into the system. After several more iterations, re-
assessing and reassigning costs, the suggested changes
are to patch the existing vulnerability in webServer and
either remove one employee’s account on the VPN server
or ensure that the employee’s log-in information will
not be compromised. Acting on these suggestions, an
administrator could patch the vulnerability and spend
some time ensuring that the employee understands good
security procedures, such as using strong passwords.
Based on the costs we used in our policy, MinCostSAT
has determined that an attacker might be allowed min-
imal access to the webServer or vpnServer but will be
prevented from accessing any machine in the internal
and control network subnets.

The policy thus produced can be saved for re-use in
the future. We added to our example a second web server
and file server, with a remote exploitation vulnerability
in the newly-added web server. Running MulVAL and
MinCostSAT again, using the same cost policy, imme-
diately showed that this vulnerability must be patched.
In this way, it took much less effort to produce useful
results once a baseline policy was well established.

It is important to note that assigning different costs
can easily produce different suggestions. For example,
if the cost assigned to patching the vulnerability in the
web server was sufficiently high, the suggested solution
might be to change the accessibility from the web server
into the internal subnet and/or to remove the file sharing
relationship between the Citrix server and the file server.
The cost for changing a specific configuration parameter
and the cost caused by a potential attacker privilege
will vary from one organization to another. There is no
one-size-fits-all cost function suitable for all enterprise
systems, and the user of the tool will have to define costs
based on local requirements and policies.

FE. Scalability

While SAT solving is theoretically NP-hard, modern
SAT solvers typically perform well for Boolean formulas
arising from practical problems. To test the scalability
of our approach, we constructed simulated enterprise
networks with two different sizes:

I: 100 host machines, evenly divided in 10 subnets
II: 250 host machines, evenly divided in 25 subnets

We also tested using two different cost functions:

A: All clauses were assigned an equal cost. The effect
of this cost policy would be simply to minimize
the number of configuration changes made plus the
number of compromised machines.

B: Privilege to execute code on a machine has a cost
that rises deeper into the network, blocking network
access to hosts or disabling network services has
significant cost, and all other changes have low cost.

The test was conducted on a Linux machine with
Opteron Dual-Core 2214 2.2 GHz CPU, with 16GB
memory, and running gentoo Linux with kernel version
2.6.18-hardened-r6.

Sz | Cfn | # variables | # clauses | time (sec)
I A 11,853 12,053 0.11

I B 11,853 12,053 0.21

Im| A 70,803 72,553 3.03

II| B 70,803 72,553 6.49

The simulated networks on which we performed the
above tests were certainly not representative of realistic
enterprise network settings. But the performance indi-
cates that modern SAT solvers are likely to be powerful
enough to handle the configuration management problem
we described in this paper.

VI. DISCUSSIONS AND FUTURE WORK

The two problems we addressed in this paper —
making attack graphs more human-readable and gener-
ating suggestions for configuration changes — are both
important to achieve automation in enterprise network
security management. Since configuration management
is such an important and complex problem, it is unlikely
that an automatic tool can take over a human system
administrator’s role overnight. Rather, we envision an
incremental process whereby automated tools can assist a
human user to manage an enterprise network, increasing
the degree of automation as the technology matures. An
easy-to-understand attack graph that presents straightfor-
ward information about a system’s security vulnerability
can provide immediate benefit to a human user, and
is the first step in the long journey towards complete
automation of enterprise security management.

Since security management has to factor in constraints
from usability requirements and the cost of hardening
measures, as well as cost of potential damage from
successful attacks, there is a great deal of vagueness in
a human’s decision-making process. An automatic tool
needs to be “trained” so that the implicit policy assump-
tions become explicit in the form of formally defined

policy declarations that can be used to automatically
search for a desirable solution to address discovered
security threats. We adopted an iterative approach for
configuration policy declaration and refinement, allowing
a human user to train the configuration generator by pro-
viding logic statements on the various costs for security
hardening measures and losses from security compro-
mises. We intend to further study how to better specify
the cost functions so that a human can more easily and
more accurately express the various requirements and
constraints one may encounter in configuring realistic
enterprise systems.

Security hardening measures also include detection
mechanisms such as Intrusion Detection Systems (IDS).
An IDS cannot completely prevent an attack from hap-
pening, but, if used appropriately, it can help contain the
damage from a true attack. Currently the effect of an IDS
is not modeled in the MulVAL system, and as a result,
our optimization process cannot automatically factor in
the cost/benefit of deploying IDS systems at various
locations in an enterprise system. We will study how to
model the effect of an IDS in the reasoning framework of
attack graphs and the optimization framework we have
developed.

VII. RELATED WORK

Wang et al. [23] developed a graph search-based
method for network hardening, with previous work by
Noel et al. [18]. Their approach is different from ours.
An attacker’s goal is expressed as a propositional for-
mula on the initial conditions through recursive sub-
stitution during graph traversal. The formula is then
converted to DNF which will give all possible hardening
options, from which an optimal one is chosen. The
converted DNF could be exponential in the size of the
attack graph, as admitted in the paper. In our approach,
we formulate the optimization problem as a MinCostSAT
problem on a Boolean formula whose size is linear
in the size of the attack graph, and applies a well
developed modern SAT solver to find the solution. This is
likely to yield better performance since SAT solvers have
been very successful in efficiently finding solutions to
large Boolean formulas arising from practical problems.
Moreover, our approach also allows for specifying a
variety of optimization problems that not only trade off
between various hardening measures, but also trade off
between the hardening cost and potential loss due to a
successful attack.

Dewri, et al. [3] formulates the security hardening
problem as a multi-objective optimization problem, in

which the cost for security hardening and the cost for
potential damage caused by successful attacks are two
objectives in the multi-objective optimization problem,
whose solution is searched for by a genetic algorithm
(GA). We adopted a different approach, MinCostSAT, to
find a provably minimum-cost solution to the configu-
ration problem. GA, on the other hand, cannot always
guarantee to converge to the global optimum. MinCost-
SAT is a specific optimization problem that has been
studied extensively and thus is likely to outperform
a general optimization algorithm such as GA for the
specific problem. Adopting the SAT solving approach
also allows the user to make various queries we discussed
in the paper, in addition to finding the optimal solu-
tion for reconfiguration. The benefit of multi-objective
optimization is that a user can be presented multiple
optimal trade-offs between the two objectives. It will be
interesting to study whether the MinCostSAT techniques
can be extended to provide multiple trade-off solutions
for the optimization problem.

A number of other previous works addressed the
problem of how to use attack graphs to better manage
the security of enterprise networks [7], [12], [10], [15],
[24]. The observations and insights from these previous
works helped us develop the approach in this paper, and
our work either complements or improves upon them.
Our contribution is the development of formal, logic-
based approaches to simplifying an attack graph for a
human to better understand, and to using the unsimpli-
fied complete attack graph to compute reconfiguration
suggestions automatically, taking into account not only
security requirements, but also requirements on usability
and trade-offs between costs of security hardening and
costs of possible loss due to successful attacks.

SAT solving has been used to address general con-
figuration management problem in Narain’s work [16].
The general configuration problem concerns various re-
quirements on service availability, performance, fault-
tolerance, and security. The full first-order logic is used
to model the various constraints arising from those re-
quirements. A solution (model) to the first-order formula
is then searched for by the Alloy® model-finder, which
subsequently converts the problem to Boolean formulas
and calls a SAT solver. Our work addresses configuration
problem that concerns another important requirement
(i.e., robustness against potential attacks) and we use a
Boolean formula converted from a dependency attack
graph to express the various constraints arising from

*http://alloy.mit.edu/

this requirement. It is likely that the two technologies
can be integrated into a unified framework to address a
more complete set of requirements regarding enterprise
network configuration management.

VIII. CONCLUSION

The system vulnerabilities identified by an attack
graph are useful only inasmuch as they are actionable.
If a user cannot easily prioritize the system problems
and act upon them, the system remains vulnerable to
attack. The contribution of this paper is to utilize attack
graph data to suggest changes in network configuration
to mitigate threats and avoid attacks. We have introduced
methods by which the data presented in the attack
graph can be made more succinct and usable and also
methods by which network configuration changes can
be automatically identified and suggested. We believe
that the joint effect of these propositions is to create
an attack graph better suited for review by a human
user and to provide quick and verifiable suggestions
as to how the network configurations can be altered
to make the network more secure. Benefits are gained
both by automating computation-intense aspects of this
approach and by retaining human intervention to provide
subjective decisions according to the data presented.

REFERENCES

[1] Paul Ammann, Duminda Wijesekera, and Saket Kaushik. Scal-
able, graph-based network vulnerability analysis. In Proceed-
ings of 9th ACM Conference on Computer and Communications
Security, Washington, DC, November 2002.

[2] Olivier Coudert. On solving covering problems. In 33rd Design
Automation Conference (DAC’96), pages 197-202, 1996.

[3] Rinku Dewri, Nayot Poolsappasit, Indrajit Ray, and Darrell
Whitley. Optimal security hardening using multi-objective
optimization on attack tree models of networks. In /4th ACM
Conference on Computer and Communications Security (CCS),
2007.

[4] Zhaohui Fu and Sharad Malik. Solving the minimum-cost
satisfiability problem using sat based branch and bound search.
In Proceedings of the International Conference on Computer-
Aided Design (ICCAD’06), San Jose, CA, USA, 2006.

[5] Kyle Ingols, Richard Lippmann, and Keith Piwowarski. Practi-
cal attack graph generation for network defense. In 22nd Annual
Computer Security Applications Conference (ACSAC), Miami
Beach, Florida, December 2006.

[6] Sushil Jajodia, Steven Noel, and Brian O’Berry. Topological
analysis of network attack vulnerability. In V. Kumar, J. Sri-
vastava, and A. Lazarevic, editors, Managing Cyber Threats:
Issues, Approaches and Challanges, chapter 5. Kluwer Aca-
demic Publisher, 2003.

[7] Somesh Jha, Oleg Sheyner, and Jeannette M. Wing. Two formal
analyses of attack graphs. In Proceedings of the 15th IEEE
Computer Security Foundations Workshop, pages 49—63, Nova
Scotia, Canada, June 2002.

8]

(9]

[10]

(1]

[12]

(13]

(14]

[15]

(16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

Thomas Lengauer and Robert Endre Tarjan. A fast algorithm
for finding dominators in a flowgraph. ACM Trans. Program.
Lang. Syst., 1(1):121-141, 1979.

Xiao Yu Li. Optimization Algorithms for the Minimum-Cost
Satisfiability Problem. PhD thesis, North Carolina State Uni-
versity, Raleigh, North Carolina, 2004.

Richard Lippmann, Kyle Ingols, Chris Scott, Keith Piwowarski,
Kendra Kratkiewicz, Mike Artz, and Robert Cunningham. Val-
idating and restoring defense in depth using attack graphs. In
Military Communications Conference (MILCOM), Washington,
DC, U.S.A., October 2006.

Richard Lippmann and Kyle W. Ingols. An annotated review
of past papers on attack graphs. Technical report, MIT Lincoln
Laboratory, March 2005.

Richard P. Lippmann, Kyle W. Ingols, Chris Scott, Keith
Piwowarski, Kendra Kratkiewicz, Michael Artz, and Robert
Cunningham. Evaluating and strengthening enterprise network
security using attack graphs. Technical Report ESC-TR-2005-
064, MIT Lincoln Laboratory, October 2005.

Yogesh S. Mahajan, Zhaohui Fu, and Sharad Malik.
Zchaff2004: An efficient SAT solver. In Lecture Notes in
Computer Science SAT 2004 Special Volume, pages 360-375.
LNCS 3542, 2004.

Vasco M. Manquinho and Jo ao P. Marques-Silva. Search prun-
ing techniques in SAT-based branch-and-bound algorithmsfor
the binate covering problem. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 21:505-516,
2002.

Vaibhav Mehta, Constantinos Bartzis, Haifeng Zhu, Edmund
Clarke, and Jeannette Wing. Ranking attack graphs. In
Proceedings of Recent Advances in Intrusion Detection (RAID),
September 2006.

Sanjai Narain. Network configuration management via model
finding. In Proceedings of the 19th conference on Large
Installation System Administration Conference (LISA), 2005.
Steven Noel and Sushil Jajodia. Managing attack graph
complexity through visual hierarchical aggregation. In
VizSEC/DMSEC ’04: Proceedings of the 2004 ACM workshop
on Visualization and data mining for computer security, pages
109-118, New York, NY, USA, 2004. ACM Press.

Steven Noel, Sushil Jajodia, Brian O’Berry, and Michael Jacobs.
Efficient minimum-cost network hardening via exploit depen-
dency graphs. In 19th Annual Computer Security Applications
Conference (ACSAC), December 2003.

Xinming Ou, Wayne F. Boyer, and Miles A. McQueen. A
scalable approach to attack graph generation. In /3th ACM
Conference on Computer and Communications Security (CCS),
pages 336-345, 2006.

Xinming Ou, Sudhakar Govindavajhala, and Andrew W. Appel.
MulVAL: A logic-based network security analyzer. In [/4th
USENIX Security Symposium, 2005.

Prasad Rao, Konstantinos F. Sagonas, Terrance Swift, David S.
Warren, and Juliana Freire. XSB: A system for efficiently
computing well-founded semantics. In Proceedings of the
4th International Conference on Logic Programming and Non-
Monotonic Reasoning (LPNMR’97), pages 2—17, Dagstuhl, Ger-
many, July 1997. Springer Verlag.

Oleg Sheyner, Joshua Haines, Somesh Jha, Richard Lippmann,
and Jeannette M. Wing. Automated generation and analysis of
attack graphs. In Proceedings of the 2002 IEEE Symposium on
Security and Privacy, pages 254-265, 2002.

Lingyu Wang, Steven Noel, and Sushil Jajodia. Minimum-cost

[24]

network hardening using attack graphs. Computer Communi-
cations, 29:3812-3824, November 2006.

Lingyu Wang, Anoop Singhal, and Sushil Jajodia. Measuring
network security using attack graphs. In Third Workshop on
Quality of Protection (QoP), 2007.

