
A HOST-BASED SECURITY ASSESSMENT
ARCHITECTURE FOR INDUSTRIAL CONTROL

SYSTEMS
Abhishek Rakshit

Department of Computing and Information Sciences
Kansas State University

abhirak@ksu.edu

Xinming Ou
Department of Computing and Information Sciences

Kansas State University
xou@ksu.edu

Abstract—Computerized control systems perform vital func-
tions across many critical infrastructures throughout the nation.
These systems can be vulnerable to a variety of attacks leading to
devastating consequences like loss of production, interruption in
distribution of public utilities and most importantly endangering
public safety. This calls for an approach to halt attacks in
their tracks before being able to do any harm to these systems.
Vulnerability assessment performed on these systems can identify
and assess potential vulnerabilities in a control system network,
before they are exploited by malicious intruders. An effective
vulnerability assessment architecture should assimilate security
knowledge from multiple sources to uncover all the vulnerabilities
present on a host. Legitimate concerns arise since host-based
security scanners typically need to run at administrative privi-
leges, and takes input from external knowledge sources for the
analysis making it imperative that the scanner be trustworthy.
Intentionally or otherwise, ill-formed input may compromise the
scanner and the whole system if the scanner is susceptible to, or
carries one or more vulnerability itself. We have implemented the
scanning architecture in the context of an enterprise-level security
analyzer.The analyzer finds security vulnerabilities present on a
host according to the third-party security knowledge specified
in Open Vulnerability Assessment Language(OVAL). This paper
presents an architecture where a host-based security scanner’s
code base can be minimized to an extent where its correctness can
be verified by adequate vetting. Moreover, the architecture also
allows for leveraging third-party security knowledge efficiently
and supports various higher-level security analysis.

I. INTRODUCTION

Most of the Industrial Control computer systems are high
priority targets for cyber-attacks. One of the main reasons for
this is their involvement in a country’s critical infrastructures
such as electrical, telephone, water, energy, etc. In addition,
these systems are specific points of vulnerability for they were
meant to be stand alone systems to begin with and hence, the
security measures implemented were sub par. However, with
the rise in interconnectivity among these infrastructure sys-
tems, we often find ourselves in a situation where millions of
infrastructure components are connected to networks, allowing

This work was supported by the U.S. National Science Foundation under
Grant No. CNS-0716665. Any opinions, findings and conclusions or recom-
mendations expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation.

hackers to access the systems that were never designed to be
exposed to cyber-attacks [1], [2].

With rapid growth in both the number and sophistication of
cyber-attacks, it has become imperative that cyber defenders
be equipped with highly effective tools that identify security
vulnerabilities before they are exploited. It is not hard to
perceive that successful attacks on control systems will have
devastating consequences, for instance endangering public
health and safety, damaging the environment, or causing a loss
of production, generation, or distribution of public utilities [1].
This makes it crucial for control systems to be secured before
they are attacked.

“Vulnerability assessment”(VA) is one such approach. VA
analyzers are tools that scan a host system or an network
to check for the presence of security vulnerabilities. The
term host/target used throughout, refers to the system which
is scanned for vulnerabilities. VA analyzers can be broadly
classified into two categories; Network-based and Host-based
Analyzer.

A network-based scanner(e.g. Nessus [3]) probes a machine
remotely to find vulnerabilities. A host-based scanner on the
other hand, is installed on the host system itself. The latter
examines host data against security knowledge to assess the
vulnerabilities in the respective systems. The term “security
knowledge” used throughout refers to the definitions, which
determine the conditions for a known vulnerability to be
true(or false) on a host(or target) system. The scanner gathers
the host’s configuration information and performs various
analysis based on the received security knowledge.

Being installed on the hosts, host-based scanners can di-
rectly access the configuration information and various ser-
vices running on the host. However, conventional host-based
scanners require regular installation/updates for the agents on
every machine of an enterprise network. This becomes a rather
daunting task as the network scales up. Moreover, as the
clients run on the host machine utilizing its resources, careful
consideration has to done while configuring these clients to
avoid loss of data or crashing the host.

As new vulnerabilities are uncovered at a frequent rate
and maintained at multiple knowledge-bases (e.g NVD [4],



OSVD [5], CVE [6]), a comprehensive security analysis re-
quires knowledge from all those sources. But since this knowl-
edge is being provided by a third party and is consumed on the
end hosts, any vulnerability in the agent could render the end
host vulnerable. This acts as an hindrance to the approach of
using security knowledge from multiple third party knowledge
for security analysis. Specifically, the system administrators
are skeptical to trust the agent code (with thousands of lines
of code), not to harm the host itself. Moreover, consumption
of knowledge on each end host introduces a great amount of
replicated effort and makes it hard to combine knowledge from
various sources and conduct a global security analysis at the
enterprise level. Thus, we need an architecture which enables
incorporation of security knowledge from multiple knowledge-
bases and uses it efficiently to provide a comprehensive
vulnerability analysis for the end host without interfering its
normal functioning.

In this paper, we propose an architecture for host-based
security analysis, which not only addresses the above stated
concerns but also supports other high level security analysis
tools. We accomplish this by separating the process of gath-
ering host configuration information from the analysis of the
configuration information. The proposed system is designed
as a bi-component architecture for host-based vulnerability
analysis. The first component is the scanner (or the agent as we
often call it) that needs to be installed on the host. The Agent
serves the sole purpose of gathering information from the host
and does not perform any analysis. The second component is
the Analyzer, which resides on a server or a cluster of servers
depending on the size of the network. The sole responsibility
of the analyzer is to perform security analysis on the informa-
tion. The analyzer produces a comprehensive security report
for every host on the network, leveraging third-party security
knowledge efficiently. This comprehensive report can become
the basis for network administrator’s decisions to safeguard
the host (and the network) against reported vulnerabilities and
be the input to a higher-level global security analysis tool.

The proposed architecture has the following advantages:
• The architecture efficiently leverages third party security

knowledge at the same time addressing the concern of
replication of knowledge by eliminating the need to
update each agent as security knowledge updates are
performed at the analyzer at a centralized location.

• Significant reduction in the size of the code-base on
the end host makes the installation and configuration of
the agent easy and less likely to disrupt active services.
In addition, small code-base reduces the likelihood of
introduction of programming errors/bugs.

• The small code base makes it possible for the adminis-
trator (or some other trusted party) to check for flaws,
malicious content, making it a good candidate for static
code analysis as well as making it amenable to manual
inspection, restoring the trust in the code.

• This architecture supports other high level security analy-
sis on the data collected from all the hosts on the network
(e.g MulVAL [7]).

Our research is conducted within the context of the MulVAL
(Multi-host, multi-stage Vulnerability Analysis) [7] project.
MulVAL is an enterprise-level security analyzer that can au-
tomatically compute all possible multi-step, multi-host attack
paths in an enterprise network-based on security vulnerabilities
discovered on end hosts. The input to MulVAL is the result
of host-based vulnerability assessment performed on each and
every managed machine in the enterprise network. The original
MulVAL work used an adapted OVAL (Open Vulnerability
Assessment Language) [8] interpreter released by the MITRE
corporation to analyze each end host. The external security
knowledge is specified in OVAL language and needs to be
sent to all the end hosts. When we tried to deploy the MulVAL
tool on some enterprise networks, the first concern from the
system administrators was always the trustworthiness of the
adapted OVAL interpreter. This motivated us to develop a
vulnerability assessment architecture, where the scanner that
needs to be run on the host has minimal code base, and thus
its correctness can be verified through adequate Code Vetting.
At the same time, allowing efficient leveraging of third-party
security knowledge by providing the option of maintaining a
compilation of security knowledge from multiple sources.

II. CENTRALIZED HOST BASED ARCHITECTURE

As the name suggests, the architecture takes a centralized
approach when analyzing a host with regards to the security
definitions from the knowledge base. Security definitions
are different from virus definitions used in virus scanners.
Virus signatures typically refer to file name and contents,
whereas conditions to determine the existence of a security
vulnerability (i.e. security definitions) refer to configuration
parameters with arbitrary logical relationships. For example,
the OVAL [8] language for the Windows platform could be
used to specify conditions on any Windows registry entry, on
any file’s attributes or on any process running on a machine. It
also has a number of logical connectors and attributes which
can specify the full propositional relations as well as limited
first-order logic semantics. Moreover, a conventional host-
based security scanner often has a large code-base, due to
the need to support various kinds of checking and analysis
tasks. For example, the code size of MITRE’s reference
implementation of an OVAL scanner [9] developed in C++
programming language has around 35,000 lines of code. One
can imagine than an application of this size makes it very hard
for the developers to keep it totally flawless, and it is hard if
not impossible to verify that there is no security vulnerabilities
in the same.

Figure 1 shows an architecture consisting of a central
analyzer, a configuration inventory and a highly stripped-down
agent on the target host. The configuration inventory holds the
configuration information obtained from the hosts. The archi-
tecture employs an agent which performs basic functionalities
with regards to the configuration gathering, such as dumping
the whole Windows registry, querying for a file’s attribute and
getting a process’s status. Most of these functionalities have
readily available system commands or application program-



Fig. 1. Proposed Architecture

ming interfaces (APIs) and thus the amount of code needed
to accomplish this is minimal. The agent scripts are initiated
by the server according to the data required for the analysis
through the interactive query. The agent is less than a hundred
lines of code thereby significantly reducing the possibilities of
programming flaws/bugs in the code. Moreover, the small code
base can be rigorously vetted for any kind of flaws therefore
increasing the trustworthiness of the agent. These light weight
scripts also overcome the problem of resource consumption on
the host by adding no significant burden on the hosts resources.
Both the properties of minimalized resource consumption on
the host and possibility of rigorous code vetting are critical
properties in context to control systems, as it is vital that there
be no interruptions in their normal functioning. Finally, the
agent reports end-host configuration information to the central
analyzer for the analysis.

The Analyzer is the most important part of the architec-
ture. Its functionalities include scheduling the scan for all
the target hosts on the network, managing the configuration
inventory and storing all the information obtained from the
hosts in the inventory. The analyzer gathers, converts and
stores security knowledge from multiple knowledge sources
in Datalog format acceptable to the logic-based comparator. It
then initiates the logic-based comparator by providing it with
both the configuration information of the target (received from
the agent) as well as the compiled security knowledge to get
the results for the respective host.

A significant advantage of this architecture is that the central
analyzer has a complete view of the configuration of every
managed host in the network, and can conduct various high
level security analysis on the configuration information. In

this architecture we can look across multiple hosts and see
a chain or work-flow that is vulnerable, not just an individual
host/process. This is how the architecture supports high level
security analysis tools which can notice that two items that
are relatively safe (even if vulnerable), are highly vulnerable
when put together.

Fig. 2. Control System Network

Let us take an example [10] shown in Figure 2 which depicts
an example based on a real (and much bigger) control system.
The network includes three subnets: a DMZ (Demilitarized
Zone), an internal subnet, and an EMS (Energy Management
System) subnet, which is a control-system network for power



grids. Both the web server and the VPN server are directly
accessible from the Internet. The web server can access the
file server through the NFS file-sharing protocol. Access to
the EMS subnet is only allowed from the Citrix server in the
internal subnet. An attack scenario where we assume that the
attacker’s goal is to gain privileges to execute code on the
communication servers can be shown as follows. An attacker
first compromises webServer by remotely exploiting a vulnera-
bility to get local access on the webServer. The webServer can
access the file server through vulnerable NFS service deamons.
Once the attacker is in the internal subnet he can easily reach
the Citrix server and hence the communication servers. From
the communication servers, an attacker could send commands
to physical facilities such as power-generating turbines, which
can cause grave damage to critical infrastructures. Thus, we
see that just finding vulnerabilities on separate hosts doesn’t
provide us with a whole picture and advanced security analysis
tools like MulVAL are essential for the safeguard of control
system networks.

Moreover, since all hosts’ configuration is centrally stored
at one place, the application of security knowledge is more
efficient. This is due to the fact that the processing of the raw
security knowledge from multiple sources is performed once
and is used for all the machines on the network. This cost
of pre-processing of the knowledge is amortized over all the
machines under scan. In our implementation, we compile the
knowledge into executable code, so the compilation is done
only once and the code is directly applied to all the hosts’
configuration data to perform the analysis.

The proposed architecture suits especially well to the recent
trend of sharing security knowledge in an open and standard
format. Apart from aiding to a more wider and compre-
hensive analysis for security vulnerabilities, our architecture
also supports diverse research and development in the area
of Information Security. Open Vulnerability Assessment Lan-
guage (OVAL) is one such effort to enable a “community
approach” to security management of enterprise systems. The
effort has echoed well in the IT security management industry,
with vendors like GFI LANguard [11] and SofCheck [12]
which already offer “OVAL-compatible” products. This is a
significant departure from the conventional business model
where the vendors of vulnerability assessment tools provide
security definitions in their own proprietary format. With
the rapid growth in cyber security threats, it is evident that
no single organization can provide a holistic solution to all
security problems faced by the enterprise network systems.
The ability to share security knowledge efficiently is the key
to win the “Cyber War” against the Internet miscreants.

The security-scanning architecture presented in this paper
facilitates knowledge sharing since it separates the two distinct
phases in security analysis, configuration information gath-
ering and vulnerability analysis. If the updated knowledge-
base or analysis tools need the same set of configuration
information from the end hosts, there is no need to update
the agent or run new scans at all. This separated architecture
avoids re-inventing the wheels in security analysis, facilitates

knowledge sharing, and thus, maximize the benefit from all
efforts involved in security management. The fact that our
architecture holds configuration inventory also opens up av-
enues for its diverse usage in fields like “Enterprise Inventory
Management” and “Troubleshooting” [13].

III. IMPLEMENTATION

Let us first be familiar with the security knowledge base
used as an example in our discssion.

A. The OVAL Language

The Open Vulnerability and Assessment Language
(OVAL) [8] is an international information security community
standard to promote open and publicly available security
content, and to standardize the transfer of this information
across the entire spectrum of security tools and services.
OVAL includes a language used to encode system details,
and an assortment of content repositories held throughout
the community. The language standardizes the three main
steps of the assessment process: representing configuration
information of systems for testing; analyzing the system for
the presence of the specified machine state (vulnerability,
configuration, patch state, etc.); and reporting the results of
this assessment. It is an XML-based language and specifies
vulnerable machine configuration for almost all types of
platforms such as Windows, Linux, HP-UX, Cisco IOS and
Sun Solaris. The definitions provided by OVAL stipulate
the conditions that, when satisfied by the host, confirm the
presence (or absence) of vulnerabilities on the same1.

B. Architecture

As described in Section II the architecture is branched
into data collection and analysis parts. The data collection is
performed by the host resident agent and the analysis by the
analyzer described hereon.

1) Configuration data collection: The agent in our imple-
mentation consists of a set of shell and Visual Basic scripts
which are less than a hundred lines of code and reside on
the host machine. It has a dedicated functionality of gathering
information from the target/host. The information needed by
the OVAL definitions is gathered from the registry dump, and
the version numbers for specific files obtained by checking
the file’s attributes. The residing agent collects registry entry
information and file version numbers from the attributes using
Windows system commands and forwards it to the analyzer.

As described in this architecture all the system configura-
tions and other information reside on the central analyzer. This
could provide an opportunity to keep a check on what changes
have been made on the machine from the time of the previous
scan. This information is valuable for security forensics, as
well as can be used by system administrators to track down
configuration changes on machines for troubleshooting. The
architecture supports convenient addition of scripts to the agent
when needed, to get more information with respect to network,

1The complete documentation of the OVAL language can be found at
http://oval.mitre.org/



port and file system status without incurring a lot of addition
to its code weight. This in turn opens up new avenues for
contributors to participate in the development of the agent,
to gather knowledge specific to other applications such as
inventory tracking and troubleshooting [13].

2) The Analyzer: The Analyzer is a centralized server
connected to all the hosts on the network. It is responsible for
performing a comprehensive security analysis of the hosts and
reporting all the vulnerabilities present on them. The analyzer
accomplishes this task by analyzing the information received
from the agents (residing on the host) against the preprocessed
security knowledge obtained from the information gathered
from various security knowledge bases. The analyzer is fur-
ther divided into two parts: knowledge convertor and logical
comparator.

a) Knowledge Convertor: The knowledge convertor con-
verts the updated security definitions (XML format) and raw
host configuration (ascii format) into Datalog format. The
datalog format of host configuration information taken as input
by the comparator is shown below.

win_Reg_Entry(Path,Name,Value)

In the example shown above, “Path” is the hive and
key values from a registry entry of the host machine. The
“Path+Name”/ “Value” pair is matched against the specified
data in the security definitions by the comparator. The value
part is either a string or a numerical value. The convertor’s
next task is to process security knowledge and convert it into
Datalog clauses. The OVAL repository is updated regularly
and our architecture is well suited to adapt the constantly
changing knowledge. Once we have both the host information
and the security definitions in the required format, these are
provided to the logical comparator for analysis.

b) Logical Comparator: The logical comparator accepts
both the processed host information and the security knowl-
edge and compares them using the XSB [14] engine, which
is a Logic Programming and Deductive Database system.
The comparator analyzes the information from the host with
respect to the criteria from the security definitions to report
all the vulnerabilities present on that host.

The reason for using a logic-based approach is that Datalog
is both a declarative specification and an executable program.
Thus, the security knowledge can be compiled into executa-
bles, during which significant optimization can be done to
speed up the analysis process. This optimization cost is only
paid once in converting the knowledge into Datalog bytecode,
and can be amortized over the repeated application of the
knowledge to a large number of machines over a period of
time. As mentioned in section I our work is the underlying
research for the MulVAL [7] project, which is a Datalog-based
framework for modeling the interaction of software bugs with
system and network configurations. It is thus a natural choice
for us to use the same logical language for individual host’s
vulnerability assessment. Moreover, the saving gained through
amortizing knowledge preprocessing cost (compilation in this
case) applies to other internal knowledge representation as
well.

IV. RESULTS

The primary goal of our work is to investigate the effective-
ness of central host-based architecture described in section III
when compared with the MITRE’s reference scanner [9]. The
results indicate that the centralized scanner is not only effective
in vulnerability assessment but also is more efficient with
respect to time taken to perform comprehensive analysis when
compared with the reference scanner.

The test bed for our experiments consists a client-server
network with of host/client machines having Windows XP op-
erating system and Windows 2000 Server operating system and
the server is a dedicated Linux machine. The hosts were left
un-patched with vulnerabilities present for testing purposes.
Table I shows the system architecture of the machines on
the test network with their processor, memory and operating
system information.

TABLE I
TEST BED

Architecture Analyzer Host
Operating System Linux Win XP/Win 2000
Processor Dual Opteron 2.2ghz(x3) 2.2ghz AMD Opteron
Memory(GB) 16 2

During the analysis, the files transmitted to the analyzer
from the agent residing on the host correspond to registry
information and version numbers of the files specified in the
security definitions for the host. The registry files for Windows
XP machines were 38MB and for Windows 2000 Server
machines were 26MB in a compressed format. File attribute
data for both the platforms were less than 10KB.

Vulnerability detection capabilities of the central host-based
analyzer are at par with MITRE’s reference implementation of
OVAL scanner. Both the scanners reported 260 vulnerabilities
for the host with Windows 2000 Server operating system.
For hosts with Windows XP operating system, the reference
scanner reported 223 vulnerabilities. The centralized scanner
has reported 224 vulnerabilities, including one vulnerability
that was missed by the reference scanner but manually verified
to exist on the host.

The centralized scanner came better when compared against
the time taken to analyze a host machine by the reference
OVAL scanner. Table II shows average time (in minutes) to
complete the vulnerability analysis of the hosts with Windows
2000 Server and Windows XP operating system. A point worth
mentioning here is that in the case of the reference scanner, the
time reported reflects the time it executed on the host machine
engaging the host’s resources. On the contrary, in our scanner,
only a fraction of the total analysis time shown is the time
when resources on the host were used to get its configuration
information. Rest of the time reflects the analysis part which
is performed by our dedicated analyzer.

The security definitions are updated regularly by the OVAL
community. We pre-compile and store the converted OVAL
XSB bytecode whenever a new OVAL definition file is re-
leased. The compilation (with optimization) for an OVAL
Windows definition takes 102 seconds and this time is not



TABLE II
ANALYSIS TIME COMPARISON(MINUTES)

Operating System Reference scanner Centralized Scanner
Win XP 3:11 2:48
Win 2000 3:16 2:22

included in the above data. This overhead is a one-time
investment and the cost can be amortized when the system is
running on a large network because the XSB bytecode will be
used for all the machines on the network. In addition one may
also incrementally compile the newly added OVAL definitions,
which can further reduce the knowledge pre-processing time.

V. DISCUSSION AND FUTURE WORK

The architecture proposed in this paper supports ad-
vanced security analysis such as attack-graph tools (e.g.
MulVAL) [15], [16], [17]. Attack graph tools are high-level
enterprise network security analyzers which take the baseline
vulnerability information provided by the VA scanners as in-
put. To determine the impact of the discovered vulnerabilities,
the tools are equipped with high-level knowledge on reasoning
about security interactions in an enterprise network. Applica-
tion of this knowledge often needs additional configuration
information beyond what the VA scanner can provide. Our
architecture can easily accommodate these needs since the
resident scripts can collect desired configuration information
from the host.

Further, the centralized architecture of our system assures
access to all the hosts on the network from the server.
Thus, the server is also capable of hosting a network-based
scanner to harness the advantages of the same. This would
complement the host-based scanner and provide a extensive
security analysis for the enterprise network.

The proposed scanning architecture can also be applied
beyond security applications. A likely candidate is “Inventory
Management”. The agents provide all the configuration in-
formation which is stored on the centralized server and this
information can be used for inventory management purposes
to keep track of all the resources on the hosts throughout the
enterprise network.

Trouble-shooting configuration problems in a network is
another application which can be applied to the proposed
architecture. Trouble-shooting often needs collecting a range
of configuration parameters and sending them to a centralized
place for analysis [13]. Since the agent on the host has a small
code base, it is easier to guarantee that it will not further
disrupt service while attempting to fix an existing problem.
Moreover, configuration changes on a particular host can
be tracked as configuration information before and after the
problem occurred is available in the configuration inventory.
The changes made in configuration settings is a logical starting
point when troubleshooting the respective host.

Thus, the proposed architecture provides a novel approach
to host-based vulnerability analysis along with a lot of poten-
tial for further research and development in many other fields
including advanced security analysis.

VI. CONCLUSION

Security threats and breaches in a control system network of
critical infrastructure can cause serious disruption in important
processes and lead to grave consequences. A potent security
system is imperative for such networks and vulnerability
assessment is an important element for the same. The current
security scenario demands an approach which focus not only
on being able to assimilate data from multiple knowledge
sources but also become the foundation for advanced security
analysis.

The centralized host-based security scanning architecture
proposed in the paper is one such approach. It supports
knowledge assimilation from various sources providing a
comprehensive security analysis. The centralized architecture
overcomes the issue of knowledge replication and eradicates
the need to regularly update the client due to its separation of
analysis from the data collection part and further performing
all the analysis on the centralized server. The agent residing
on the host uses minimal resources and is simple enough
to install and maintain. The reduced code base of the agent
makes it less susceptible to programming flaws and also allows
rigorous code vetting to gain the administrators’ confidence.
We empirically show that the centralized vulnerability analyzer
to be at par with MITRE’s reference scanner in terms of
vulnerability detection and time taken to do the assessment.

REFERENCES

[1] R. F. Dacey, “Challenges in securing control systems,” U.S. Government
Accountability Office GAO, Tech. Rep., October 2003.

[2] A. Turner, “U.S. critical infrastructure in serious jeopardy,” July 2007.
[Online]. Available: http://www.csoonline.com

[3] “Nessus,” http://www.nessus.org/nessus.
[4] “National Vulnerability Database,” http://nvd.nist.gov/.
[5] “The Open Source Vulnerability Database,” http://osvdb.org/.
[6] “Common Vulnerabilities and Exposures,” http://cve.mitre.org/.
[7] X. Ou, S. Govindavajhala, and A. W. Appel, “MulVAL: A logic-

based network security analyzer,” in 14th USENIX Security Symposium,
Baltimore, Aug 2005, pp. 113–128.

[8] “OVAL (Open Vulnerabilities and Assessment Language),”
http://oval.mitre.org/.

[9] “OVAL Interpreter,” http://oval.mitre.org/language/download/interpreter/index.html.
[10] J. Homer, A. Varikuti, X. Ou, and M. McQueen., “Improving attack

graph visualization through data reduction and attack grouping,” in 5th
International Workshop on Visualization for Cyber Security VizSec’08,
Sep 2008.

[11] “GFILANguard,” http://www.gfi.com/lannetscan/.
[12] “SofCheck,” http://www.sofcheck.com/.
[13] H. Huang, R. Jennings, Y. Ruan, R. Sahoo, S. Sahu, and A. Shaikh,

“PDA: A tool for automated problem determination,” in 21st Large
Installation System Administration Conference, (LISA), Dallas, Nov
2007, pp. 153–166.

[14] “XSB: A Logic Programming and Deductive Database system,”
http://xsb.sourceforge.net/.

[15] S. Jajodia, S. Noel, and B. O’Berry, “Topological analysis of network
attack vulnerability,” in Managing Cyber Threats: Issues, Approaches
and Challanges, V. Kumar, J. Srivastava, and A. Lazarevic, Eds. Kluwer
Academic Publisher, 2003, ch. 5.

[16] R. Lippmann, K. Ingols, C. Scott, K. Piwowarski, K. Kratkiewicz,
M. Artz, and R. Cunningham, “Evaluating and strengthening enterprise
network security using attack graphs,” MIT Lincoln Laboratory, Tech.
Rep. ESC-TR-2005-064, October 2005.

[17] X. Ou, W. F. Boyer, and M. A. McQueen, “A scalable approach to
attack graph generation,” in 13th ACM Conference on Computer and
Communications Security, (CCS), 2006, pp. 336–345.


