
Googling Attack Graphs

Reginald Sawilla
Defence R&D Canada – Ottawa

Xinming Ou
Kansas State University

The work in this report was completed in May 2007 and formally published September 2007.

Defence R&D Canada – Ottawa
Technical Memorandum

DRDC Ottawa TM 2007-205

September 2007

Principal Author

Original signed by Reginald Sawilla and Xinming Ou

Reginald Sawilla and Xinming Ou

Approved by

Original signed by Julie Lefebvre

Julie Lefebvre
Head/NIO Section

Approved for release by

Original signed by Pierre Lavoie

Pierre Lavoie
Head/Document Review Panel

c© Her Majesty the Queen in Right of Canada as represented by theMinister of National
Defence, 2007

c© Sa Majesté la Reine (en droit du Canada), telle que représentée par le ministre de la
Défense nationale, 2007

Abstract

Attack graphs have been proposed as useful tools for analyzing security vulnerabilities in
network systems. Even when they are produced efficiently, the size and complexity of at-
tack graphs often prevent a human from fully comprehending the information conveyed. A
distillation of this overwhelming amount of information iscrucial to aid network adminis-
trators in efficiently allocating scarce human and financialresources. This paper introduces
the AssetRank algorithm, a generalization of Google’s PageRank algorithm that ranks web
pages in web graphs. AssetRank handles the semantics of dependency attack graphs and
assigns a metric to the vertices, which represent network privileges and vulnerabilities, in-
dicating their importance in attacks against the system. Wegive a stochastic interpretation
of the computed values in the context of dependency attack graphs, and conduct experi-
ments on various network scenarios. The results of the experiments show that the numeric
ranks given by our algorithm are consistent with the intuitive importance that the privileges
and vulnerabilities have to an attacker. The asset ranks canbe used to prioritize counter-
measures, help a human reader to better comprehend securityproblems, and provide input
to further security analysis tools.

Résum é

On a proposé des graphes d’attaque comme outils utiles dansl’analyse des vulnérabilités de
sécurité dans les réseaux informatiques. Même lorsqu’ils sont produits de façon efficiente,
la taille et la complexité des graphes d’attaque empêchent souvent un être humain de bien
saisir toute l’information ainsi présentée. Il est essentiel de distiller cette masse écrasante
d’information pour aider les administrateurs de réseau àallouer de façon efficiente les
ressources humaines et financières limitées. Dans ce document, on présente l’algorithme
AssetRank, une généralisation de l’algorithme PageRankde Google qui sert à classer les
pages Web dans des graphes Web. AssetRank traite la sémantique des graphes d’attaque à
dépendances et il attribue une mesure aux sommets, qui représentent les privilèges et les
vulnérabilités des réseaux, indiquant leur importancedans des attaques contre le système.
Nous donnons une interprétation stochastique des valeurscalculées dans le contexte des
graphes d’attaque à dépendances et nous menons des expériences sur différents scénarios
de réseau. Les résultats des expériences montrent que leclassement numérique donné par
notre algorithme correspond à l’importance intuitive qu’ont les privilèges et les vulnérabilités
pour un attaquant. Le classement des biens peut être utilisé pour établir l’ordre de priorité
des contre-mesures, aider un lecteur humain à mieux cernerles problèmes de sécurité et
fournir des données d’entrées pour d’autres outils d’analyse de la sécurité.

DRDC Ottawa TM 2007-205 i

This page intentionally left blank.

ii DRDC Ottawa TM 2007-205

Executive summary

Googling Attack Graphs
Reginald Sawilla, Xinming Ou; DRDC Ottawa TM 2007-205; Defence R&D
Canada – Ottawa; September 2007.

Background: An attack graph is a mathematical abstraction of the detailsof possible at-
tacks against a specific network. Recent advances have enabled computing attack graphs
for networks with thousands of machines. Even when attack graphs can be efficiently
computed, the resulting size and complexity of the graphs isstill too large for a human to
fully comprehend. While a user will quickly understand thatattackers can penetrate the
network it is essentially impossible to know which privileges and vulnerabilities are the
most important to the attackers’ success. Network administrators require a tool which can
distill the overwhelming amount of information into a list of priorities that will help them
to efficiently utilize scarce human and financial resources.

Principal results: This paper presents an approach which can automatically digest the
dependency relations in an attack graph and compute the relative importance of graph ver-
tices as a numeric metric. The metric gauges the degree to which attackers depend upon a
privilege or vulnerability in their attacks. Our algorithmis based on the Google PageRank
algorithm which ranks the importance of web pages. The extended algorithm is called
AssetRank, and the value it computes indicates the value of an attack asset (a graph vertex)
to a potential attacker.

Significance of results:The results of our experiments indicate that the vertex ranks com-
puted by our algorithm are consistent, from a security pointof view, with the relative
importance of the attack assets to an attacker. The asset ranks can be used to prioritize
countermeasures, help a human reader to better comprehend security problems, and pro-
vide input to further security analysis tools. The ranks areaffected by the specific assets an
attacker wishes to obtain (and a system administrator desires to protect).

Future work: We would like to explore how to incorporate business priorities and imple-
mentation costs into the rank value, so that the resulting ranks can be used immediately by
a system administrator to generate a course of action or automatically implement security
hardening measures. We would also like to conduct experiments on operational networks
to better understand the advantages and limitations of our proposed algorithm, along with
ways of improving it. Finally, we wish to see how the values for arc and vertex weights,
representing diverse preferences, can be combined and, similarly, how AssetRanks in vari-
ous contexts may be combined.

DRDC Ottawa TM 2007-205 iii

Sommaire

Googling Attack Graphs
Reginald Sawilla, Xinming Ou ; DRDC Ottawa TM 2007-205 ; R & D pour la
défense Canada – Ottawa ; septembre 2007.

Contexte : Un graphe d’attaque est une abstraction mathématique des détails d’attaques
possibles contre un réseau particulier. Des progrès récents ont permis la création de graphes
d’attaque pour des réseaux qui comptent des milliers d’ordinateurs. Même lorsque les
graphes d’attaque peuvent être calculés de façon efficiente, la taille et la complexité des
graphes ainsi obtenus sont trop grandes pour qu’un être humain puisse comprendre plei-
nement l’information que contiennent ces graphes. Un utilisateur peut comprendre rapide-
ment que des attaquants peuvent pénétrer dans le réseau,il est essentiellement impossible
de savoir quels sont les privilèges et les vulnérabilités qui ont le plus d’importance pour les
attaquants. Les administrateurs de réseau ont besoin d’unoutil qui peut distiller la masse
écrasante d’informations de façon à créer une liste de priorités qui les aidera à utiliser de
façon efficiente les ressources humaines et financières limitées.

Principaux r ésultats : Ce document présente une approche qui peut digérer automati-
quement les relations de dépendance dans un graphe d’attaque et calculer l’importance
relative de chaque sommet sous forme de mesure numérique. La mesure numérique évalue
à quel point les attaquants dépendent d’un privilège ou d’une vulnérabilité pour lancer
leurs attaques. Notre algorithme est basé sur l’algorithme PageRank de Google, qui classe
l’importance de pages Web. L’algorithme étendu s’appelleAssetRank et la valeur qu’il
calcule indique la valeur d’un élément d’attaque (un sommet du graphe) pour un attaquant
potentiel.

Importance des ŕesultats : Les résultats de nos expériences indiquent que le classement
des sommets calculé par notre algorithme correspond, du point de vue de la sécurité, à
l’importance relative des éléments d’attaque pour un attaquant. Le classement des éléments
peut être utilisé pour établir l’ordre de priorité des contre-mesures, aider un lecteur humain
à mieux cerner les problèmes de sécurité et fournir des données d’entrée pour d’autres ou-
tils d’analyse de la sécurité. Le classement varie selon les biens particuliers qu’un attaquant
veut obtenir (et le désir de l’administrateur du système de protéger ces biens).

Travaux futurs : Nous aimerions explorer les façons d’incorporer des priorités opération-
nelles et les cots de mises en œuvre dans le calcul du classement, de sorte qu’un adminis-
trateur de système pourrait utiliser le classement ainsi obtenu pour générer une marche à
suivre ou mettre en œuvre automatiquement des mesures de durcissement de la sécurité.
Nous aimerions aussi mener des expériences sur des réseaux opérationnels pour mieux

iv DRDC Ottawa TM 2007-205

comprendre les avantages et les limites de notre algorithmeproposé, et trouver des façons
de l’améliorer. Enfin, nous souhaitons voir comment il serait possible de combiner les va-
leurs des facteurs de pondération pour les arcs et les sommets, qui représentent différentes
préférences, et, dans le même ordre d’idées, comment ilserait possible de combiner Asset-
Ranks dans différents contextes.

DRDC Ottawa TM 2007-205 v

This page intentionally left blank.

vi DRDC Ottawa TM 2007-205

Table of contents

Abstract . i

Résumé . i

Executive summary .iii

Sommaire . iv

Table of contents .vii

List of figures . viii

List of tables .ix

1 Introduction . 1

2 Attack Graphs . 4

3 AssetRank . 5

4 Interpretation of AssetRank 10

5 Experiments . 12

6 Discussion . 18

7 Related Work . 20

8 Conclusion and Future Work .. 22

References . 23

DRDC Ottawa TM 2007-205 vii

List of figures

Figure 1: An example network .. 1

Figure 2: Attack graph for the network in Figure 1 3

Figure 3: Vertices and arcs in a dependency attack graph 5

Figure 4: Value flows to dependencies 6

Figure 5: An example AND/OR dependency graph 8

Figure 6: Experiment 2, Scenario 1 15

Figure 7: Attack graph for the Figure 6 network 16

Figure 8: Experiment 2, Scenario 2 17

Figure 9: Attack graph for the Figure 8 network 18

viii DRDC Ottawa TM 2007-205

List of tables

Table 1: AssetRanks with only OR vertices 9

Table 2: AssetRanks with AND and OR vertices 10

Table 3: AssetRanks for the Figure 1 network 13

Table 4: AssetRanks for the Figure 6 network 15

Table 5: AssetRanks for the Figure 8 network 19

DRDC Ottawa TM 2007-205 ix

This page intentionally left blank.

x DRDC Ottawa TM 2007-205

1 Introduction

An attack graph is a mathematical abstraction of the detailsof possible attacks against a
specific network. Various forms of attack graphs have been proposed for analyzing the
security of enterprise networks [1, 2, 3, 4, 5, 6]. Recent advances have enabled computing
attack graphs for networks with thousands of machines [2, 4]. Even when attack graphs
can be efficiently computed, the resulting size and complexity of the graphs is still too large
for a human to fully comprehend, as has been pointed out by Noel and Jajodia [7]. While a
user will quickly understand that attackers can penetrate the network it is essentially impos-
sible to know which privileges and vulnerabilities are the most important to the attackers’
success. Network administrators require a tool which can distill the overwhelming amount
of information into a list of priorities that will help them to efficiently utilize scarce human
and financial resources.

The problem of information overload can occur even for small-sized networks. The ex-
ample network shown in Figure 1 is from recent work by Ingolset al. [2]. Machine A is
an attacker’s launch pad (for example, the Internet). Machines B, C, and D are located in
the left subnet and machines E and F are in the right subnet. The firewall FW controls the
network traffic between the two subnets such that the only allowed network access is from
C to E and from D to E. All of the machines have a remotely exploitable vulnerability.

We applied the MulVAL attack graph tool suite [4] to the example network. Figure 2
presents a visualization of the resulting attack graph containing 50 vertices and 56 arcs.
Even for this simple scenario it is clear that the attack graph is large, cumbersome, and
difficult to read without magnification. Essentially, the software vulnerabilities on hosts
C and D will enable an attacker from A to gain local privilegeson the victim machines,
and use them as stepping stones to penetrate the firewall, which only allows through traffic
from C and D. In this example, all the machines can potentially be compromised by the
attacker, and all the vulnerabilities on the hosts can play arole in those potential attack
paths. However, the vulnerabilities on C and D, and the potential compromise of those

Figure 1: An example network

DRDC Ottawa TM 2007-205 1

two machines, are crucial for the attacker to successfully penetrate into the right subnet,
presumably a more sensitive zone. The attack graph producedby MulVAL does reflect
this dependency, but a careful reading of the graph is necessary to understand which graph
vertices are the most important to consider. When the network size grows and attack paths
become more complicated, it is insurmountably difficult fora human to digest all the de-
pendency relations in the attack graph and identify key problems in a reasonable amount
of time.

In order to make the information presented by attack graphs more usable, further analysis is
necessary to give guidance in system administration. Previous work has proposed various
analyses for attack graphs [3, 8]; however, we observe that those analyses typically treat
all the vertices and edges in an attack graph equally. Usually vertices in an attack graph
represent potential privileges attackers can obtain or vulnerabilities they can exploit. Those
privileges and vulnerabilities are not equal from a security point of view. Some of them
are more crucial for the attacker because they are essentialto the success of numerous or
critical attack paths and thus more attention should be paidto them. In the above example,
the vulnerabilities and privileges on machines C and D are more important than those on
machine B since they enable the attacker to penetrate the firewall to reach the internal sub-
net. It would be useful if an automatic algorithm could rank the vertices in an attack graph
based on their relative importance to an attacker. The ranking of the vertices would bring
the fundamental threats to an administrator’s attention, for example, by trimming the at-
tack graph based on the numeric ranks of vertices. It could also help to prioritize mitigation
measures based on the criticality of privileges from an attacker’s point of view. In reality
one cannot always eliminate all security threats. Understanding the relative importance of
vulnerabilities is important in deciding upon the best course of action.

This paper presents an approach which can automatically digest the dependency relations
in an attack graph and compute the relative importance of graph vertices as a numeric
metric. The metric gauges the degree to which attackers depend upon a privilege or vul-
nerability in their attacks. Our algorithm is based on the Google PageRank algorithm [9]
which ranks the importance of web pages. We adapted the PageRank algorithm so that
it suits the semantics of dependency attack graphs — a type ofattack graph whose edges
represent dependencies among attackers’ potential privileges. The extended algorithm is
called AssetRank, and the value it computes indicates the value of an attack asset (a graph
vertex) to a potential attacker. Attack assets consist of privileges, such as the ability to ex-
ecute code on a particular machine, and facts, such as the existence of vulnerable software.
We give a stochastic interpretation of AssetRank in the context of network attacks and con-
duct experiments on various network settings. The results of our experiments show that the
vertex ranks computed by our algorithm are consistent, froma security point of view, with
the relative importance of the attack assets to an attacker.The asset ranks can be used to
prioritize countermeasures, help a human reader to better comprehend security problems,
and provide input to further security analysis tools. The ranks are affected by the specific
assets an attacker wishes to obtain (and a system administrator desires to protect). It is

2 DRDC Ottawa TM 2007-205

execCode(f,serviceaccount)

RULE 2 (22) : remote exploit of a server program

12

networkServiceInfo(f,service,tcp,80,serviceaccount)

1

vulExists(f,vulid,service,remoteExploit,privEscalation)

1

netAccess(f,tcp,80)

11

RULE 5 (52) : multi-hop access

10

hacl(e,f,tcp,80)

1

execCode(e,serviceaccount)

9

RULE 2 (17) : remote exploit of a server program

8

networkServiceInfo(e,service,tcp,80,serviceaccount)

1

vulExists(e,vulid,service,remoteExploit,privEscalation)

1

netAccess(e,tcp,80)

7

RULE 5 (44) : multi-hop access

6

RULE 5 (46) : multi-hop access

6

hacl(c,e,tcp,80)

1

execCode(c,serviceaccount)

5

RULE 2 (7) : remote exploit of a server program

4

networkServiceInfo(c,service,tcp,80,serviceaccount)

1

vulExists(c,vulid,service,remoteExploit,privEscalation)

1

netAccess(c,tcp,80)

3

RULE 5 (32) : multi-hop access

6

RULE 5 (36) : multi-hop access

6

RULE 6 (59) : direct network access

2

hacl(b,c,tcp,80)

1

execCode(b,serviceaccount)

5

RULE 2 (2) : remote exploit of a server program

4

netAccess(b,tcp,80)

3

networkServiceInfo(b,service,tcp,80,serviceaccount)

1

vulExists(b,vulid,service,remoteExploit,privEscalation)

1

RULE 5 (28) : multi-hop access

6

RULE 5 (30) : multi-hop access

6

RULE 6 (56) : direct network access

2

5

hacl(c,b,tcp,80)

1

hacl(d,b,tcp,80)

1

execCode(d,serviceaccount)

5

RULE 2 (12) : remote exploit of a server program

4

netAccess(d,tcp,80)

3

networkServiceInfo(d,service,tcp,80,serviceaccount)

1

vulExists(d,vulid,service,remoteExploit,privEscalation)

1

RULE 5 (38) : multi-hop access

6

RULE 5 (40) : multi-hop access

6

RULE 6 (61) : direct network access

2

5

hacl(b,d,tcp,80)

1

5

hacl(c,d,tcp,80)

1

hacl(a,d,tcp,80)

1

attackerLocated(a)

1

1

hacl(a,b,tcp,80)

1

5

hacl(d,c,tcp,80)

1

1

hacl(a,c,tcp,80)

1

hacl(d,e,tcp,80)

5

1

Figure 2: Attack graph for the network in Figure 1

DRDC Ottawa TM 2007-205 3

similar to Google which presents a user with an ordered list of web pages based upon the
structure of the World Wide Web and their relevance to the user’s search terms. AssetRank
presents a user with an ordered list of attack assets based upon the structure of the attack
graph and their relevance to an attacker’s goal.

2 Attack Graphs

There are basically two types of attack graphs. In the first type, each vertex represents
the entire network state and the arcs represent state transitions caused by an attacker’s
actions. Examples are Sheyner’s scenario graph based on model checking [10], and the
attack graph in Swiler and Phillips’ work [11]. This type of attack graph is sometimes
called astate enumeration attack graph [7]. In the second type of attack graph, a vertex
does not represent the entire state of a system but rather a system condition in some form
of logical sentence. The arcs in these graphs represent the causality relations between the
system conditions. We call this type of attack graph adependency attack graph. Examples
are the graph structure used by Ammannet al. [1], theexploit dependency graphs defined
by Noelet al. [3, 7], the MulVAL logical attack graph by Ouet al. [4], and themultiple-
prerequisite graphs by Ingolset al. [2].

The key difference between the two types of attack graph liesin the semantics of their
vertices. While each vertex in a state enumeration attack graph encodes all the conditions
in the network, a vertex in a dependency attack graph encodesa single attack asset of the
network. A paths1 → s2 → s3 in a state enumeration attack graph means that the system’s
state can be transitioned froms1 to s2 and then tos3 by an attacker. But the condition
that enables the transitions2 → s3 may have already become true in a previous state, say
s1. The reason the attacker can get to states3 is encoded in some state variables ins2, but
the arcs in the graph do not directly show where these conditions were first enabled. In
a dependency attack graph, however, the dependency relations among various assets are
directly represented by the arcs.

For example, Figure 3 is a simple dependency attack graph. The verticesp1, ..., p5 are
assets to an attacker ande1, e2 are exploits an attacker can launch to gain privileges. The
arcs from a vertex in a dependency attack graph can form one oftwo logical relations: OR
or AND. An OR vertex represents conditions which may be enabled by any one of its out-
neighbours. An AND vertex represents an exploit in the attack graph requiring all of the
preconditions represented by its out-neighbours to be met.In our figures we use diamonds
to symbolize OR vertices, ellipses to symbolize AND vertices, and boxes for sink vertices
where there is no out-neighbour. The dependency attack graph in Figure 3 shows that
attackers can gain privilegep5 through one of two ways. They can launch exploite1 if all
of the conditionsp1, p2 andp3 are true. Or they can launch exploite2 if conditionsp3 and
p4 are true. Each of the conditionsp1, ..., p4 could be some other privilege the attackers
need to gain first, or some configuration information such as the existence of a software

4 DRDC Ottawa TM 2007-205

vulnerability on a host.

p5

e1 e2

p1 p2 p3 p4

Figure 3: Vertices and arcs in a dependency attack graph

In this paper we have chosen to use dependency attack graphs.Our goal is to compute a
numeric value representing the importance of each attack asset to an attacker and as such
the semantics of dependency attack graphs are better suitedfor this purpose. Intuitively, the
more a vertex is depended upon, the more important it is to an attacker. This is analogous
to PageRank’s use in the World Wide Web where the more the web depends upon a page
(evidenced by links to it) the more important the page is.

3 AssetRank

Internet web pages are represented in a directed graph sometimes called aweb graph. The
vertices of the graph are web pages and the arcs are URL links.The PageRank algorithm
[9] computes a page’s rank not based on its content, but on thelink structures of the web
graph. Pages that are pointed to by many pages or by a few important pages have higher
ranks than pages that are pointed to by a few unimportant pages. In this paper, we introduce
AssetRank, a generalized PageRank algorithm, to handle thevarious semantics of vertices
and arcs that may appear in an attack graph. Most importantly, the modifications allow
AssetRank to treat the AND and OR vertices in an attack graph correctly based on their
logical meanings. We also incorporate arc and vertex weights so that we can use the weights
as input parameters to express the attacker’s targets, the desirability of an attacking action,
and other relevant information that could affect the ranking of vertices. The AssetRank
algorithm could be applied to any graph whose arcs representsome type of dependency
relation between vertices [12]. In fact, web graphs can be viewed as a special case of
dependency graphs since a web page’s functionality in part depends on the pages it links
to. The original PageRank algorithm can be seen then as a special case of the AssetRank
algorithm where all the vertices are OR vertices and all the vertices and arcs have the same

DRDC Ottawa TM 2007-205 5

weight.1 In this section we introduce the AssetRank algorithm in the context of dependency
attack graphs.

A dependency attack graphG can be represented asG = (V, A, f, g, h) whereV is a set of
vertices;A is a set of arcs represented as(u, v), meaning that vertexu depends on vertex
v; f is a mapping of non-negative weights to vertices where at least one vertex weight
must be positive;g is a mapping of positive weights to arcs; andh is a mapping of vertices
to their type (AND or OR). Theout-neighbourhood of a vertexv, denotedN+(v), and
in-neighbourhood of v, denotedN−(v), are the following two sets.

N+(v) = {w ∈ V : (v, w) ∈ A} (1)

N−(v) = {u ∈ V : (u, v) ∈ A} . (2)

The cardinality of a setX is denoted|X| and its L1-norm is denoted||X||1. Without loss
of generality, we require the set of all vertex weightsf(V) to sum to 1, and the sum of arc
weights of a vertexv to be

∑

w∈N+(v)

g(v, w) =

{

1, if h(v) = OR

|N+(v)|, if h(v) = AND
(3)

except whenv is a sink in which case the sum will be 0.

The intuition behind AssetRank is that each vertex is associated with a value that is a nu-
meric representation of its importance. Part of this value comes from the vertex itself, and
part of it comes from other vertices that depend upon it. We can imagine that a portion of
a vertex’s value “flows” to its out-neighbours, which are vertices it depends upon. Con-
versely, a vertex receives value from its in-neighbours, which are its dependents. The flow
of value is depicted in Figure 4 where the colour of the vertexindicates its value (darker
vertices have higher value). Verticesv1 andv2 in the left cluster have an average value.
Since they both depend onv3, some of their value is transferred to it and sov3’s value is
increased. The vertexv6 in the right cluster has a higher value thanv3 since one of its
dependents,v4, has a high value. If we imaginev1, ..., v6 to be an attacker’s privileges, then
privilegev6 is more important to the attacker thanv3 becausev6 can enablev4, which is
very important to the attacker.

v1 v2

v3

v4 v5

v6

Figure 4: Value flows to dependencies

1We assume the current ranking algorithm used by Google is much more complicated than the original
PageRank algorithm and may have features in common with our AssetRank algorithm.

6 DRDC Ottawa TM 2007-205

It is insufficient though to consider only the dependency relations in determining a vertex’s
value. For example, ifv4 represents the privilege of “execute arbitrary code as rooton
a database server,” andv1 is the privilege of “execute arbitrary code on a user machine,”
thenv4 is likely to be more important to both administrators and attackers thanv1. We use
vertex weights as anintrinsic value to represent a vertex’s inherent value. Thus, the value
of a vertex consists of two parts: its intrinsic value, and the value that flows to it from its
dependents. For the sake of simplicity we assume for the moment that all vertices in the
graph are OR vertices. The following equation computes the rankxv of a vertexv:

xv = δ
∑

u∈N−(v)

g(u, v)xu + (1 − δ)f(v) (4)

The variableδ is called thedamping factor and its purpose is to set the contribution ra-
tio of a vertex’s in-neighbours’ rank values versus its intrinsic value to the vertex’s final
rank valuexv. The intrinsic value of vertexv is given byf(v); in the original PageRank
algorithm,f(v) = 1/|V |. Each ofv’s dependentsu contributes a portion of its value to
v’s value. In the original PageRank algorithm, the portion isequally distributed over all
the out neighbours of a vertex, that is,g(u, v) = 1/|N+(u)|. In the AssetRank algorithm,
g(u, v) could be any value in the range(0, 1]. This is useful in practice since a vertex may
not depend on all its out neighbours equally and the portiong(u, v) can indicate how much
vertexu depends onv compared with its other enablers. We assemble thexv ’s into a vec-
tor X and theg(u, v)’s into a weighted adjacency matrixD such thatDvu = g(u, v).2 If
(u, v) 6∈ A theng(u, v) = 0. We also put all the vertices’ intrinsic values into an intrinsic-
value vectorIV = f(V). Then the ranks of all the vertices is the solution to the following
linear system.

X = δDX + (1 − δ)IV (5)

The above linear system can be solved using the Jacobi methodby iterating the following
sequence.

Xt = δDXt−1 + (1 − δ)IV (6)

It has been shown [13] that for the type of transition matrixD we have discussed so far,
such sequences always converge to the solution of the linearsystem (5) for any initial value
X0, provided that0 ≤ δ < 1. We useX0 = IV .

2By abuse of notation we useu andv in Dvu to represent the column and row indices corresponding to
the respective vertices.

DRDC Ottawa TM 2007-205 7

Up to this point, we have limited our discussion to OR-vertexgraphs where each vertex
can be satisfied by any of its out-neighbours. Many graphs arise in practice (in particular,
dependency attack graphs) which also have AND vertices. An AND vertex depends onall
of its out-neighbours. For example, an OR-vertex would be used to represent an attacker
gaining network access to a host by any one of five connected hosts. An AND vertex would
be used to represent an attacker exploiting a vulnerabilitythat requires the combination of
account access and a vulnerable program.

Since any of an OR vertex’s out-neighbours can enable it, they will split its value, as ex-
pressed in (3) and (4). As the number of out-neighbours increases, the importance of each
out-neighbour decreases since the vertex can be satisfied byany one of them. This reduced
dependency is not true of AND vertices. Since all the out-neighbours of an AND vertex
are necessary to enable it, it is intuitively incorrect to lessen the amount of value flowed to
each out-neighbour as their number grows. This can be seen best in an example.

p1

p2 p3

vul1 vul2 vul3 vul4

Figure 5: An example AND/OR dependency graph

In the dependency graph shown in Figure 5, attackers realizing the goalp1 depend upon
their ability to obtain both privilegesp2 andp3. p2 is an AND vertex and it requires two
vulnerabilitiesvul1 andvul2. p3 is an OR vertex and it requires only one of eithervul3
or vul4. In this example we assume all the arcs have the same weight. If one were to
rank the importance of the four vulnerabilities, it is logical that the ranks forvul1 andvul2
should be different than those ofvul3 andvul4. Sincevul1 andvul2 are both necessary
for an attacker to achieve his goalp1, they should be more important than either ofvul3
andvul4. For example, ifvul3 is patched,vul4 could still enable an attacker to obtain
p3. However, if we patchvul1, this would break the attack chain top2 andp1 will not be
achievable. Thus in ranking the vertices, we would expect that values forvul1 andvul2 will
be higher thanvul3 andvul4. However, if we do not treat AND and OR vertices differently
in D, after applying the computation given by (6) we would get identical values for all of
vul1, ..., vul4. We apply AssetRank in a PageRank style so that all vertices are treated as
OR vertices, withδ = 0.85 andIV set up so that only the goal vertexp1 has a non-zero
intrinsic value. The sequence converges after four iterations and, not surprisingly, all the
vulnerabilities have the same rank as presented in Table 1.

8 DRDC Ottawa TM 2007-205

Table 1: AssetRanks with only OR vertices

Vertex Rank×102

p1 38.873
p2 16.521
p3 16.521
vul1 7.021
vul2 7.021
vul3 7.021
vul4 7.021

Hence, rather than splitting the value of an AND vertex wereplicate it to its out-neighbours.
Each out-neighbour of an AND vertex receives the full value from the vertex multiplied
by δ. That is, for every outgoing edge(u, v) from an AND vertexu, the corresponding
entry Dvu is 1. This is the basis for the restriction on AND-vertex arc weights given in
Equation (3).

With this extension for AND vertices, the sequence (6) will no longer converge in general.3

Since the columns inD corresponding to AND vertices may sum to a value greater than
one, the L1-norm ofXt would increase indefinitely. However, the actual values of vertices
are not important in ranking the vertex. What matters is their relative values with one
another. Thus we normalize the vectorXt at each iteration and the computation becomes:

Step 1:X ′
t
= δDXt−1 + (1 − δ)IV (7)

Step 2:Xt =
1

||X ′
t||1

X ′
t

(8)

In our experience, the above sequence has always converged.However, we have not found
a mathematical proof that it will always reach an equilibrium point. In the next section,
we give an interpretation of the above sequence in the context of attack graphs and show
that when the sequence converges, the resulting values indicate the importance of each
vertex to an attacker. For safety, in our implementation we have set a maximum number of
iterations so that the algorithm will terminate if the sequence does not converge within this
limit. Table 2 displays the result of applying the above algorithm to the dependency graph
in Figure 5. The same values forδ andIV are used and the computation converges after 38
iterations. The computation time is less than a second for all of the experiments presented
in this paper.

The new algorithm gives the expected relative importance for the four vulnerabilities:vul1
andvul2 are more important thanvul3 andvul4.

3The matrixD with only OR vertices can be converted to a stochastic matrixand Markovian-process
theory guarantees an equilibrium point can be reached. After the introduction of AND vertices the matrix is
no longer stochastic.

DRDC Ottawa TM 2007-205 9

Table 2: AssetRanks with AND and OR vertices
Vertex Rank×102

p1 17.219
p2 16.801
p3 16.801
vul1 16.393
vul2 16.393
vul3 8.197
vul4 8.197

4 Interpretation of AssetRank

In this section we describe a stochastic interpretation forthe numeric value computed by
AssetRank on dependency attack graphs. Stochastic interpretation has been used to give
PageRank, which can be seen as a special case of AssetRank, a semantic meaning in a
“random walk” model [9, 13]. A random walker surfs the web graph in the following man-
ner: At each time interval, with probabilityδ it will follow one of the links in the current
page with equal probability; with probability1 − δ it will “get bored” and jump to one
of the pages in the web graph with equal probability. Under this interpretation, the equi-
librium point of sequence (6) will be the probability a random surfer is on a page.4 This
random-walk model cannot be applied to dependency attack graphs, primarily because it
does not handle AND and OR vertices differently. In this section we give an interpreta-
tion of AssetRank that provides meaningful semantics in thecontext of dependency attack
graphs.

Our interpretation is inspired by the model used by Bianchini et al. [13]. Imagine a po-
tential attacker has the attack graph5 and is planning how to attack the system. He does so
by dispatching an army of “attack planning agents” whose task is to learn how to obtain
the privileges represented by the vertices. Every agent behaves in the following manner: at
each moment an agent considers only one vertex in the attack graph. We usevi(t) to denote
the vertex agenti is contemplating at timet. If vi(t) is a sink vertex, agenti has finished
his job and stops working. Otherwise he will, with probability δ, plan how to satisfy the
requirements forvi(t) based on the attack graph; with probability1 − δ, he will decide to
obtain the privilegevi(t) through other means not encoded in the attack graph (for exam-
ple, through backdoors already installed in the system or social engineering). In the latter
case, the agent has also finished his planning and stops working.

Let vi(t) = v. With probabilityδ the agent uses the attack graph and follows the out-going

4An additional step is needed to convert the matrixD to a stochastic matrix by compensating for the lost
value due to dangling pages [13].

5In reality an attack graph should never be leaked to an attacker; however, in evaluating security we need
to assume that the attacker has the same information resources as the defenders.

10 DRDC Ottawa TM 2007-205

arcs fromv to satisfy its preconditions. Two cases need to be considered. If v is an OR
vertex, the agent will choose one of its out-neighboursw with the following probability.

Pr[vi(t + 1) = w | vi(t) = v] = g(v, w) (9)

If v is an AND vertex, the agent must plan how to satisfyall the out-neighbours ofv. Thus
he must move along all the out-going arcs simultaneously. Wemodel this by allowing the
agent to replicate itself6 with each replica moving to one of the out-neighbours indepen-
dently. More precisely, at stept + 1 agenti will becomer = |N+(v)| agentsi1, ..., ir,
each of which is assigned one of the vertices inN+(v) so that every element inN+(v) is
covered.

The potential attacker has an unlimited number of such agents at his disposal. Every time
he dispatches an agent to a vertex in the attack graph, the agent will try to find a way to
attack the system such that the goal represented by the starting vertex can be achieved.
When the agent (and all his clones) finishes the job, an attackplan has been made. Each
time he may find a different attack path due to the probabilistic choices he makes along
the way. At each time interval, the potential attacker will dispatch new agents and the new
agents will start from one of the graph vertices with the probability distribution specified
by IV . The number of new agents is(1 − δ) times the number of active agents currently
in the system.

Let the vectorXt = [X1
t
, ..., X

|V |
t]T whereXv

t
is a random variable representing the number

of active agents planning an attack for vertexv at timet. E(Xv

t
) is the expected value of the

random variableXv

t
. We useE(Xt) to represent[E(X1

t
), ..., E(X

|V |
t)]T . LetE(X0) = IV

which corresponds to the attacker dispatching the first agent according to the probability
distribution given byIV . The following equation then holds fort > 0.

E(Xt) = δDE(Xt−1) + (1 − δ)||E(Xt−1)||1IV (10)

After normalization, this is exactly the same sequence as the sequence specified by Equa-
tions (7) and (8). Since an agent will replicate itself at an AND vertex,||E(Xt)||1 grows
indefinitely; however, the relative ratio of eachE(X i

t
) with respect toE(Xt) may reach

an equilibrium point. If the normalized value ofE(Xt) stabilizes ast → ∞, the Asset-
Rank value computed by the sequence specified in Equations (7) and (8) will represent the
portion of active attack planning agents on each vertex in the attack graph.

Under this attack-planning-agents interpretation, a higher AssetRank value for a vertex in-
dicates there will be a larger portion of planning agents discovering how to obtain the asset
represented by the vertex. Thus AssetRank directly impliesthe importance of the privilege
or vulnerability to a potential attacker. The arc weightg(v, w) indicates the desirability

6Analogous to the UNIXfork() command.

DRDC Ottawa TM 2007-205 11

of the attack step(v, w) with respect to achieving the capabilityv, since a higherg(v, w)
means a planning agent will be more likely to choosew asv’s enabler. A vertex’s intrinsic
value represents the desirability of the privilege to an attacker. A higher intrinsic value in-
dicates the attacker is more likely to dispatch a planning agent to determine how to achieve
the goal. A higher1 − δ indicates the attacker is more likely to gain privileges “out of
band” and thus does not need to follow the attack graph.1 − δ also indicates the rate at
which the attacker dispatches new agents.

5 Experiments

In this section we present several experiments we conductedto study 1) whether the Asset-
Rank algorithm gives ranking results consistent with the importance of an attack asset to
a potential attacker; and 2) how to use the AssetRank value tobetter understand security
threats conveyed in a dependency attack graph, and to chooseappropriate mitigation mea-
sures.

In our experiments, we use the MulVAL attack-graph tool suite [4] to compute a depen-
dency attack graph based upon a network description and a user query. For example, a user
may ask if attackers can execute code of their choosing on anyserver. The attack graph
is exported to a custom Microsoft Access database application. The database application
uses SQL queries and VBA code to normalize the input data and compute the AssetRank
values.

We make the assumption that the attacker prefers shorter attack paths, and we set the
weights of out-going arcs from an OR vertex to indicate this preference.7 In an AND/OR
dependency attack graph, anattack path to satisfy a vertexw is a tree sub-graph rooted at
w in which every non-leaf OR vertex has exactly one child from the original graph, every
non-leaf AND vertex has all the out-neighbours in the original graph, and every leaf-vertex
is a sink vertex in the original graph. The length of this attack path is the maximum depth
of this tree. By performing a standard depth-first-search, we compute for every vertex in
the graph the length of the shortest attack path to satisfy it. For an OR vertexv, we assign
the weight for an out-going arc(v, w) as follows. Ifmw is the length of the shortest attack
path satisfyingw, then the length of the shortest attack path satisfyingv along the arc(v, w)
is mw + 1. The arc is assigned a weight of1/(mw + 1)2 where we chose the exponent to
reflect the degree of bias against long attack paths. We then normalize the weights among
all the out-neighbours from an OR vertex and the result is theg(v, w) parameters in the
AssetRank algorithm.

We first demonstrate the results of applying AssetRank to theattack graph for the example
network in Figure 1. In this example we assign equal intrinsic value to all the vertices in the

7The weights could also be used to assume other preferences such as the desirability of simple or complex
attacks. This notion is discussed in more detail in Section 6.

12 DRDC Ottawa TM 2007-205

attack graph, indicating that the attacker is interested inall the assets equally. In a MulVAL
attack graph, each vertex is associated uniquely with a logical sentence in the form of a
predicate applied to a number of parameters, describing an attack asset. Table 3 shows the
AssetRank values for some of the interesting MulVAL-generated attack graph vertices. For
this example, AssetRank took 39 iterations to converge.

Table 3: AssetRanks for the Figure 1 network

Vertex Rank×102

execCode(c,serviceaccount) 2.857
execCode(d,serviceaccount) 2.857
execCode(e,serviceaccount) 1.619
execCode(b,serviceaccount) 1.587
execCode(f,serviceaccount) 0.343
hacl(a,d,tcp,80) 3.279
hacl(a,c,tcp,80) 3.279
hacl(a,b,tcp,80) 2.354
hacl(d,e,tcp,80) 1.715
hacl(c,e,tcp,80) 1.715
hacl(e,f,tcp,80) 1.619
hacl(c,d,tcp,80) 0.965
hacl(b,d,tcp,80) 0.965
hacl(d,c,tcp,80) 0.965
hacl(b,c,tcp,80) 0.965
hacl(d,b,tcp,80) 0.862
hacl(c,b,tcp,80) 0.862
... ...
vulExists(c,...remoteExploit,privEscalation) 3.372
vulExists(d,...remoteExploit,privEscalation) 3.372
vulExists(e,...remoteExploit,privEscalation) 2.203
vulExists(b,...remoteExploit,privEscalation) 2.174
vulExists(f,...remoteExploit,privEscalation) 0.999

In Table 3, we group vertices with the same predicate together making it easier to compare
the relative importance of privileges within the same category. For example, the vertex
“execCode(d,serviceaccount)”8 has a value of 0.02857. Another privilege in the same ex-
ecCode category, “execCode(b,serviceaccount)”, only hasa value of 0.01587. Intuitively
this is correct because while both machines B and D are accessible directly by the attacker
from A, machine D could enable the attacker to directly penetrate deeper into the right sub-
net while machine B can only do so indirectly through C or D. Thus the compromise on D

8Meaning the attacker can have code-execution privilege as user “serviceaccount” on machine “d”. Mul-
VAL is implemented in Datalog which requires that the first letter of a constant be lowercase; however, we
will use uppercase for machine names outside of predicates.

DRDC Ottawa TM 2007-205 13

is more serious. For the same reason, a software vulnerability on machine C or D is more
valuable to an attacker than one on machine B, as shown by the ranking in the “vulEx-
ists” category. The AssetRank values in this example indicate a software vulnerability or
a machine compromise that can enable more penetrations is more valuable to the attacker,
which is what we expected. Machines whose compromise and vulnerabilities are ranked
higher should be given priority consideration for securityhardening, such as patching and
installing Intrusion Detection System (IDS) devices.

In MulVAL, a tuple “hacl(H1, H2, Protocol, Port)” means “machine H1 can initiate a net-
work conversation to machine H2 through Protocol and Port.”Host Access Control List
(HACL) tuples are high-level abstractions of the effects ofnetwork traffic-control devices
such as firewalls, routers, and switches, whose settings a system administrator can modify.
The ranking of the HACL predicates demonstrates the effectiveness of AssetRank. The
removal of the first two HACL predicates requires the attacker to launch a more compli-
cated attack since then he must take the extra step of exploiting B. The removal of the first
three HACL predicates eliminates the entire network attack. If any of those three HACL
predicates are not removed then the attacker has an entry to the network and the best we
can do is save the two machines in the right subnet. Removing the fourth and fifth HACL
predicates will do precisely that. Finally, if the first five HACL predicates are left intact the
only machine that can be saved is F which can be accessed afterexploiting E. AssetRank
has predictably ranked the HACL predicate from E to F as the next most important. We see
that the AssetRank values correctly reflect the importance of network routes to an attacker,
and thus identify the routes whose removal would be most effective in protecting machines
in the network. All machines in this example were given equalintrinsic value which corre-
sponds to the goal of protecting as many machines as possible. The AssetRank values for
the HACL tuples are consistent with this goal.

The second experiment is adapted from an example in a technical report by Lippmannet
al. [14]. In this example, we demonstrate how AssetRank may be used to suggest courses
of action. Figure 6 presents a network with a web server, database server and user desktop.
Each of the two servers has a remotely exploitable vulnerability resulting in a privilege
escalation. The user desktop has a browser vulnerability which is exploited if the user is
lured to a maliciously crafted website. Attackers are located on the Internet and in this
scenario we assume their most important goal is gaining access to the database server.

Since the attackers’ main interest is the database server, we give the attack graph goal
vertex “execCode(databaseServer, oracleuser)” an intrinsic value equal to 15% of the total
and the remaining 85% is distributed evenly among the remaining vertices to reflect the
attackers’ side interest in attaining any privilege.

Figure 7 displays the attack graph for this scenario. The vertices have been coloured ac-
cording to their AssetRank values with colours ranging fromred to blue. Red vertices have
a high AssetRank value and blue vertices have a low AssetRankvalue. Table 4 shows the

14 DRDC Ottawa TM 2007-205

Database Server

(Attacker Goal)

Web Server

Attacker (Internet)

User Desktop

Router
Internet Web Server

User Desktop Internet

Figure 6: Experiment 2, Scenario 1

Table 4: AssetRanks for the Figure 6 network

Name Rank×102

execCode(userDesktop,joeAccount) 3.357
execCode(databaseServer,oracleuser) 2.764
execCode(webServer,system) 2.575
hacl(userDesktop,attackerHost,tcp,80) 4.659
hacl(attackerHost,webServer,tcp,80) 3.708
hacl(userDesktop,databaseServer,tcp,1521) 2.575
hacl(webServer,databaseServer,tcp,1521) 2.575
hacl(userDesktop,webServer,tcp,80) 1.285
... ...
vulExists(userDesktop,browservulid,...) 4.039
vulExists(databaseServer,oraclevulid,...) 3.499
vulExists(webServer,iisvulid,...) 3.327

AssetRank values in some of the vertex categories.9 In this example we would like to focus
on the categories that represent configuration options, since these will be conditions a sys-
tem administrator can change to mitigate the threats. The “hacl” and “vulExists” predicates
are two of these categories. The highest-ranked HACL is the desktop machine’s ability to
access the Internet (“attackerHost”), followed by the accessibility from Internet to the web
server. It may seem counter-intuitive that out-bound network access, typically deemed less
harmful, is ranked higher than the inbound access to the web server. This is because the

9The algorithm required 44 iterations to converge.

DRDC Ottawa TM 2007-205 15

execCode(databaseServer,oracle_user)

RULE 2 (2) : remote exploit of a server program

8

netAccess(databaseServer,tcp,1521)

7

networkServiceInfo(databaseServer,oracle,tcp,1521,oracle_user)

1

vulExists(databaseServer,oracle_vulid,oracle,remoteExploit,privEscalation)

1

RULE 5 (24) : multi-hop access

6

RULE 5 (26) : multi-hop access

6

hacl(userDesktop,databaseServer,tcp,1521)

1

execCode(userDesktop,joeAccount)

5

RULE 3 (18) : remote exploit for a client program

4

hasAccount(joe,userDesktop,joeAccount)

1

inCompetent(joe)

1

canAccessMaliciousInput(userDesktop)

3

vulExists(userDesktop,browser_vulid,privEscalation,remoteExploit,privEscalation)

1

RULE 20 (12) : Browsing a website

2

attackerLocated(attackerHost)

1

hacl(userDesktop,attackerHost,tcp,80)

1

isWebBrowser(firefox)

1

installed(userDesktop,firefox)

1

hacl(webServer,databaseServer,tcp,1521)

1

execCode(webServer,system)

5

RULE 2 (7) : remote exploit of a server program

4

netAccess(webServer,tcp,80)

3

networkServiceInfo(webServer,iis,tcp,80,system)

1

vulExists(webServer,iis_vulid,iis,remoteExploit,privEscalation)

1

RULE 5 (30) : multi-hop access

6

RULE 6 (34) : direct network access

2

5

hacl(userDesktop,webServer,tcp,80)

1

1

hacl(attackerHost,webServer,tcp,80)

1

Figure 7: Attack graph for the Figure 6 network

out-bound access, along with the user’s browser vulnerability, makes it possible for the user
to fall victim to a malicious website that exploits the browser vulnerability, and as a result,
attackers can gain a flexible footholdinside the corporate network. The desktop gives two
paths to the database server — it can exploit the server directly or it can launch a two stage
attack through the web server. By exploiting the desktop, attackers gain everything they
would by exploiting the web server plus additional capabilities.

It may be tempting to think that the best course of action is blocking the top-ranked HACL
predicates. In reality, however, neither of the top two HACLpredicates can be removed due
to the business needs of user desktop access to the Internet and web server availability from
the Internet. We then consider the next two most important HACL predicates: the desktop
and web server’s ability to directly access the database server. This time it is possible to
remove the route from the desktop machine to the database server, since an ordinary user
does not need to have direct access to the database server. Wecan then propose the course
of action of putting the desktop machine into a separate subnet and blocking access from
the subnet to the database server in the router configuration.

The “vulExists” category shows that the vulnerability on the desktop machine is more
important than the one on the database server, which is more important than the one on the

16 DRDC Ottawa TM 2007-205

web server. We can see that this assessment is correct since the compromise of a desktop
machine is more valuable to attackers, as discussed above. Since the target is the database
server, and the web server is not necessary in this scenario,the web server vulnerability is
less important than the database server vulnerability.

While it is tempting to simply recommend that all organizations keep their software fully
patched, this is not realistic in an enterprise environmentfor a number of reasons. First, it is
extremely expensive and time consuming to roll out a patch ina large network; furthermore,
patches may not be immediately available and, once they are released, they must be tested
against the organization’s baseline before being deployed. Second, business needs might
favour uptime over security and so patches are not applied assoon as they are released (and
tested) but are applied on a patch cycle. Third, patches are areactive security measure and
organizations are often better protected if they can make architectural changes that mitigate
the consequences of an attacker exploiting a vulnerability. In this scenario we assume that
it is not realistic to keep the desktop machines fully patched and that the vendors have not
yet provided workable patches for the server software.

Thus the only course of action available is the architectural change to the network topology
described above. We would like to evaluate how effective this proposed change will be in
mitigating the threats. This can be done by simulating the new configuration in MulVAL
and computing a new attack graph based on the suggested changes.

Subnet: Internal1

Subnet: Internal2

Subnet: DMZ

Database Server

(Attacker Goal)

Web Server

Attacker (Internet)

User Desktop

Router
Internet Web Server

Web Server Database Server

User Desktop Web Server

User Desktop Internet

Figure 8: Experiment 2, Scenario 2

Figure 8 illustrates the new network configuration. The database server has been placed
into the subnet Internal1 and is only accessible from the webserver. The user has been
placed into the subnet Internal2 and she has access to the webserver and the Internet. The

DRDC Ottawa TM 2007-205 17

web server is in the subnet DMZ and is still accessible from the Internet. The MulVAL-
generated attack graph on the new scenario is coloured according to the AssetRank values
in Figure 9. The intrinsic value and arc weights are assignedas before. Table 5 gives the
new AssetRank values for the new attack graph. The values indicate that in the changed
configuration, the vulnerability and privileges of the web server become the most valuable
assets for the attacker. The reason is that the attacker mustnow compromise the web server
to reach the database server. The new configuration is bettersince now only a single entry
point is presented to the attacker. If the web server vulnerability is patched, the only attack
path to the database server is eliminated. Furthermore, thesystem administrator likely
monitors the web server much more closely than the individual desktop machines.

execCode(databaseServer,oracle_user)

RULE 2 (9) : remote exploit of a server program

8

networkServiceInfo(databaseServer,oracle,tcp,1521,oracle_user)

1

netAccess(databaseServer,tcp,1521)

7

vulExists(databaseServer,oracle_vulid,oracle,remoteExploit,privEscalation)

1

RULE 5 (28) : multi-hop access

hacl(webServer,databaseServer,tcp,1521)

1

execCode(webServer,system)

5

RULE 2 (14) : remote exploit of a server program

4

networkServiceInfo(webServer,iis,tcp,80,system)

1

vulExists(webServer,iis_vulid,iis,remoteExploit,privEscalation)

1

netAccess(webServer,tcp,80)

3

RULE 5 (30) : multi-hop access

hacl(userDesktop,webServer,tcp,80)

1

execCode(userDesktop,joeAccount)

5

RULE 3 (24) : remote exploit for a client program

4

hasAccount(joe,userDesktop,joeAccount)

1

inCompetent(joe)

1

vulExists(userDesktop,browser_vulid,privEscalation,remoteExploit,privEscalation)

1

canAccessMaliciousInput(userDesktop)

3

RULE 20 (19) : Browsing a website

attackerLocated(attackerHost)

1

hacl(userDesktop,attackerHost,tcp,80)

1

isWebBrowser(firefox)

1

installed(userDesktop,firefox)

1

hacl(attackerHost,webServer,tcp,80)

2

RULE 6 (34) : direct network access

1

1

6 2

6

Figure 9: Attack graph for the Figure 8 network

6 Discussion

From the experiments in the previous section, we can make several observations. First,
the value given by the AssetRank algorithm is consistent with the logical importance of a

18 DRDC Ottawa TM 2007-205

Table 5: AssetRanks for the Figure 8 network

Name Rank×102

execCode(webServer,system) 4.535
execCode(databaseServer,oracleuser) 2.839
execCode(userDesktop,joeAccount) 1.566
hacl(attackerHost,webServer,tcp,80) 5.513
hacl(webServer,databaseServer,tcp,1521) 4.535
hacl(userDesktop,attackerHost,tcp,80) 3.431
hacl(userDesktop,webServer,tcp,80) 1.566
... ...
vulExists(webServer,iisvulid,...) 5.297
vulExists(databaseServer,oraclevulid,...) 3.717
vulExists(userDesktop,browservulid,...) 2.531

privilege or misconfiguration. For example, in Table 3 we sawthat the highest-ranked ver-
tices for the “execCode” category are those for machines C and D. Eliminating execCode
entries for those two machines is critical to the goal of protecting the largest number of
machines. The logical correctness of the ranks is especially evident in the ordering of the
HACL predicates.

Second, simply applying AssetRank to an attack graph is not sufficient in itself to produce
the best course of action. Input relating to business needs and costs is also required to arrive
at the same course of action that a human would select. As shown in the second experi-
ment, the two highest-ranked “hacl” tuples are those that must be there to meet business
needs. This indicates that AssetRank can also be used to aid an administrator in the reverse
task of ensuring legitimate access to servers. For example,AssetRank can reveal the most
important communication paths, software, and hardware used to deliver the business’s pri-
orities. Security hardening costs must also be factored in.For example, the highest-ranked
“vulExists” tuple represents a vulnerability that cannot be easily patched due to manage-
ment burdens. If the system does not integrate business needs and implementation costs,
the administrator must manually determine the course of action while using the AssetRank
values as a guide.

As a standalone tool, a very useful aspect of AssetRank in thecontext of attack graphs is
to assist in prioritizing further analysis and understanding of the threats. One can imagine
using AssetRank to incrementally show the vertices in an attack graph, with the highest
ranked vertices shown first followed by the lower-ranked ones. In the limited number of
experiments we conducted, the highest-ranked vertices were always the most important.
Administrators can work through the ranked attack graph addressing the threats in order of
their criticality. Since the full attack graph is often too cumbersome for a user to under-
stand, this type of incremental analysis should be useful inpractice.

DRDC Ottawa TM 2007-205 19

Providing a well-founded semantic model is important to guarantee that computed numeric
metrics are consistent with the assessments of real world experts. Having said that, every
model has limitations and cannot completely capture reality. AssetRank shares a limitation
with PageRank that arises due to an assumption made in its stochastic interpretation. The
attack planning agent in our model, like the random walker inthe PageRank model, is
Markovian. This trait means the agents are memoryless and base their decisions solely on
the current vertex and the weight of the out-going arcs. Hence, planning agents do not take
into account the vertices they have previously traversed when they decide how to obtain
future privileges. This assumption is valid if the attack graph does not contain cycles;
however, when cycles exist, attack planners will not purposely avoid looping. Since the
process is Markovian, agents will not recognize if they are traversing a path which they
have already investigated. The result is that the vertices involved in a cycle accumulate
disproportional rank values, much the same way that cycles in web page communities will
make the PageRank of the involved web pages disproportionately high. We mitigate this
effect by using the arc weights to reflect the shortest path tosatisfy a vertex. The vertices
that produce loops in an agent’s traversal inevitably have alonger satisfaction path, and
thus will be less desirable to attackers. Due to this approach our AssetRank algorithm is
still able to give appropriate rankings, even when the attack graph contains cycles.

Arc weights are a flexible instrument that allow the user to take attacker preferences into
account. In our paper we used the weights to favour short attack paths over long ones.
Alternatively, the metric can be used to denote other attackcharacteristics.

• Stealthiness of an attack — allows the inclusion of IDSs in the model by giving a
high penalty for attacks leaving evidence (log entries or system crashes for example)
or detectable attacks over links monitored by an IDS.

• Resources required — gives the ability to penalize resourceconsuming attacks (for
example, attacks that require password cracking or large bandwidth).

• Complexity — attacks executable by amateur attackers with well developed tools
could be given a higher priority than theoretical attacks orattacks that only have
proof-of-concept code available.

7 Related Work

Mehtaet al. apply the Google PageRank algorithm to model-checking-based attack graphs
[15]. Aside from the generalization of PageRank presented in this paper, the key difference
from their work is that AssetRank is applied to dependency attack graphs which have very
different semantics from the state enumeration attack graphs generated by a model checker.
First, a vertex in a dependency attack graph describes a privilege attackers use or a vulner-
ability they exploit to accomplish an attack. Hence rankinga vertex in a dependency attack

20 DRDC Ottawa TM 2007-205

graph directly gives a metric for the privilege or vulnerability. Ranking a vertex in a state
enumeration attack graph does not provide this semantics since a vertex represents the state
of the entire system including all configuration settings and attacker privileges. Second, the
source vertices of our attack graphs are the attackers’ goals as opposed to the source vertex
being the network initial state, as is the case in the work of Mehtaet al. Since the attackers’
goals are the source vertices, value flows from them and the computed rank of each vertex
is in terms of how much attackersneed the attack asset to achieve their goals. Thus our
rank is a direct indicator of the main attack enablers and where security hardening should
be performed. The rank computed in Mehtaet al.’s work represents the probability a ran-
dom attacker (similar to the random walker in the PageRank model) is in a specific state,
in particular, a state where he has achieved his goal.

It is important to distinguish between the probability thatan attacker is in a statecurrently
and the probability he can reach the stateeventually. The rank computed in Mehtaet al.’s
work is the former, not the latter. In reality, an attacker with a target in mind will always be
able to reach the goal states in the attack graph. Indeed, in their model the probability that
the random attacker has already reached a goal state at some point will go to one as time
goes to infinity. To demonstrate why the probability a randomattacker is in a goal state
currently cannot serve as a meaningful security metric, we implemented their algorithm
as described in the paper [15] and applied it to two very simple state enumeration attack
graphs. The first one only has one attack pathp1 → g. The second one has the same attack
path plus an extra attack pathp1 → p2 → g. g is the goal state for the attacker. The rank
for g in the first graph is0.500 and its rank in the second graph is0.397. Hence, in an attack
graph with more paths to achieve the goal, the probability a random attacker is at the goal
state is actually lower, due to the fact that the attacker must spend more time in the other
states. Clearly, this rank cannot serve as a metric for the system’s overall vulnerability, as
claimed in their paper, since the second case is obviously more vulnerable than the first
one due to the additional attack path. In both PageRank and AssetRank, it is the relative
rank values, not the actual values that are significant. The relative rank values in Mehta
et al.’s work compare the likelihood a random attacker is currently in a state. Unlike our
work, they do not indicate the relative importance of configuration settings and privileges
to attackers in achieving their goal.

There have been various forms of attack graph analysis proposed in the past. The ranking
scheme described in this paper is complementary to those works and could be used in
combination with existing approaches. One of the factors that has been deemed useful for
attack graphs is finding a minimal set of critical configuration settings that enable potential
attacks since these could serve as a hint on how to eliminate the attacks. Approaches to
find the minimal set have been proposed for both dependency attack graphs [3] and state-
enumeration attack graphs [6, 8]. Business needs usually donot permit the elimination of
all security risks so the AssetRank values could be used alongside minimal-cut algorithms
to selectively eliminate risk. Our first experiment shows that the highest ranked vertices
(compromise/vulnerability on host C and D) happen to be a minimal set that will cut the

DRDC Ottawa TM 2007-205 21

attack graph in two parts. AssetRank can also indicate the relative importance of each
attack asset, which a binary result from the minimal-cut algorithm does not provide. This
is illustrated in the second experiment, where although none of the attack assets on the web
server and user desktop alone could completely cut the attack paths, their importance values
are different and this is also useful in understanding the security threats and determining
the best courses of action to counteract them.

It has been recognized that the complexity of attack graphs often prevents them from being
useful in practice and methodologies have been proposed to better visualize them [7]. The
ranks computed by our algorithm could be used in combinationwith the techniques in those
works to help further the visualization process, for example by incrementally displaying
vertices in an attack graph.

8 Conclusion and Future Work

In this paper we proposed the AssetRank algorithm, a generalization of the PageRank algo-
rithm, that can be applied to rank the importance of a vertex in a dependency attack graph.
The model adds the ability to reason on heterogeneous graphscontaining both AND and
OR vertices. It also incorporates intrinsic values to reflect an attacker’s goal and arc weights
to specify the desirability of an attack step. The numeric value computed by AssetRank is a
direct indicator of how important the privilege or vulnerability represented by a vertex is to
a potential attacker. The algorithm was presented theoretically through an attack-planning
agent model, and empirically verified through numerous experiments conducted on sev-
eral example networks. The rank value will be valuable to users of attack graphs in better
understanding the security risks, in determining appropriate mitigation measures, and as
input to further attack graph analysis tools.

In the future, we would like to explore how to incorporate business priorities and imple-
mentation costs into the rank value, so that the resulting ranks can be used immediately by
a system administrator to generate a course of action or automatically implement security
hardening measures. We would also like to conduct experiments on operational networks
to better understand the advantages and limitations of our proposed algorithm, along with
ways of improving it. Finally, we wish to see how the values for arc and vertex weights,
representing diverse preferences, can be combined and, similarly, how AssetRanks in vari-
ous contexts may be combined.

22 DRDC Ottawa TM 2007-205

References

[1] Ammann, Paul, Wijesekera, Duminda, and Kaushik, Saket (2002), Scalable,
Graph-Based Network Vulnerability Analysis, InProceedings of 9th ACM
Conference on Computer and Communications Security, Washington, DC.

[2] Ingols, Kyle, Lippmann, Richard, and Piwowarski, Keith(2006), Practical Attack
Graph Generation for Network Defense, In22nd Annual Computer Security
Applications Conference (ACSAC), Miami Beach, Florida.

[3] Noel, Steven, Jajodia, Sushil, O’Berry, Brian, and Jacobs, Michael (2003), Efficient
Minimum-Cost Network Hardening via Exploit Dependency Graphs, In19th Annual
Computer Security Applications Conference (ACSAC).

[4] Ou, Xinming, Boyer, Wayne F., and McQueen, Miles A. (2006), A scalable
approach to attack graph generation, In13th ACM Conference on Computer and
Communications Security (CCS), pp. 336–345.

[5] Phillips, Cynthia and Swiler, Laura Painton (1998), A graph-based system for
network-vulnerability analysis, InNSPW ’98: Proceedings of the 1998 workshop on
New security paradigms, pp. 71–79, ACM Press.

[6] Sheyner, Oleg, Haines, Joshua, Jha, Somesh, Lippmann, Richard, and Wing,
Jeannette M. (2002), Automated generation and analysis of attack graphs, In
Proceedings of the 2002 IEEE Symposium on Security and Privacy, pp. 254–265.

[7] Noel, Steven and Jajodia, Sushil (2004), Managing attack graph complexity through
visual hierarchical aggregation, InVizSEC/DMSEC ’04: Proceedings of the 2004
ACM workshop on Visualization and data mining for computer security,
pp. 109–118, New York, NY, USA: ACM Press.

[8] Jha, Somesh, Sheyner, Oleg, and Wing, Jeannette M. (2002), Two Formal Analyses
of Attack Graphs, InProceedings of the 15th IEEE Computer Security Foundations
Workshop, pp. 49–63, Nova Scotia, Canada.

[9] Page, Lawrence, Brin, Sergey, Motwani, Rajeev, and Winograd, Terry (1998), The
PageRank Citation Ranking: Bringing Order to the Web, Technical Report Stanford
Digital Library Technologies Project.

[10] Sheyner, Oleg (2004), Scenario Graphs and Attack Graphs, Ph.D. thesis, Carnegie
Mellon.

[11] Swiler, Laura P., Phillips, Cynthia, Ellis, David, andChakerian, Stefan (2001),
Computer-Attack Graph Generation Tool, InDARPA Information Survivability
Conference and Exposition (DISCEX II’01), Vol. 2.

DRDC Ottawa TM 2007-205 23

[12] Sawilla, Reginald (2006), Abstracting PageRank to dynamic asset valuation, (DRDC
Ottawa TM 2006-243) Defence R&D Canada – Ottawa.

[13] Bianchini, Monica, Gori, Marco, and Scarselli, Franco(2005), Inside PageRank,
ACM Trans. Inter. Tech., 5(1), 92–128.

[14] Lippmann, Richard, Ingols, Kyle, Scott, Chris, Piwowarski, Keith, Kratkiewicz,
Kendra, Artz, Michael, and Cunningham, Robert (2005), Evaluating and
Strengthening Enterprise Network Security Using Attack Graphs, (Technical
Report ESC-TR-2005-064) MIT Lincoln Laboratory.

[15] Mehta, Vaibhav, Bartzis, Constantinos, Zhu, Haifeng,Clarke, Edmund, and Wing,
Jeannette (2006), Ranking Attack Graphs, InProceedings of Recent Advances in
Intrusion Detection (RAID).

24 DRDC Ottawa TM 2007-205

