
Investigative Response Modeling and Predictive
Data Collection

Dan Moor

HP

dan.moor@hp.com

S. Raj Rajagopalan

Honeywell ACS

siva.rajagopalan@honeywell.com

Sathya Chandran Sundaramurthy, Xinming Ou

Kansas State University

{sathya, xou}@ksu.edu

Abstract—While most enterprise computing environments are
proactively monitored for threats and security violations using
automated detection engines, the ability to validate reported
events as true incidents still requires a non-trivial amount of
time and information gathering as well as investment in staffing
and training of personnel. To improve an organization’s overall
reactive security posture and reduce some of the associated
costs we propose an investigation model supported by predic-
tive, automated data collection and guided presentation of the
resulting information. By modeling the investigative goals and
requirements for each event type, this approach can automate
proactive data collection actions wherever possible thus reducing
the investigation time as well as providing a consistent framework
for the monitoring staff. By providing the goals of the alert
validation process the framework also reduces the minimum
skill required of monitoring staff. Furthermore, the collected
information is presented in a formatted manner with documented
requirements for validation therefore guiding the analyst to the
appropriate conclusion. By following this method, false positive
alerts are more quickly pared down allowing for better utilization
of skilled resources by focusing efforts on only those alerts
validated as genuine.

Index Terms-Big data, computer forensics, digital investigation,
incident response, predictive modeling.

I. INTRODUCTION

Host and network based security monitoring tools have

evolved into robust and comprehensive solutions providing

high levels of visibility in understanding the state of security

for their respective monitored resources. These solutions are

prone to high rates of false alarms requiring a non-trivial

investment in personnel and effort by the organization in order

to validate an alert. Frequently, this process of eliminating

false alarms includes manually connecting to the resources

identified in an alert and analyzing the data found within

that resource. In a large or complex enterprise environment

this may also require a review of change control records to

ensure that a triggered alert itself was not simply a false

positive. In the end, most of the validation efforts are driven

by the choices and decisions of the monitoring team that

may change from time to time. All of these decisions are

driven by the need to answer a relatively simple series of

questions based on the specific alert that may be detailed and

hard to understand. The information required to answer these

Part of this work was done while S. Raj Rajagopalan was with HP.

questions is frequently not captured by the monitoring solution

or is contained in disparate locations. To this end, validation

of an alert is driven by facts not readily available to an analyst

and highly dependent on the staff involved. Moreover, the

questions that drive the data collection are rarely documented

if at all and security analysts operate based on their experience

and intuition, leading to inconsistent results across different

operators and large amounts of repetitive manual tasks due to

lack of automation.

To improve both the confidence and efficiency in the in-

vestigative efforts and reduce the required costs of both time

and money we propose to model the requirements for alert

validation and automate the collection of required information

as much as possible. This methodology is based on the idea

that the alert validation process involves a logical model that

can be represented as a decision tree resulting in a series of

facts constructed in such a way that the outcome obtained gives

the analyst a high level of confidence in the final conclusion

of whether to escalate the findings as a confirmed security

incident or to rule the alert as a false positive. This decision

tree requires information that the alert details may or may

not contain. For those pieces of information that reside on

network resources or collaboration platforms it is likely that

collection need to be automated and performed as the alert

is presented to the monitoring solution. This collection and

caching of information takes the burden of connecting to

remote resources and gathering associated data out of the

hands of the analyst, reducing the potential for delay in

analysis. Moreover, the investigation model also allows for

baseline reasoning that guides the data collection process,

which increases the consistency and thoroughness of each

investigation by modeling and re-using the essential rationale

behind investigative reasoning, instead of requiring the analyst

to repetitively perform the low-level reasoning to decide the

next steps which may vary from one investigation scenario

to another. Once collected, the information may be prepared

for visualization based on the severity and likelihood of the

possible malicious activities. The goal of the presentation is

to place the information in front of the analyst in a way that

establishes context, enforces relevance to the alert in question

and reduces the overall skill and time required to interpret the

data.

978-1-4673-2543-1/12/$31.00 c© 2012 IEEE

II. A MOTIVATING EXAMPLE

We use a forensics challenge published by the Honeynet

project as a motivating example [3]. In summary, in a pre-

planned but unannounced scenario an adversarial role player

exploited a vulnerability [1] in the Exim mail relay service.

The attacker then used a script to escalate his privilege to root

by exploiting another Exim vulnerability [2], then opened a

reverse shell and sent the copy of a local disk to a remote

server. The forensic challenge provided the disk image and

memory dumps from the victim machine. The participants’

task was to figure out what happened and answer a number

of questions regarding the cause of the attack, its scope,

and likely attackers. The solutions from five winners were

provided.

While the five solutions varied in the level of detail about the

thought processes that produced the answers, it is remarkable

that all of them seemed to follow the same investigation steps,

which reached the same conclusions. We explain the key

findings reported by these solutions, and try to extract from

them the ideas for a forensic investigation model that could

be used to automate some of the investigative tasks.

1) What triggered the investigation? There could be two

possibilities each of which is mentioned in some of the

solutions. One possibility is that a number of failed SSH

login attempts shown in the authentication logs indicate

attacks targeting the server. The other possibility is that

an error message produced by the Exim attack was

written to the panic log which could have triggered the

alert. No matter what indeed triggered the investigation,

in reality it is typically the case that some anomaly raises

suspicion which serves as a critical starting point , from

which a series of investigative steps are taken to either

validate or refute the alert.

2) What attacks happened? All winners of the challenge

identified attack strings shown in Exim’s main log. What

is not completely clear though is why they decided to

look at the log in the first place1. Depending on what

triggered the investigation, two theories could hold:

a) If the SSH failed login attempts triggered the alerts,

the first thing one would do is to examine the

authentication log to see if any logins from the

offending IP address succeeded. No such entry

could be found. However, the failed login is for

a user account that did not exist on the system.

This is highly suspicious since it could mean that

somebody was brute-forcing, or somebody tried to

create a new account and use that account to log

in (which was the case in this incident as shown

by other logs). In either case, one can believe

that someone is trying to break into the server.

One possibility to move the investigation forward

at this point is to scan the machine to identify

1There were dozens of processes running on the machine.

existence of known vulnerable applications. If this

were done then the Exim vulnerability would have

been reported, and the investigation will move on

to the Exim log. Alternatively, one could look at

listening ports on the server and there are only a

few services running on server, which is a simple

task considering that Exim being one of them. The

investigator can then decide to look at the logs

of all the services and would have uncovered the

attack strings in the Exim log.

b) If it were the Exim panic log that triggered the

investigation, then the logical next step would be

to look at the Exim main log. In this case it would

be much more straightforward to locate the attack

strings.

3) What is the scope and impact of the attacks? All five

solutions agreed on what the attacker tried to do and

how successful he was. For this incident, once the attack

strings on the Exim main log are found, it is likely a

quick and easy process to understand the full scope of

the attack, because the attacker does not seem to have

tried hard to cover his tracks and left several indicators

of activity.

Observations from this forensic challenge

The five solutions for this forensic challenge indicate that

there is some coherent and perhaps subconscious logical pro-

cess that is being applied when a security analyst investigates

an incident. The key part is how to connect the dots and go

quickly from one piece of data to another until the full scope

of the incident becomes clear. When the most relevant data

pieces are all presented, it is not hard to see what and how

events are interlinked. The difficult part is finding those pieces.

The goal of our research is to design a model for the process

of forensic investigation, with an eye towards providing a high

degree of automation to aid an analyst to find the most relevant

information.

III. INVESTIGATION MODELING

Based on one of the authors’ experience in providing second

and third tier support for IDS alert investigations over the last

nine years it has been observed that while an alert may be

the outcome of the monitoring process it is frequently just

the beginning of the real investigation. As such a computer

security team finds itself in the unenviable position of taking

the alert details and applying some logic to them in order to

make the determination as to whether the alert is a confirmed

security incident or a false positive. This process is required

for each alert that the business deems important (classified

as critical). This set of critical alerts form the basis for the

investigative model. For each of these alerts (or a robust subset

as determined by historical data), the facts required to validate

the alert are pre-documented. Each fact is then itself classified

in accordance with its source, required finding, and signif-

icance. The sources are the application logs, audit records,

Fig. 1. Threat Modeling and Predictive Data Collection (Scenario 1)

Fig. 2. Threat Modeling and Predictive Data Collection (Scenario 2)

and any other object containing the required information. The

required finding is the result of analysis that is used to establish

a given fact. The significance is a ranking of the fact in its

ability to classify the alert as a true or false positive. This

significance can be established in many ways and may be

subject to modification based on available resources or specific

features of an organization’s information systems.

Table I shows some critical alerts and facts needed to

confirm or rule out the alert. Those facts are established

through examining additional data sources to answer the

relevant questions. The “Required Finding” indicates the facts

that would rule out the alerts and these facts have varying

degrees of significance explained in the table.

In our research we would like to formally specify such

criteria in a logical model, with certainty qualifiers indicating

in a generic manner the significance of the various facts. Fig. 1

- 3 show some possible scenarios that this logic may play out

in an investigation process.

In Fig. 1, all the data sources indicate that the alert is

caused by malicious activities (Yes in the Analysis column).

The final outcome is “Confirmed Malicious”. In Fig. 2, one

data source provides conclusive evidence that the event is

malicious (dotted line). In Fig. 3, some data indicate the alert

is malicious while another indicates it as false positive. The

Fig. 3. Threat Modeling and Predictive Data Collection (Scenario 3)

final outcome is a “Probable”. We have performed research on

methods to formally specify the qualifiers such as “conclusive

yes”, “yes”, and “inconclusive” and use them to model this

reasoning process. The significance weight in Table I could be

translated into such qualifiers. How to fuse the evidence with

varying shades of uncertainty will be an important topic and

we will leverage our prior work in reasoning under uncertainty

for cybersecurity to tackle this challenge [7, 11].

IV. A FORENSIC ANALYSIS TOOL

We will center our research around a forensic analysis tool

that will provide some baseline reasoning and predictive data

collection. Fig. 4 illustrates our vision of the tool. The user

interface of the tool consists of a Threat Analysis Console

that provides a prioritized view of all the data relevant to the

current analysis. A human analyst interacts with the console to

move the investigation forward. On the lefthand side we show

an example alert (SSH brute-force attempt) which triggers the

investigation. The back-end engine of the forensic tool will

automatically extract the relevant segments of various logs and

filter out entries of interest to display in the console.

The analyst will apply the analysis via the dialogue buttons

to the right of each “Fact” window. Once each item has an

entered value our investigation model kicks in and processes

the new inputs to determine the state of the alert/attack.

With the analysis of the collected information supplied by

the analyst via the console the model will return with a

guided response depending on the determined outcome. As

the research progresses we would like to see the possibility

of further automating the process by allowing the model to

automatically assign the various significance weights to the

facts (as opposed to requiring the user to press the various

buttons for every fact), further reducing the labor required from

a human analyst to guide the reasoning process. The ultimate

goal of the research is to yield a forensics assistance tool

that will require human input only when the analysis requires

a high-level of intelligence not replicable by a computer

program.

Examples

Alert SSH brute-force attempt. SQL Injection. User account added to

Administrator’s group.

Question Did attack source IP address suc-

cessfully connect to server?

Did web server pro-

vide anything but non-

descriptive error pages

to suspect IP address?

Was change to user ac-

count authorized?

Source Authentication log on target host. Web server error log on

target host.

Identity management

change control record.

Required

Finding

All authorization events from

source IP address must be failed

or blocked attempts.

All web requests from

source IP address were

denied with standard

404, 405 or non-

descriptive 500 error

codes.

Specific account was ap-

proved for noted change

on date observed.

Significance

(out of 10)

7 8 10

Reasoning

for ranking

Observing a lack of authorized

connections from the source IP

address indicates failure to brute

force an account but does not

preclude success by other attack

strategies and therefore cannot pro-

vide conclusive evidence.

No successful page re-

turns (status 200s or

300s) indicate that the

web server correctly re-

fused invalid URL re-

quests.

An approved change re-

quest for user account

modification should be

the definitive record of

an authorized event.

TABLE I
INVESTIGATION MODELING

A. Information Presentation

It is highly critical that the tool presents the information in a

manner that facilitates human analysis. The console will have

functionalities such as text highlighting and manipulation,

and alignment of the data so that hidden causality can be

more easily caught. It also needs to provide user interaction

needed to process the information and move forward the

investigation. For example, in the first window the user would

be asked to confirm that all traffic from the intruder’s IP

address was denied. The user would scroll through the events

or ”grep out” the failed attempts and make the assessment.

If all activity was “denied”, the user would click the ’No’

option. The user would be guided through each window and

when complete they would submit the findings for analysis.

If the model can determine the status of the event it will

make the call without waiting for the user to make a decision.

For example, if the console shows a change-control record

allowing the action and the user says “yes” it was approved,

the model should make the call that this is not a problem

and close out the alert. If this type of reasoning is a common

pattern we could include it in the model so that the user does

not need to do anything in such situations.

V. RESEARCH IN PROGRESS

We are currently developing the investigative model based

on a large number of scenarios from real incidents. We are also

building the forensic analysis tool that applies the model in the

back-end engine and display/prioritize the data entries from the

log files as illustrated in Fig. 4. We intend to deploy the tool

to be used by a number of security analysts and observe the

tool’s effectiveness as we build it.

VI. RELATED WORK

Case et al. [4] developed a correlation model for forensic

analysis. The model can process data from memory dumps,

network traces, disk images, log files, user accounting and

configuration files. Data from all the sources are loaded into a

web interface and the events are manually correlated. Hayoz

et al. [5] have developed a model that enables an analyst to

do forensic analysis visually. Data from multiple network and

host entries are read using existing forensic analysis tools and

then placed into abstract classes. The analyst then visually

constructs the correlation scenario by querying for more data

within each class. Once the analyst constructs a successful

scenario that sequence can be stored for future use. Peisert et

al. [9] propose a forensic data collection framework based on

structure of attacks. Their idea is that by modeling the various

attacks one can extract the logging requirements and hence

Fig. 4. Vision of the Forensic Analysis Tool

when those attacks happen in real-time you have the data to

do the forensic analysis.

Rekhis et al. [10] developed a language using which attacker

activity can be modeled as state transitions. The idea is to start

from the initial non-compromised state and advance to the

next probable state based on the available evidence. One can

hypothesize for missing evidence and also avoid impossible

states by using conflicting evidences during this process. One

drawback though is that the model must be abstract enough

to be usable across multiple scenarios otherwise it has to be

customized for each investigation. The interesting aspect of

this model is that each rule in the model contains information

on where to look for evidence, close to what we are trying to

achieve. King et al. [6] developed a tool called BackTracker

that works by observing files, filenames, processes and system

calls. Given a detection point, the tool works backwards by

building a dependency graph consisting of the mentioned

operating system elements. Peisert et al. [8] in another work

developed an anomaly detector that can detect malicious code

execution by looking at sequence of function calls made by

that program.

Each of the prior work mentioned above focuses on a single

aspect of forensics, such as efficient data logging or correlation

of evidence. We propose an approach that models multiple

components of forensic reasoning, with an eye towards pre-

dicting and automating the data collection process for a given

event. Our method needs to deal with the inherent uncertainty

in the analysis process which has not been addressed by prior

works. We base our reasoning model on concrete experience

from security analysts working in the trench, and apply an

iterative/spiral approach to tool building so that quick feedback

from users can be incorporated into the model design and tool

building continuously.

Current commercial security monitoring consoles collect,

aggregate and correlate a significant amount of data. The

analysis that an end user can perform consists of drilling down

through the various features of the alerts they are presented

with. Beyond the contents of the events and the resultant alerts

these consoles offer little assistance in the way of investigation

support. Our methodology not only understands the informa-

tion required to validate an alert but also proactively collects

that information, displays it to the user in a guided presentation

and provides direction based on the user’s response. This

approach moves the security monitoring console one step

closer to being a comprehensive solution instead of a simple

means of display.

VII. ACKNOWLEDGMENT

This material is based upon work supported by U.S.

National Science Foundation under award no. 0954138,

and HP Labs Innovation Research Program. Any opinions,

findings and conclusions or recommendations expressed in

this material are those of the authors and do not necessarily

reflect the views of the National Science Foundation, or

Hewlett-Packard Development Company, L.P.

REFERENCES

[1] http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-4344.
[2] http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-4345.
[3] Challenge 7 of the forensic challenge 2011 - forensic analysis of

a compromised server. http://www.honeynet.org/challenges/2011 7
compromised server.

[4] Andrew Case, Andrew Cristina, Lodovico Marziale, Golden G. Richard,
and Vassil Roussev. Face: Automated digital evidence discovery and
correlation. Digital Investigation, 5, Supplement(0):S65 – S75, 2008.
The Proceedings of the Eighth Annual DFRWS Conference.

[5] M. Hayoz and U. Ultes-Nitsche. Visual correlation in the context of
post-mortem analysis.

[6] Samuel T. King and Peter M. Chen. Backtracking intrusions. In
Proceedings of the nineteenth ACM symposium on Operating systems

principles, SOSP ’03, pages 223–236, New York, NY, USA, 2003. ACM.
[7] Xinming Ou, S. Raj Rajagopalan, and Sakthiyuvaraja Sakthivelmurugan.

An empirical approach to modeling uncertainty in intrusion analysis. In
Annual Computer Security Applications Conference (ACSAC), Dec 2009.

[8] S. Peisert, M. Bishop, S. Karin, and K. Marzullo. Analysis of computer
intrusions using sequences of function calls. Dependable and Secure
Computing, IEEE Transactions on, 4(2):137 –150, april-june 2007.

[9] Sean Peisert, Matt Bishop, Sidney Karin, and Keith Marzullo. Toward
models for forensic analysis. In Systematic Approaches to Digital Foren-

sic Engineering, 2007. SADFE 2007. Second International Workshop on,
pages 3 –15, april 2007.

[10] Slim Rekhis and Noureddine Boudriga. A temporal logic-based model
for forensic investigation in networked system security. In Proceedings
of the Third international conference on Mathematical Methods, Models,

and Architectures for Computer Network Security, MMM-ACNS’05,
pages 325–338, Berlin, Heidelberg, 2005. Springer-Verlag.

[11] Loai Zomlot, Sathya Chandran Sundaramurthy, Kui Luo, Xinming Ou,
and S. Raj Rajagopalan. Prioritizing intrusion analysis using Dempster-
Shafer theory. In 4TH ACM Workshop on Artificial Intelligence and

Security (AISec), October 2011.

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-4344
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-4345
http://www.honeynet.org/challenges/2011_7_compromised_server
http://www.honeynet.org/challenges/2011_7_compromised_server

