Googling Attack Graphs

Reginald Sawilla
Defence R&D Canada — Ottawa

Xinming Ou
Kansas State University

The work in this report was completed in May 2007 and formally published September 2007.

Defence R&D Canada — Ottawa
Technical Memorandum

DRDC Ottawa TM 2007-205
September 2007

Principal Author

Original signed by Reginald Sawilla and Xinming Ou

Reginald Sawilla and Xinming Ou

Approved by
Original signed by Julie Lefebvre

Julie Lefebvre
Head/NIO Section

Approved for release by

Original signed by Pierre Lavoie

Pierre Lavoie
Head/Document Review Panel

© Her Majesty the Queen in Right of Canada as represented btittister of National
Defence, 2007

(© Sa Majeste la Reine (en droit du Canada), telle que rept&s@ar le ministre de la
Défense nationale, 2007

Abstract

Attack graphs have been proposed as useful tools for anglygacurity vulnerabilities in
network systems. Even when they are produced efficienysire and complexity of at-
tack graphs often prevent a human from fully comprehendiegrtformation conveyed. A
distillation of this overwhelming amount of informationgsucial to aid network adminis-
trators in efficiently allocating scarce human and finarn@aburces. This paper introduces
the AssetRank algorithm, a generalization of Google’s Ragé algorithm that ranks web
pages in web graphs. AssetRank handles the semantics aickpy attack graphs and
assigns a metric to the vertices, which represent netwavkgges and vulnerabilities, in-
dicating their importance in attacks against the systemghéea stochastic interpretation
of the computed values in the context of dependency atteaghgr and conduct experi-
ments on various network scenarios. The results of the erpats show that the numeric
ranks given by our algorithm are consistent with the imbeitmportance that the privileges
and vulnerabilities have to an attacker. The asset rankbearsed to prioritize counter-
measures, help a human reader to better comprehend squobtgms, and provide input
to further security analysis tools.

Résum é

On a proposeé des graphes d’attaque comme outils utiled’daal/se des vulnérabilités de
sécurité dans les réseaux informatiques. Méme loilsgont produits de facon efficiente,
la taille et la complexité des graphes d’attaque empéctmnvent un etre humain de bien
saisir toute I'information ainsi présentée. Il est esstile distiller cette masse écrasante
d’'information pour aider les administrateurs de réseall@uer de facon efficiente les
ressources humaines et financieres limitées. Dans cargottuon présente I'algorithme
AssetRank, une généralisation de I'algorithme PageRkné&oogle qui sert a classer les
pages Web dans des graphes Web. AssetRank traite la s§oeadés graphes d’attaque a
dépendances et il attribue une mesure aux sommets, qéseyent les privileges et les
vulnérabilités des réseaux, indiquant leur importatieies des attaques contre le systeme.
Nous donnons une interprétation stochastique des vabalrslées dans le contexte des
graphes d’attaque a dépendances et nous menons degergpérsur differents scénarios
de réseau. Les résultats des expériences montrent glestement numérique donné par
notre algorithme correspond a I'importance intuitiveant’les privileges et les vulnérabilités
pour un attaquant. Le classement des biens peut étreeyiiisr €tablir I'ordre de priorité
des contre-mesures, aider un lecteur humain a mieux clErm@roblemes de sécurité et
fournir des données d’entrées pour d’autres outils diesgede la sécurité.

DRDC Ottawa TM 2007-205 [

This page intentionally left blank.

DRDC Ottawa TM 2007-205

Executive summary

Googling Attack Graphs

Reginald Sawilla, Xinming Ou; DRDC Ottawa TM 2007-205; Defence R&D
Canada — Ottawa; September 2007.

Background: An attack graph is a mathematical abstraction of the detdifessible at-
tacks against a specific network. Recent advances haveeehadrnputing attack graphs
for networks with thousands of machines. Even when attaakbltgg can be efficiently
computed, the resulting size and complexity of the graplssiligoo large for a human to
fully comprehend. While a user will quickly understand th#tckers can penetrate the
network it is essentially impossible to know which priviemgand vulnerabilities are the
most important to the attackers’ success. Network adnnat@ts require a tool which can
distill the overwhelming amount of information into a lidtgriorities that will help them
to efficiently utilize scarce human and financial resources.

Principal results: This paper presents an approach which can automaticalgstdipe
dependency relations in an attack graph and compute the/esimportance of graph ver-
tices as a numeric metric. The metric gauges the degree thwaltiackers depend upon a
privilege or vulnerability in their attacks. Our algorithimbased on the Google PageRank
algorithm which ranks the importance of web pages. The eeeralgorithm is called
AssetRank, and the value it computes indicates the value aftack asset (a graph vertex)
to a potential attacker.

Significance of results: The results of our experiments indicate that the vertexsaokn-
puted by our algorithm are consistent, from a security poinview, with the relative
importance of the attack assets to an attacker. The asdet can be used to prioritize
countermeasures, help a human reader to better comprebemdltys problems, and pro-
vide input to further security analysis tools. The ranksadfected by the specific assets an
attacker wishes to obtain (and a system administratoretesirprotect).

Future work: We would like to explore how to incorporate business priesiaind imple-
mentation costs into the rank value, so that the resultingsaan be used immediately by
a system administrator to generate a course of action ometcally implement security
hardening measures. We would also like to conduct expetsmanoperational networks
to better understand the advantages and limitations of myogsed algorithm, along with
ways of improving it. Finally, we wish to see how the valuesdoc and vertex weights,
representing diverse preferences, can be combined anthryynhow AssetRanks in vari-
ous contexts may be combined.

DRDC Ottawa TM 2007-205 iii

Sommaire

Googling Attack Graphs

Reginald Sawilla, Xinming Ou; DRDC Ottawa TM 2007-205; R & D pour la
défense Canada — Ottawa; septembre 2007.

Contexte : Un graphe d’attaque est une abstraction mathématiqueé&aisdd’attaques
possibles contre un réseau particulier. Des progré&ntéont permis la création de graphes
d’attaque pour des réseaux qui comptent des milliers diatdurs. Méme lorsque les
graphes d’attaque peuvent étre calculés de fagon effeiéa taille et la complexité des
graphes ainsi obtenus sont trop grandes pour qu’un étrainuyptisse comprendre plei-
nement I'information que contiennent ces graphes. Ursatiiur peut comprendre rapide-
ment que des attaquants peuvent pénétrer dans le résestiessentiellement impossible
de savoir quels sont les privileges et les vulnéralsilif@i ont le plus d’importance pour les
attaguants. Les administrateurs de réseau ont besoirodtilrgui peut distiller la masse
écrasante d’'informations de facon a créer une listerttgifes qui les aidera a utiliser de
facon efficiente les ressources humaines et financieréeés.

Principaux résultats : Ce document présente une approche qui peut digérer atitoma
gquement les relations de dépendance dans un graphe dattagalculer I'importance
relative de chagque sommet sous forme de mesure numérigueesure numeérique évalue
a quel point les attaquants dépendent d'un privilege 'onedvulnérabilité pour lancer
leurs attaques. Notre algorithme est basé sur I'algoetRPageRank de Google, qui classe
'importance de pages Web. L'algorithme étendu s’appAlsetRank et la valeur qu'il
calcule indique la valeur d’un élément d’attaque (un s@nhdu graphe) pour un attaquant
potentiel.

Importance des résultats : Les résultats de nos expériences indiquent que le clasgem
des sommets calculé par notre algorithme correspond, ohi ge vue de la sécurité, a
I'importance relative des éléments d’attaque pour wemgiant. Le classement des éléments
peut &tre utilisé pour établir I'ordre de priorité destre-mesures, aider un lecteur humain
a mieux cerner les problemes de sécurité et fournir des&es d’entrée pour d’autres ou-
tils d’'analyse de la sécurité. Le classement varie s@sbiens particuliers qu’un attaquant
veut obtenir (et le désir de 'administrateur du system@ubtéger ces biens).

Travaux futurs : Nous aimerions explorer les facons d’incorporer des pésopération-
nelles et les cots de mises en ceuvre dans le calcul du classeleorte qu'un adminis-
trateur de systéeme pourrait utiliser le classement aibrau pour générer une marche a
suivre ou mettre en ceuvre automatiquement des mesures dsseanent de la sécurité.
Nous aimerions aussi mener des expériences sur des xésparationnels pour mieux

iv DRDC Ottawa TM 2007-205

comprendre les avantages et les limites de notre algorighoposé, et trouver des facons
de I'améliorer. Enfin, nous souhaitons voir comment il kgrassible de combiner les va-
leurs des facteurs de pondération pour les arcs et les stauereprésentent differentes
préférences, et, dans le méme ordre d’'idées, commsertalt possible de combiner Asset-
Ranks dans differents contextes.

DRDC Ottawa TM 2007-205 v

vi

This page intentionally left blank.

DRDC Ottawa TM 2007-205

Table of contents

Abstract e [
Resume |
Executive summary i
Sommaire e v
Tableofcontents Vil
Listof figures liv
Listoftables. IX
1 Introduction e 1
2 AttackGraphs 4
3 AssetRank 5
4 Interpretationof AssetRank e 10
5 EXperiments e 12
6 DISCUSSION e 18
7 RelatedWork 20
8 Conclusionand Future Work 22
References 3 2

DRDC Ottawa TM 2007-205 Vi

List of figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:

Figure 9:

viii

Anexamplenetwork oo 1
Attack graph for the network inFigure1 3
Vertices and arcs in a dependency attackgraph 5
Value flows to dependencieso 6
An example AND/OR dependencygraph 8
Experiment2,Scenariol 15
Attack graph for the Figure6network 16
Experiment2, Scenario2 o 17
Attack graph for the Figure 8network 18

DRDC Ottawa TM 2007-205

List of tables

Table 1:
Table 2:
Table 3:
Table 4:

Table 5:

AssetRanks withonly OR vertices

AssetRanks with AND and OR vertices

AssetRanks for the Figure 1 network
AssetRanks for the Figure 6 network

AssetRanks for the Figure 8 network

DRDC Ottawa TM 2007-205

10

13

15

19

This page intentionally left blank.

DRDC Ottawa TM 2007-205

1 Introduction

An attack graph is a mathematical abstraction of the deddifgossible attacks against a
specific network. Various forms of attack graphs have beepgsed for analyzing the
security of enterprise networks [1, 2, 3, 4, 5, 6]. Recentades have enabled computing
attack graphs for networks with thousands of machines [2E4En when attack graphs
can be efficiently computed, the resulting size and compyl@fithe graphs is still too large
for a human to fully comprehend, as has been pointed out byahakJajodia [7]. While a
user will quickly understand that attackers can penethet@étwork it is essentially impos-
sible to know which privileges and vulnerabilities are thestnimportant to the attackers’
success. Network administrators require a tool which catilldhe overwhelming amount
of information into a list of priorities that will help theno efficiently utilize scarce human
and financial resources.

The problem of information overload can occur even for sraakéd networks. The ex-
ample network shown in Figure 1 is from recent work by Ingatlal. [2]. Machine A is
an attacker’s launch pad (for example, the Internet). MahB, C, and D are located in
the left subnet and machines E and F are in the right subnetfifgwall FW controls the
network traffic between the two subnets such that the onbyvaiti network access is from
C to E and from D to E. All of the machines have a remotely explie vulnerability.

We applied the MulVAL attack graph tool suite [4] to the exdenpetwork. Figure 2
presents a visualization of the resulting attack graphainimg 50 vertices and 56 arcs.
Even for this simple scenario it is clear that the attack yrisplarge, cumbersome, and
difficult to read without magnification. Essentially, theftea@re vulnerabilities on hosts
C and D will enable an attacker from A to gain local privilegesthe victim machines,
and use them as stepping stones to penetrate the firewath whiy allows through traffic
from C and D. In this example, all the machines can potegtladl compromised by the
attacker, and all the vulnerabilities on the hosts can plagl@in those potential attack
paths. However, the vulnerabilities on C and D, and the pialecompromise of those

allow C > E
allow D > E

Figure 1. An example network

DRDC Ottawa TM 2007-205 1

two machines, are crucial for the attacker to successfudhefrate into the right subnet,
presumably a more sensitive zone. The attack graph producédulVAL does reflect
this dependency, but a careful reading of the graph is napgessunderstand which graph
vertices are the most important to consider. When the nétgiae grows and attack paths
become more complicated, it is insurmountably difficult fonuman to digest all the de-
pendency relations in the attack graph and identify key lprab in a reasonable amount
of time.

In order to make the information presented by attack grapdre msable, further analysis is
necessary to give guidance in system administration. ®usuivork has proposed various
analyses for attack graphs [3, 8]; however, we observe tustet analyses typically treat
all the vertices and edges in an attack graph equally. Usualtices in an attack graph
represent potential privileges attackers can obtain ararabilities they can exploit. Those
privileges and vulnerabilities are not equal from a segyaint of view. Some of them
are more crucial for the attacker because they are esstntla success of numerous or
critical attack paths and thus more attention should be foatidem. In the above example,
the vulnerabilities and privileges on machines C and D aresnmportant than those on
machine B since they enable the attacker to penetrate tivafir® reach the internal sub-
net. It would be useful if an automatic algorithm could rah& vertices in an attack graph
based on their relative importance to an attacker. The ngnid the vertices would bring
the fundamental threats to an administrator’s attentionekample, by trimming the at-
tack graph based on the numeric ranks of vertices. It costutzlp to prioritize mitigation
measures based on the criticality of privileges from anch#gs point of view. In reality
one cannot always eliminate all security threats. Undedstay the relative importance of
vulnerabilities is important in deciding upon the best seuof action.

This paper presents an approach which can automaticakstiige dependency relations
in an attack graph and compute the relative importance gdhgkeertices as a numeric
metric. The metric gauges the degree to which attackersndeypgon a privilege or vul-
nerability in their attacks. Our algorithm is based on the@e PageRank algorithm [9]
which ranks the importance of web pages. We adapted the Ragedgorithm so that
it suits the semantics of dependency attack graphs — a typtaifk graph whose edges
represent dependencies among attackers’ potentialggesl. The extended algorithm is
called AssetRank, and the value it computes indicates tlie wd an attack asset (a graph
vertex) to a potential attacker. Attack assets consistigli@ges, such as the ability to ex-
ecute code on a particular machine, and facts, such as tteese of vulnerable software.
We give a stochastic interpretation of AssetRank in theedrdf network attacks and con-
duct experiments on various network settings. The restiisioexperiments show that the
vertex ranks computed by our algorithm are consistent, fi@acurity point of view, with
the relative importance of the attack assets to an attadker.asset ranks can be used to
prioritize countermeasures, help a human reader to beitepehend security problems,
and provide input to further security analysis tools. Thekeaare affected by the specific
assets an attacker wishes to obtain (and a system admioistiesires to protect). It is

2 DRDC Ottawa TM 2007-205

L2
RULE 2 (22) : remote exploit of a server progia

RULE 5 (46)

1 L 1

Lo
RULE 5 (52) : multi-hop acces3
{ :
haci(e.,tcp.80)
RULE 2 (17) : remote exploit of a server progra
1 L
S P pre—— s |
RULE 5 (44) : multi-hop acces3
1 5
;
RULE 2 (7) : remote exploit of a server progra
3 1
‘ o tcp 0 [——— Escive
2 6 6
RULE 6 (59) : direct network acce: RULE 5 (32) : multi-hop access RULE 5 (36) : multi-hop access
S i 5
hacl(a,c,tcp,80)| execCode(b,serviceaccount hacl(b‘c.!cp‘ﬁu)‘ ‘hacl(d‘c‘[cp‘ﬁu)‘
4
RULE 2 (2) : remote exploit of a server progra
3 1 5
[wesssto wiasen ncscun] | S ;
RULE 5 (28) : multi-hop acces3 CRULE 6 (56) : direct network access RULE 5 (30) : multi-hop acces3
L i L 5 5
hacl(c,b,tcp,80)| hacl(a,b,tcp,80)| hacl(d,b,tcp,80)| execCode(d,serviceaccount
i
RULE 5 (38) : multi-hop acces3 C_RULE 6 (61) : direct network access RULE 5 (40) : multi-hop acces3
1 L L
attackerLocated(a) ‘ hac\(b‘d.lcp‘so)‘ hacl(a,d,tcp,80) hacl(c,d,tcp,80)|

Figure 2: Attack graph for the network in Figure 1

DRDC Ottawa TM 2007-205

muli-hop acces3

hacl(d.etcp.80)

similar to Google which presents a user with an ordered figsteb pages based upon the
structure of the World Wide Web and their relevance to the'sisearch terms. AssetRank
presents a user with an ordered list of attack assets basedtlp structure of the attack
graph and their relevance to an attacker’s goal.

2 Attack Graphs

There are basically two types of attack graphs. In the fingétyeach vertex represents
the entire network state and the arcs represent state transitiongadysan attacker's
actions. Examples are Sheyner’s scenario graph based oel wloetking [10], and the
attack graph in Swiler and Phillips’ work [11]. This type dtack graph is sometimes
called astate enumeration attack graph [7]. In the second type of attack graph, a vertex
does not represent the entire state of a system but rathetensgondition in some form
of logical sentence. The arcs in these graphs represenatisality relations between the
system conditions. We call this type of attack graplegendency attack graph. Examples
are the graph structure used by Ammaal. [1], the exploit dependency graphs defined
by Noelet al. [3, 7], the MulVAL logical attack graph by Ouet al. [4], and themultiple-
prerequisite graphs by Ingolset al. [2].

The key difference between the two types of attack graphitighe semantics of their
vertices. While each vertex in a state enumeration attaggtgencodes all the conditions

in the network, a vertex in a dependency attack graph enadexg)le attack asset of the
network. A paths; — s; — s3in a state enumeration attack graph means that the system’s
state can be transitioned from to s, and then tos; by an attacker. But the condition
that enables the transition — s3 may have already become true in a previous state, say
s1. The reason the attacker can get to stgtes encoded in some state variables:inbut

the arcs in the graph do not directly show where these camditwere first enabled. In

a dependency attack graph, however, the dependency redaimong various assets are
directly represented by the arcs.

For example, Figure 3 is a simple dependency attack graple v&hicesp, ..., p5 are
assets to an attacker and e, are exploits an attacker can launch to gain privileges. The
arcs from a vertex in a dependency attack graph can form otveodbgical relations: OR
or AND. An OR vertex represents conditions which may be ezdbly any one of its out-
neighbours. An AND vertex represents an exploit in the &tgaph requiring all of the
preconditions represented by its out-neighbours to be meir figures we use diamonds
to symbolize OR vertices, ellipses to symbolize AND versicand boxes for sink vertices
where there is no out-neighbour. The dependency attackgrapigure 3 shows that
attackers can gain privilegg through one of two ways. They can launch expiqiif all

of the conditiong, p, andps are true. Or they can launch expleitif conditionsp; and

p4 are true. Each of the conditions, ..., p, could be some other privilege the attackers
need to gain first, or some configuration information suchhaseixistence of a software

4 DRDC Ottawa TM 2007-205

vulnerability on a host.

2
OO

D1 D2 D3 D4

Figure 3: Vertices and arcs in a dependency attack graph

In this paper we have chosen to use dependency attack gr@pingjoal is to compute a
numeric value representing the importance of each attasst & an attacker and as such
the semantics of dependency attack graphs are better guitibis purpose. Intuitively, the
more a vertex is depended upon, the more important it is tdatanker. This is analogous
to PageRank’s use in the World Wide Web where the more the wpbrdls upon a page
(evidenced by links to it) the more important the page is.

3 AssetRank

Internet web pages are represented in a directed graphisweseatalled aveb graph. The
vertices of the graph are web pages and the arcs are URL [iiflesPageRank algorithm
[9] computes a page’s rank not based on its content, but olinthstructures of the web
graph. Pages that are pointed to by many pages or by a few tampgrages have higher
ranks than pages that are pointed to by a few unimportansp&géhis paper, we introduce
AssetRank, a generalized PageRank algorithm, to handleaticaus semantics of vertices
and arcs that may appear in an attack graph. Most importaht#ymodifications allow
AssetRank to treat the AND and OR vertices in an attack graprectly based on their
logical meanings. We also incorporate arc and vertex weighthat we can use the weights
as input parameters to express the attacker’s targetsetiadility of an attacking action,
and other relevant information that could affect the ragki vertices. The AssetRank
algorithm could be applied to any graph whose arcs represene type of dependency
relation between vertices [12]. In fact, web graphs can leeved as a special case of
dependency graphs since a web page’s functionality in ggo#lds on the pages it links
to. The original PageRank algorithm can be seen then as &bpase of the AssetRank
algorithm where all the vertices are OR vertices and all #réices and arcs have the same

DRDC Ottawa TM 2007-205 5

weight?! In this section we introduce the AssetRank algorithm in thetext of dependency
attack graphs.

A dependency attack graghcan be represented &= (V, A, f, g, h) whereV is a set of
vertices; A is a set of arcs represented(asv), meaning that vertex depends on vertex
v; f is a mapping of non-negative weights to vertices where &t leae vertex weight
must be positivey is a mapping of positive weights to arcs; ants a mapping of vertices
to their type (AND or OR). Theut-neighbourhood of a vertexv, denotedN*(v), and
in-neighbourhood of v, denotedV ~(v), are the following two sets.

Ntw)={weV: (v,w)e A} (1)
N (v)={ueV:(uv)e A} . 2

The cardinality of a seX is denoted X | and its L1-norm is denoteldlX ||;. Without loss
of generality, we require the set of all vertex weig}it$’) to sum to 1, and the sum of arc
weights of a vertex to be

_)L if h(v) =OR
we%;(v)g(vyw) - {|N+('U)|, if h('U) — AND (3)

except when is a sink in which case the sum will be 0.

The intuition behind AssetRank is that each vertex is assediwith a value that is a nu-
meric representation of its importance. Part of this valuaes from the vertex itself, and
part of it comes from other vertices that depend upon it. Weigggine that a portion of
a vertex’s value “flows” to its out-neighbours, which aretiass it depends upon. Con-
versely, a vertex receives value from its in-neighboursctviare its dependents. The flow
of value is depicted in Figure 4 where the colour of the vemelcates its value (darker
vertices have higher value). Verticesandu, in the left cluster have an average value.
Since they both depend an, some of their value is transferred to it andg® value is
increased. The vertex in the right cluster has a higher value thansince one of its
dependentsy,, has a high value. If we imaging, ..., vg to be an attacker’s privileges, then
privilege vg iIs more important to the attacker thanbecause can enabley,, which is
very important to the attacker.

N N

Figure 4: Value flows to dependencies

IWe assume the current ranking algorithm used by Google ihwmare complicated than the original
PageRank algorithm and may have features in common with ssetRank algorithm.

6 DRDC Ottawa TM 2007-205

It is insufficient though to consider only the dependencagtrehs in determining a vertex’s
value. For example, i, represents the privilege of “execute arbitrary code as ooot

a database server,” angl is the privilege of “execute arbitrary code on a user machine
thenu, is likely to be more important to both administrators andekers than,. We use
vertex weights as amtrinsic value to represent a vertex’s inherent value. Thus, the value
of a vertex consists of two parts: its intrinsic value, anel ¥alue that flows to it from its
dependents. For the sake of simplicity we assume for the mothat all vertices in the
graph are OR vertices. The following equation computesdhk:r, of a vertexw:

Ty = 0 Z g(uv U)xu + (1 - 5)f(’U) (4)

ueN~(v)

The variables is called thedamping factor and its purpose is to set the contribution ra-
tio of a vertex’s in-neighbours’ rank values versus itsiitgic value to the vertex’s final
rank valuer,. The intrinsic value of vertex is given by f(v); in the original PageRank
algorithm, f(v) = 1/|V|. Each ofv's dependents contributes a portion of its value to
v's value. In the original PageRank algorithm, the portioedgially distributed over all
the out neighbours of a vertex, that igu, v) = 1/|N*(u)|. In the AssetRank algorithm,
g(u,v) could be any value in the range@, 1]. This is useful in practice since a vertex may
not depend on all its out neighbours equally and the portianv) can indicate how much
vertexu depends om compared with its other enablers. We assemblertfgeinto a vec-
tor X and theg(u,v)’s into a weighted adjacency matrix such thatD,, = g(u,v).2 If
(u,v) € Atheng(u,v) = 0. We also put all the vertices’ intrinsic values into an ingic-
value vectorl V' = f(V'). Then the ranks of all the vertices is the solution to theofeihg
linear system.

X =6DX + (1 =01V (5)

The above linear system can be solved using the Jacobi mbghiberating the following
sequence.

X, =6DX, 1+ (1-68)IV (6)

It has been shown [13] that for the type of transition mafvixve have discussed so far,
such sequences always converge to the solution of the lystam (5) for any initial value
Xo, provided that) < § < 1. We useX, = IV.

2By abuse of notation we useandv in D,,, to represent the column and row indices corresponding to
the respective vertices.

DRDC Ottawa TM 2007-205 7

Up to this point, we have limited our discussion to OR-vereaphs where each vertex
can be satisfied by any of its out-neighbours. Many graplse ami practice (in particular,
dependency attack graphs) which also have AND vertices. KD A&ertex depends oall

of its out-neighbours. For example, an OR-vertex would Eue represent an attacker
gaining network access to a host by any one of five connectad.héin AND vertex would
be used to represent an attacker exploiting a vulneraltilayrequires the combination of
account access and a vulnerable program.

Since any of an OR vertex’s out-neighbours can enable iy, Wik split its value, as ex-
pressed in (3) and (4). As the number of out-neighbours asa®, the importance of each
out-neighbour decreases since the vertex can be satisfeuytiyne of them. This reduced
dependency is not true of AND vertices. Since all the outfneours of an AND vertex
are necessary to enable it, it is intuitively incorrect tesken the amount of value flowed to
each out-neighbour as their number grows. This can be setimlen example.

vuly vuly vuls vuly

Figure 5: An example AND/OR dependency graph

In the dependency graph shown in Figure 5, attackers reglitie goalp; depend upon
their ability to obtain both privileges, andps. p, is an AND vertex and it requires two
vulnerabilitiesvul; andvuls. p3 is an OR vertex and it requires only one of eitheis

or vuly. In this example we assume all the arcs have the same weifjbhelwere to
rank the importance of the four vulnerabilities, it is laglithat the ranks fovul; andvuls,
should be different than those ofil; andvuls. Sincevul, andvul, are both necessary
for an attacker to achieve his gaal, they should be more important than eithervafs
andvuly. For example, ifouls is patchedpul, could still enable an attacker to obtain
p3. However, if we patchuly, this would break the attack chain pg andp; will not be
achievable. Thus in ranking the vertices, we would expettthlues fowul, andvul, will

be higher thamul; andvul,. However, if we do not treat AND and OR vertices differently
in D, after applying the computation given by (6) we would gentitzal values for all of
vuly, ..., vuly. We apply AssetRank in a PageRank style so that all vertimeg@ated as
OR vertices, withh = 0.85 and/V set up so that only the goal vertgx has a non-zero
intrinsic value. The sequence converges after four it@natand, not surprisingly, all the
vulnerabilities have the same rank as presented in Table 1.

8 DRDC Ottawa TM 2007-205

Table 1: AssetRanks with only OR vertices

Vertex | Rank x 102
D1 38.873
Do 16.521
D3 16.521
vuly 7.021
vuly 7.021
vuls 7.021
vuly 7.021

Hence, rather than splitting the value of an AND vertexregicateit to its out-neighbours.
Each out-neighbour of an AND vertex receives the full valugerf the vertex multiplied
by 6. That is, for every outgoing edge:, v) from an AND vertexu, the corresponding
entry D,, is 1. This is the basis for the restriction on AND-vertex areigits given in
Equation (3).

With this extension for AND vertices, the sequence (6) wallonger converge in general.
Since the columns i corresponding to AND vertices may sum to a value greater than
one, the L1-norm ofX; would increase indefinitely. However, the actual valuesasfives

are not important in ranking the vertex. What matters isrthelative values with one
another. Thus we normalize the vecfor at each iteration and the computation becomes:

Step 1.X] = 6DX, 1 + (1= §)IV 7)
1
Step 2:X;, = ——X| (8)
CIXRT

In our experience, the above sequence has always convétgeever, we have not found

a mathematical proof that it will always reach an equilibripoint. In the next section,
we give an interpretation of the above sequence in the cbafettack graphs and show
that when the sequence converges, the resulting valuesatedihe importance of each
vertex to an attacker. For safety, in our implementation exeelset a maximum number of
iterations so that the algorithm will terminate if the segeedoes not converge within this
limit. Table 2 displays the result of applying the above aliyon to the dependency graph

in Figure 5. The same values foand/V" are used and the computation converges after 38
iterations. The computation time is less than a second forf &he experiments presented
in this paper.

The new algorithm gives the expected relative importancéiefour vulnerabilitiesvul,
andvul, are more important thamu/; andvuly.

3The matrix D with only OR vertices can be converted to a stochastic mainik Markovian-process
theory guarantees an equilibrium point can be reachedr &feeintroduction of AND vertices the matrix is
no longer stochastic.

DRDC Ottawa TM 2007-205 9

Table 2: AssetRanks with AND and OR vertices

Vertex | Rank x 102
D1 17.219
Do 16.801
D3 16.801
vuly 16.393
vuly 16.393
vuls 8.197
vuly 8.197

4 Interpretation of AssetRank

In this section we describe a stochastic interpretatioiferumeric value computed by
AssetRank on dependency attack graphs. Stochastic iatation has been used to give
PageRank, which can be seen as a special case of AssetRakaate meaning in a
“random walk” model [9, 13]. A random walker surfs the webphran the following man-
ner: At each time interval, with probabilityit will follow one of the links in the current
page with equal probability; with probability — ¢ it will “get bored” and jump to one
of the pages in the web graph with equal probability. Unde ithterpretation, the equi-
librium point of sequence (6) will be the probability a ramdsurfer is on a pagé.This
random-walk model cannot be applied to dependency attagbhgr primarily because it
does not handle AND and OR vertices differently. In this isgctve give an interpreta-
tion of AssetRank that provides meaningful semantics irctiregext of dependency attack
graphs.

Our interpretation is inspired by the model used by Bianichiral. [13]. Imagine a po-
tential attacker has the attack grajmd is planning how to attack the system. He does so
by dispatching an army of “attack planning agents” whosk is$o learn how to obtain
the privileges represented by the vertices. Every ageravashin the following manner: at
each moment an agent considers only one vertex in the attapk gWe use;(¢) to denote

the vertex agentis contemplating at time. If v;(¢) is a sink vertex, agernthas finished

his job and stops working. Otherwise he will, with probalilh, plan how to satisfy the
requirements fop;(¢) based on the attack graph; with probability- ¢, he will decide to
obtain the privilege;(¢) through other means not encoded in the attack graph (for-exam
ple, through backdoors already installed in the system ciakengineering). In the latter
case, the agent has also finished his planning and stopsngorki

Letv;(t) = v. With probabilitys the agent uses the attack graph and follows the out-going

4An additional step is needed to convert the mafdixo a stochastic matrix by compensating for the lost
value due to dangling pages [13].

5In reality an attack graph should never be leaked to an atabkwever, in evaluating security we need
to assume that the attacker has the same information resoasdhe defenders.

10 DRDC Ottawa TM 2007-205

arcs fromwo to satisfy its preconditions. Two cases need to be congiddfey is an OR
vertex, the agent will choose one of its out-neighbaussith the following probability.

Privi(t+1)=w]|v(t) =v]=g(v,w) 9)

If vis an AND vertex, the agent must plan how to satefythe out-neighbours af. Thus
he must move along all the out-going arcs simultaneouslymd@el this by allowing the
agent to replicate itsélfwith each replica moving to one of the out-neighbours indepe
dently. More precisely, at step+ 1 agent: will becomer = |N*(v)| agentsiy, ..., i,
each of which is assigned one of the verticesvVin(v) so that every element iN*(v) is
covered.

The potential attacker has an unlimited number of such agrttis disposal. Every time
he dispatches an agent to a vertex in the attack graph, thm agktry to find a way to
attack the system such that the goal represented by thangtagrtex can be achieved.
When the agent (and all his clones) finishes the job, an atikeckhas been made. Each
time he may find a different attack path due to the probalulitoices he makes along
the way. At each time interval, the potential attacker wigjghtch new agents and the new
agents will start from one of the graph vertices with the atmlity distribution specified
by IV. The number of new agents (i$ — ¢) times the number of active agents currently
in the system.

Letthe vectorX; = [X}, ..., XtW']T whereX/ is a random variable representing the number
of active agents planning an attack for verteat timet. E(X}) is the expected value of the
random variableX?. We useE(X;) to representE(X}), ..., E(X"N|T. Let E(X,) = IV
which corresponds to the attacker dispatching the firsttagesording to the probability
distribution given byl V. The following equation then holds for> 0.

B(X,) = 6DE(Xi1) + (1 — 8)||E(X—0) | IV (10)

After normalization, this is exactly the same sequence asdigquence specified by Equa-
tions (7) and (8). Since an agent will replicate itself at adDAvertex, || E(X;)||; grows
indefinitely; however, the relative ratio of eaéh X}) with respect to£(X;) may reach
an equilibrium point. If the normalized value &f(X;) stabilizes ag — oo, the Asset-
Rank value computed by the sequence specified in Equatipasd/8) will represent the
portion of active attack planning agents on each vertexarattack graph.

Under this attack-planning-agents interpretation, adigkssetRank value for a vertex in-
dicates there will be a larger portion of planning agentsalisring how to obtain the asset
represented by the vertex. Thus AssetRank directly imghiesmportance of the privilege
or vulnerability to a potential attacker. The arc weiglit, w) indicates the desirability

5Analogous to the UNIX or k() command.

DRDC Ottawa TM 2007-205 11

of the attack stepv, w) with respect to achieving the capability since a highep (v, w)
means a planning agent will be more likely to choasasv’s enabler. A vertex’s intrinsic
value represents the desirability of the privilege to aacker. A higher intrinsic value in-
dicates the attacker is more likely to dispatch a plannirenatp determine how to achieve
the goal. A higherl — § indicates the attacker is more likely to gain privilegest‘ofi
band” and thus does not need to follow the attack graph. ¢ also indicates the rate at
which the attacker dispatches new agents.

5 Experiments

In this section we present several experiments we condtetddy 1) whether the Asset-
Rank algorithm gives ranking results consistent with thpantance of an attack asset to
a potential attacker; and 2) how to use the AssetRank valbetter understand security
threats conveyed in a dependency attack graph, and to chppsepriate mitigation mea-

sures.

In our experiments, we use the MulVAL attack-graph toole(4] to compute a depen-
dency attack graph based upon a network description and gusey. For example, a user
may ask if attackers can execute code of their choosing orsamwer. The attack graph
is exported to a custom Microsoft Access database appitaihe database application
uses SQL queries and VBA code to normalize the input data amguote the AssetRank
values.

We make the assumption that the attacker prefers shoremkapaths, and we set the
weights of out-going arcs from an OR vertex to indicate thisfegrence. In an AND/OR
dependency attack graph, attack path to satisfy a vertexv is a tree sub-graph rooted at
w in which every non-leaf OR vertex has exactly one child fréwa original graph, every
non-leaf AND vertex has all the out-neighbours in the odigraph, and every leaf-vertex
is a sink vertex in the original graph. The length of this éittpath is the maximum depth
of this tree. By performing a standard depth-first-searah compute for every vertex in
the graph the length of the shortest attack path to satishoit an OR vertex, we assign
the weight for an out-going ar@, w) as follows. Ifm,, is the length of the shortest attack
path satisfyingu, then the length of the shortest attack path satisfyiapng the ar¢v, w)

is m,, + 1. The arc is assigned a weight bf(m,, + 1) where we chose the exponent to
reflect the degree of bias against long attack paths. We thenatize the weights among
all the out-neighbours from an OR vertex and the result isjthew) parameters in the
AssetRank algorithm.

We first demonstrate the results of applying AssetRank tattaek graph for the example
network in Figure 1. In this example we assign equal intdnaiue to all the vertices in the

"The weights could also be used to assume other prefererzieasthe desirability of simple or complex
attacks. This notion is discussed in more detail in Section 6

12 DRDC Ottawa TM 2007-205

attack graph, indicating that the attacker is interestedl ithe assets equally. In a MulVAL
attack graph, each vertex is associated uniquely with aébgentence in the form of a
predicate applied to a number of parameters, describingtarkeasset. Table 3 shows the
AssetRank values for some of the interesting MulVAL-getextattack graph vertices. For
this example, AssetRank took 39 iterations to converge.

Table 3: AssetRanks for the Figure 1 network

Vertex Rankx 102
execCode(c,serviceaccount) 2.857
execCode(d,serviceaccount) 2.857
execCode(e,serviceaccount) 1.619
execCode(b,serviceaccount) 1.587
execCode(f,serviceaccount) 0.343
hacl(a,d,tcp,80) 3.279
hacl(a,c,tcp,80) 3.279
hacl(a,b,tcp,80) 2.354
hacl(d,e,tcp,80) 1.715
hacl(c,e,tcp,80) 1.715
hacl(e,f,tcp,80) 1.619
hacl(c,d,tcp,80) 0.965
hacl(b,d,tcp,80) 0.965
hacl(d,c,tcp,80) 0.965
hacl(b,c,tcp,80) 0.965
hacl(d,b,tcp,80) 0.862
hacl(c,b,tcp,80) 0.862
VulEXxists(c,...remoteExploit,privEscalation) 3.372
VulEXxists(d,...remoteExploit,privEscalation) 3.372
VUlEXists(e,...remoteExploit,privEscalation) 2.203
VUlEXxists(b,...remoteExploit,privEscalation) 2.174
VUlEXxists(f,...remoteExploit,privEscalation) 0.999

In Table 3, we group vertices with the same predicate togetiaging it easier to compare
the relative importance of privileges within the same catgg For example, the vertex
“execCode(d,serviceaccouritlias a value of 0.02857. Another privilege in the same ex-
ecCode category, “execCode(b,serviceaccount)”, onlyahesue of 0.01587. Intuitively
this is correct because while both machines B and D are abted#ectly by the attacker
from A, machine D could enable the attacker to directly pextetdeeper into the right sub-
net while machine B can only do so indirectly through C or Du3the compromise on D

8Meaning the attacker can have code-execution privilegses‘serviceaccount” on machine “d”. Mul-
VAL is implemented in Datalog which requires that the firgtde of a constant be lowercase; however, we
will use uppercase for machine names outside of predicates.

DRDC Ottawa TM 2007-205 13

is more serious. For the same reason, a software vulnéyadmlimachine C or D is more
valuable to an attacker than one on machine B, as shown byatikeng in the “vulEx-
ists” category. The AssetRank values in this example indieasoftware vulnerability or
a machine compromise that can enable more penetrationgé&valuable to the attacker,
which is what we expected. Machines whose compromise antesabilities are ranked
higher should be given priority consideration for secuhiydening, such as patching and
installing Intrusion Detection System (IDS) devices.

In MulVAL, a tuple “hacl(H1, H2, Protocol, Port)” means “maoe H1 can initiate a net-
work conversation to machine H2 through Protocol and Patiost Access Control List
(HACL) tuples are high-level abstractions of the effectmefwork traffic-control devices
such as firewalls, routers, and switches, whose settingstarayadministrator can modify.
The ranking of the HACL predicates demonstrates the effestiss of AssetRank. The
removal of the first two HACL predicates requires the attackdaunch a more compli-
cated attack since then he must take the extra step of exl@t The removal of the first
three HACL predicates eliminates the entire network attdtkny of those three HACL
predicates are not removed then the attacker has an entmg teetwork and the best we
can do is save the two machines in the right subnet. Remokmpurth and fifth HACL
predicates will do precisely that. Finally, if the first fivédBL predicates are left intact the
only machine that can be saved is F which can be accessecxafteiting E. AssetRank
has predictably ranked the HACL predicate from E to F as tkkémest important. We see
that the AssetRank values correctly reflect the importafhoevork routes to an attacker,
and thus identify the routes whose removal would be most&fiein protecting machines
in the network. All machines in this example were given eqgutainsic value which corre-
sponds to the goal of protecting as many machines as pos3indeAssetRank values for
the HACL tuples are consistent with this goal.

The second experiment is adapted from an example in a tedheort by Lippmanret

al. [14]. In this example, we demonstrate how AssetRank may bd tessuggest courses
of action. Figure 6 presents a network with a web serverpdaserver and user desktop.
Each of the two servers has a remotely exploitable vulngalbeésulting in a privilege
escalation. The user desktop has a browser vulnerabilitghwis exploited if the user is
lured to a maliciously crafted website. Attackers are ledabtn the Internet and in this
scenario we assume their most important goal is gainingsadoethe database server.

Since the attackers’ main interest is the database seneegive the attack graph goal
vertex “execCode(databaseServer, orader)” an intrinsic value equal to 15% of the total
and the remaining 85% is distributed evenly among the reimgivertices to reflect the
attackers’ side interest in attaining any privilege.

Figure 7 displays the attack graph for this scenario. Theoes have been coloured ac-
cording to their AssetRank values with colours ranging freshto blue. Red vertices have
a high AssetRank value and blue vertices have a low AssetRalok. Table 4 shows the

14 DRDC Ottawa TM 2007-205

5\5 Database Server
Rout A (Attacker Goal)
outer NG
Internet > Web Server S '
User Desktop - Internet
Web Server

&
7
Attacker (Internet)

User Desktop

S

Figure 6: Experiment 2, Scenario 1

Table 4: AssetRanks for the Figure 6 network

Name Rank x 102

execCode(userDesktop,joeAccount) 3.357
execCode(databaseServer,oracser) 2.764
execCode(webServer,system) 2.575
hacl(userDesktop,attackerHost,tcp,80) 4.659
hacl(attackerHost,webServer,tcp,80) 3.708

hacl(userDesktop,databaseServer,tcp,1521) 2.575
hacl(webServer,databaseServer,tcp,152[1) 2.575

hacl(userDesktop,webServer,tcp,80) 1.285
vulExists(userDesktop,browseulid,...) 4.039
vulExists(databaseServer,oraeidlid,...) 3.499
VulExists(webServer,iisulid,...) 3.327

AssetRank values in some of the vertex categdriesthis example we would like to focus
on the categories that represent configuration optionsgshrese will be conditions a sys-
tem administrator can change to mitigate the threats. Taelland “vulExists” predicates
are two of these categories. The highest-ranked HACL is és&tdp machine’s ability to
access the Internet (“attackerHost”), followed by the asi#lity from Internet to the web
server. It may seem counter-intuitive that out-bound netwaacess, typically deemed less
harmful, is ranked higher than the inbound access to the weleis This is because the

9The algorithm required 44 iterations to converge.

DRDC Ottawa TM 2007-205 15

execCode(databaseServer,oracle_usery——

RULE 2 (2) : remote exploit of a server progia

‘Ovacle,lcp,liﬁdlm,usev)‘ ‘W\Ex\sls(dalahaseServer,oracle,vuhd‘cracle,veﬁmhn‘pnvEscalanon)

execCode(userDesktop,joeAccount hacl(attackerHost webServer.tcp,80)

RULE 3 (18) : remote exploit for a client progran

) 0))

Figure 7: Attack graph for the Figure 6 network

out-bound access, along with the user’s browser vulnetgliiiakes it possible for the user
to fall victim to a malicious website that exploits the br@wvsulnerability, and as a result,
attackers can gain a flexible foothaltside the corporate network. The desktop gives two
paths to the database server — it can exploit the servertlyiat can launch a two stage
attack through the web server. By exploiting the desktajachers gain everything they
would by exploiting the web server plus additional capélesi.

It may be tempting to think that the best course of actionaskihg the top-ranked HACL
predicates. In reality, however, neither of the top two HA@Edicates can be removed due
to the business needs of user desktop access to the Intedheeb server availability from
the Internet. We then consider the next two most importan€EHAredicates: the desktop
and web server’s ability to directly access the databaseserhis time it is possible to
remove the route from the desktop machine to the databagerssince an ordinary user
does not need to have direct access to the database serveanWeen propose the course
of action of putting the desktop machine into a separateetudomd blocking access from
the subnet to the database server in the router configuration

The “vulExists” category shows that the vulnerability ore thesktop machine is more
important than the one on the database server, which is mmrertant than the one on the

16 DRDC Ottawa TM 2007-205

web server. We can see that this assessment is correct Becerhpromise of a desktop
machine is more valuable to attackers, as discussed abmee tBe target is the database
server, and the web server is not necessary in this scetiagiojeb server vulnerability is
less important than the database server vulnerability.

While it is tempting to simply recommend that all organieas keep their software fully
patched, this is not realistic in an enterprise environrfard number of reasons. First, itis
extremely expensive and time consuming to roll out a pateHange network; furthermore,
patches may not be immediately available and, once theyelgased, they must be tested
against the organization’s baseline before being deploggetond, business needs might
favour uptime over security and so patches are not applisd@sas they are released (and
tested) but are applied on a patch cycle. Third, patches i@@&céive security measure and
organizations are often better protected if they can mattatactural changes that mitigate
the consequences of an attacker exploiting a vulnerabiifitthis scenario we assume that
it is not realistic to keep the desktop machines fully padched that the vendors have not
yet provided workable patches for the server software.

Thus the only course of action available is the architettirange to the network topology
described above. We would like to evaluate how effective pinoposed change will be in
mitigating the threats. This can be done by simulating thve cenfiguration in MulVAL
and computing a new attack graph based on the suggestedeshang

Router Subnet: Internall
Internet > Web Server

Database Server

Web Server - Database Server (AttaCker Goal)
User Desktop > Web Server
User Desktop = Internet
Subnet: DMZ Web Servel'
N
7

Attacker (Internet)

Q User Desktop
Subnet: Internal2 Q

Figure 8: Experiment 2, Scenario 2
Figure 8 illustrates the new network configuration. The ldasa server has been placed

into the subnet Internall and is only accessible from the sexlser. The user has been
placed into the subnet Internal2 and she has access to theemedy and the Internet. The

DRDC Ottawa TM 2007-205 17

web server is in the subnet DMZ and is still accessible froelttiernet. The MulVAL-
generated attack graph on the new scenario is coloureddingdo the AssetRank values
in Figure 9. The intrinsic value and arc weights are assigrseldefore. Table 5 gives the
new AssetRank values for the new attack graph. The valuésaitedthat in the changed
configuration, the vulnerability and privileges of the welv&r become the most valuable
assets for the attacker. The reason is that the attackemmwstompromise the web server
to reach the database server. The new configuration is ls@tta now only a single entry
point is presented to the attacker. If the web server vubiktyais patched, the only attack
path to the database server is eliminated. Furthermoresytbiem administrator likely
monitors the web server much more closely than the individesktop machines.

execCode(databaseServer,oracle_usery—

RULE 2 (9) : remote exploit of a server pro

1

8
7
netAccess(databaseServer,tcp,15:
6
1

1

networkServicelnfo(databaseServer,oracle,tcp,15adl® user)|

WulExists(databaseServer,oracle_vulid,oracle,refqieit, privEscalation)

RULE 5 (28) : multi-hop acce:

| tcp, 15+21 execC

2

RULE 20 (19) : Browsing a website

1 iy

‘ hacl(userDesktop attack tcp, J‘m

; weiod] [Deskiop feio) b

Figure 9: Attack graph for the Figure 8 network

6 Discussion

From the experiments in the previous section, we can makeralesbservations. First,
the value given by the AssetRank algorithm is consistertt thie logical importance of a

18 DRDC Ottawa TM 2007-205

Table 5: AssetRanks for the Figure 8 network

Name Rank x 102
execCode(webServer,system) 4535
execCode(databaseServer,oracser) 2.839
execCode(userDesktop,joeAccount) 1.566
hacl(attackerHost,webServer,tcp,80) 5.513
hacl(webServer,databaseServer,tcp,15321) 4.535
hacl(userDesktop,attackerHost,tcp,80) 3.431
hacl(userDesktop,webServer,tcp,80) 1.566
VulExists(webServer,iisulid,...) 5.297
VulExists(databaseServer,orasaid,...) 3.717
vulExists(userDesktop,browseulid,...) 2.531

privilege or misconfiguration. For example, in Table 3 we shat the highest-ranked ver-
tices for the “execCode” category are those for machinesdXarkEliminating execCode
entries for those two machines is critical to the goal of @ctihg the largest number of
machines. The logical correctness of the ranks is espg@uidtient in the ordering of the
HACL predicates.

Second, simply applying AssetRank to an attack graph isufétient in itself to produce
the best course of action. Input relating to business naatis@sts is also required to arrive
at the same course of action that a human would select. Asrshothe second experi-
ment, the two highest-ranked “hacl” tuples are those thadtrba there to meet business
needs. This indicates that AssetRank can also be used to adhainistrator in the reverse
task of ensuring legitimate access to servers. For examApgetRank can reveal the most
important communication paths, software, and hardware tgsdeliver the business’s pri-
orities. Security hardening costs must also be factoreBonexample, the highest-ranked
“vulExists” tuple represents a vulnerability that cannetdasily patched due to manage-
ment burdens. If the system does not integrate business m@edimplementation costs,
the administrator must manually determine the course admethile using the AssetRank
values as a guide.

As a standalone tool, a very useful aspect of AssetRank isdheext of attack graphs is
to assist in prioritizing further analysis and understagdf the threats. One can imagine
using AssetRank to incrementally show the vertices in aacktgraph, with the highest
ranked vertices shown first followed by the lower-rankedsona the limited number of
experiments we conducted, the highest-ranked vertices algrays the most important.
Administrators can work through the ranked attack graphesking the threats in order of
their criticality. Since the full attack graph is often toonsbersome for a user to under-
stand, this type of incremental analysis should be usefptactice.

DRDC Ottawa TM 2007-205 19

Providing a well-founded semantic model is important torgagee that computed numeric
metrics are consistent with the assessments of real woplerex Having said that, every
model has limitations and cannot completely capture seadlissetRank shares a limitation
with PageRank that arises due to an assumption made in disestoc interpretation. The
attack planning agent in our model, like the random walkethen PageRank model, is
Markovian. This trait means the agents are memoryless aselthair decisions solely on
the current vertex and the weight of the out-going arcs. deplanning agents do not take
into account the vertices they have previously traversednvthey decide how to obtain
future privileges. This assumption is valid if the attaclgm does not contain cycles;
however, when cycles exist, attack planners will not puepoavoid looping. Since the
process is Markovian, agents will not recognize if they aagdrsing a path which they
have already investigated. The result is that the vertieesived in a cycle accumulate
disproportional rank values, much the same way that cyoleseb page communities will
make the PageRank of the involved web pages disproporétyniaigh. We mitigate this
effect by using the arc weights to reflect the shortest patfatisfy a vertex. The vertices
that produce loops in an agent’s traversal inevitably halenger satisfaction path, and
thus will be less desirable to attackers. Due to this appraac AssetRank algorithm is
still able to give appropriate rankings, even when the &ttgaph contains cycles.

Arc weights are a flexible instrument that allow the user tetattacker preferences into
account. In our paper we used the weights to favour shortlafiaths over long ones.
Alternatively, the metric can be used to denote other atthekacteristics.

e Stealthiness of an attack — allows the inclusion of IDSs mmiodel by giving a
high penalty for attacks leaving evidence (log entries steay crashes for example)
or detectable attacks over links monitored by an IDS.

e Resources required — gives the ability to penalize resotmosuming attacks (for
example, attacks that require password cracking or largdvaiath).

e Complexity — attacks executable by amateur attackers wih edeveloped tools
could be given a higher priority than theoretical attacksatacks that only have
proof-of-concept code available.

7 Related Work

Mehtaet al. apply the Google PageRank algorithm to model-checkingdbattack graphs
[15]. Aside from the generalization of PageRank presemteklis paper, the key difference
from their work is that AssetRank is applied to dependentachtgraphs which have very
different semantics from the state enumeration attackgrgpnerated by a model checker.
First, a vertex in a dependency attack graph describes idegevattackers use or a vulner-
ability they exploit to accomplish an attack. Hence rankangertex in a dependency attack

20 DRDC Ottawa TM 2007-205

graph directly gives a metric for the privilege or vulnetdjai Ranking a vertex in a state
enumeration attack graph does not provide this semantics sivertex represents the state
of the entire system including all configuration settingd attacker privileges. Second, the
source vertices of our attack graphs are the attackerss g@abpposed to the source vertex
being the network initial state, as is the case in the work ehidet al. Since the attackers’
goals are the source vertices, value flows from them and timpated rank of each vertex
is in terms of how much attackerged the attack asset to achieve their goals. Thus our
rank is a direct indicator of the main attack enablers andrevBecurity hardening should
be performed. The rank computed in Mebtal.’s work represents the probability a ran-
dom attacker (similar to the random walker in the PageRan#tef)as in a specific state,
in particular, a state where he has achieved his goal.

It is important to distinguish between the probability thatattacker is in a stateirrently
and the probability he can reach the statentually. The rank computed in Meh#& al.’'s
work is the former, not the latter. In reality, an attackethvd target in mind will always be
able to reach the goal states in the attack graph. Indeedeinrhodel the probability that
the random attacker has already reached a goal state at somevpl go to one as time
goes to infinity. To demonstrate why the probability a randattacker is in a goal state
currently cannot serve as a meaningful security metric, welemented their algorithm
as described in the paper [15] and applied it to two very stngthte enumeration attack
graphs. The first one only has one attack path- ¢g. The second one has the same attack
path plus an extra attack path — p, — ¢. g is the goal state for the attacker. The rank
for g in the first graph i$).500 and its rank in the second graphig97. Hence, in an attack
graph with more paths to achieve the goal, the probabiligralom attacker is at the goal
state is actually lower, due to the fact that the attackertspsnd more time in the other
states. Clearly, this rank cannot serve as a metric for thesys overall vulnerability, as
claimed in their paper, since the second case is obvioushg manerable than the first
one due to the additional attack path. In both PageRank asdtRank, it is the relative
rank values, not the actual values that are significant. Elaive rank values in Mehta
et al.’s work compare the likelihood a random attacker is curkeintla state. Unlike our
work, they do not indicate the relative importance of configion settings and privileges
to attackers in achieving their goal.

There have been various forms of attack graph analysis pegpim the past. The ranking
scheme described in this paper is complementary to thosksward could be used in
combination with existing approaches. One of the factoas las been deemed useful for
attack graphs is finding a minimal set of critical configuratsettings that enable potential
attacks since these could serve as a hint on how to elimihatattacks. Approaches to
find the minimal set have been proposed for both dependetagkagraphs [3] and state-
enumeration attack graphs [6, 8]. Business needs usualiptpermit the elimination of
all security risks so the AssetRank values could be usedyaide minimal-cut algorithms
to selectively eliminate risk. Our first experiment showatttihe highest ranked vertices
(compromise/vulnerability on host C and D) happen to be amahset that will cut the

DRDC Ottawa TM 2007-205 21

attack graph in two parts. AssetRank can also indicate tlagive importance of each
attack asset, which a binary result from the minimal-cubatgm does not provide. This
is illustrated in the second experiment, where althougleradithe attack assets on the web
server and user desktop alone could completely cut thekgittbs, their importance values
are different and this is also useful in understanding tlesty threats and determining
the best courses of action to counteract them.

It has been recognized that the complexity of attack graftes prevents them from being
useful in practice and methodologies have been proposegtter lvisualize them [7]. The
ranks computed by our algorithm could be used in combinatitimthe techniques in those
works to help further the visualization process, for exarp} incrementally displaying
vertices in an attack graph.

8 Conclusion and Future Work

In this paper we proposed the AssetRank algorithm, a geratiah of the PageRank algo-
rithm, that can be applied to rank the importance of a veriexdependency attack graph.
The model adds the ability to reason on heterogeneous gcapitaining both AND and
OR vertices. It also incorporates intrinsic values to retiecattacker’s goal and arc weights
to specify the desirability of an attack step. The numeriogaomputed by AssetRank is a
direct indicator of how important the privilege or vulneliép represented by a vertex is to
a potential attacker. The algorithm was presented theatBtithrough an attack-planning
agent model, and empirically verified through numerous expnts conducted on sev-
eral example networks. The rank value will be valuable tasieéattack graphs in better
understanding the security risks, in determining appetprimitigation measures, and as
input to further attack graph analysis tools.

In the future, we would like to explore how to incorporate iness priorities and imple-
mentation costs into the rank value, so that the resultingsaan be used immediately by
a system administrator to generate a course of action omedtcally implement security
hardening measures. We would also like to conduct expetsmanoperational networks
to better understand the advantages and limitations of myogsed algorithm, along with
ways of improving it. Finally, we wish to see how the valuesdoc and vertex weights,
representing diverse preferences, can be combined anthrynhow AssetRanks in vari-
ous contexts may be combined.

22 DRDC Ottawa TM 2007-205

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Ammann, Paul, Wijesekera, Duminda, and Kaushik, Sak@d2), Scalable,
Graph-Based Network Vulnerability Analysis, Rroceedings of 9th ACM
Conference on Computer and Communications Security, Washington, DC.

Ingols, Kyle, Lippmann, Richard, and Piwowarski, Ke{2006), Practical Attack
Graph Generation for Network Defense,22nd Annual Computer Security
Applications Conference (ACSAC), Miami Beach, Florida.

Noel, Steven, Jajodia, Sushil, O'Berry, Brian, and Jecdvichael (2003), Efficient
Minimum-Cost Network Hardening via Exploit Dependency @rs, In19th Annual
Computer Security Applications Conference (ACSAC).

Ou, Xinming, Boyer, Wayne F., and McQueen, Miles A. (2D0% scalable
approach to attack graph generation18th ACM Conference on Computer and
Communications Security (CCS), pp. 336—345.

Phillips, Cynthia and Swiler, Laura Painton (1998), Aagh-based system for
network-vulnerability analysis, INSPW’98: Proceedings of the 1998 workshop on
New security paradigms, pp. 71-79, ACM Press.

Sheyner, Oleg, Haines, Joshua, Jha, Somesh, Lippmacimarid, and Wing,
Jeannette M. (2002), Automated generation and analysisamfkegraphs, In
Proceedings of the 2002 |EEE Symposium on Security and Privacy, pp. 254—265.

Noel, Steven and Jajodia, Sushil (2004), Managing &ttgaph complexity through
visual hierarchical aggregation, WWizSEC/DMSEC ' 04: Proceedings of the 2004
ACM workshop on Visualization and data mining for computer security,

pp. 109-118, New York, NY, USA: ACM Press.

Jha, Somesh, Sheyner, Oleg, and Wing, Jeannette M. 2002 Formal Analyses
of Attack Graphs, IrfProceedings of the 15th IEEE Computer Security Foundations
Workshop, pp. 49-63, Nova Scotia, Canada.

Page, Lawrence, Brin, Sergey, Motwani, Rajeev, and \§iad, Terry (1998), The
PageRank Citation Ranking: Bringing Order to the Web, TexdirReport Stanford
Digital Library Technologies Project.

Sheyner, Oleg (2004), Scenario Graphs and Attack Gxapih.D. thesis, Carnegie
Mellon.

Swiler, Laura P., Phillips, Cynthia, Ellis, David, a@hakerian, Stefan (2001),
Computer-Attack Graph Generation Tool,DARPA Information Survivability
Conference and Exposition (DISCEX 11’01), Vol. 2.

DRDC Ottawa TM 2007-205 23

[12] Sawilla, Reginald (2006), Abstracting PageRank toatyit asset valuation, (DRDC
Ottawa TM 2006-243) Defence R&D Canada — Ottawa.

[13] Bianchini, Monica, Gori, Marco, and Scarselli, Frar{2005), Inside PageRank,
ACM Trans. Inter. Tech., 5(1), 92—-128.

[14] Lippmann, Richard, Ingols, Kyle, Scott, Chris, Piwaald, Keith, Kratkiewicz,
Kendra, Artz, Michael, and Cunningham, Robert (2005), &aahg and
Strengthening Enterprise Network Security Using Attackygbis, (Technical
Report ESC-TR-2005-064) MIT Lincoln Laboratory.

[15] Mehta, Vaibhav, Bartzis, Constantinos, Zhu, Haife@tarke, Edmund, and Wing,
Jeannette (2006), Ranking Attack GraphsPtoceedings of Recent Advancesin
Intrusion Detection (RAID).

24 DRDC Ottawa TM 2007-205

