Boolean Connectives

Torben Amtoft Kansas State University

イロト イヨト イヨト イヨト

æ

- Chapter 1 introduced basic FOL (one main aim of book)
- Chapter 2 introduced notion of logical consequence (other main aim of book)
- Chapter 3 introduces more features of FOL

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Boolean Connectives

Recall that an atomic sentence is a predicate applied to one or more terms:

Older(father(max),max)

We now extend FOL with the boolean connectives:

- and, to be written \wedge
- ▶ or, to be written ∨
- **•** not, to be written \neg .

Negation ("not")

Truth table:

Ρ	$\neg P$
true	false
false	true

- Symbol ¬ is not standard (cf. p. 91); in emails and on the web I'll write ~.
- $\neg \neg P$ is equivalent to P

unlike English, where double negation emphasizes: it doesn't make no difference; there will be no nothing

伺下 イヨト イヨト

¬LeftOf(a, b) is not equivalent to RightOf(a, b)

Conjunction ("and")

Ρ	Q	$P \wedge Q$
true	true	true
true	false	false
false	true	false
false	false	false

- ▶ in emails and on the web I may write /\ or ^
- English sentences translated using \land may
 - not use "and"

Max is a tall man Tall(max) \land Man(max)

carry temporal implications

Max went home and went to sleep

be expressed using other connectives

Disjunction ("or")

Ρ	Q	$P \lor Q$
true	true	true
true	false	true
false	true	true
false	false	false

- ▶ in emails and on the web I may write \/ or v.
- ► the interpretation is "inclusive", not "exclusive": true ∨ true = true.
- In English, the default is often "exclusive", as when a waiter offers soup or salad

イロト イヨト イヨト イヨト

• We can express exclusive or (p. 75):

Disjunction ("or")

Ρ	Q	$P \lor Q$
true	true	true
true	false	true
false	true	true
false	false	false

- ▶ in emails and on the web I may write \/ or v.
- ► the interpretation is "inclusive", not "exclusive": true ∨ true = true.
- In English, the default is often "exclusive", as when a waiter offers soup or salad
- ▶ We can express exclusive or (p. 75): $(P \lor Q) \land \neg (P \land Q)$
- We can also encode "neither nor": $\neg(P \lor Q)$

Sentences

- A sentence P is thus given by
 - ▶ if *P* is an atomic sentence then *P* is also a sentence;
 - if P_1 and P_2 are sentences then $P_1 \wedge P_2$ is a sentence;
 - if P_1 and P_2 are sentences then $P_1 \vee P_2$ is a sentence;
 - if P is a sentence then $\neg P$ is a sentence.

This can be written in "Backus-Naur" notation:

$$P ::= \text{ atomic sentence}$$

$$| P \land P$$

$$| P \lor P$$

$$| \neg P$$

伺 ト イヨト イヨト

Resolving Ambiquity

	expression	how to read it	how not to read it
Algebra	3+4 imes 5	$3 + (4 \times 5) = 23$	$(3+4) \times 5 = 35$
	$3 \times 4 + 5$	$(3 \times 4) + 5$	$3 \times (4+5)$

・ロ・ ・ 日・ ・ 日・ ・ 日・

Resolving Ambiquity

	expression	how to read it	how <mark>not</mark> to read it
Algebra	3+4 imes 5	$3 + (4 \times 5) = 23$	$(3+4)\times 5=35$
	3 imes 4 + 5	$(3 \times 4) + 5$	$3 \times (4 + 5)$

Boolean Algebra	interpretation I	interpretation II
$true \lor false \land false$	$true \lor (false \land false)$	$(true \lor false) \land false$
	evaluates to <mark>true</mark>	evaluates to false

Resolving Ambiquity

	expression	how to read it	how not to read it
Algebra	3+4 imes 5	$3 + (4 \times 5) = 23$	$(3+4) \times 5 = 35$
	3 imes 4 + 5	$(3 \times 4) + 5$	$3 \times (4 + 5)$

Boolean Algebra	interpretation I	interpretation II
$true \lor false \land false$	$true \lor (false \land false)$	$(true \lor false) \land false$
	evaluates to true	evaluates to false

-2

In the literature, I is often chosen (as ∧ is considered "multiplication" and ∨ is considered "addition").

Resolving Ambiquity

	expression	how to read it	how not to read it
Algebra	3+4 imes 5	$3 + (4 \times 5) = 23$	$(3+4) \times 5 = 35$
	3 imes 4 + 5	$(3 \times 4) + 5$	$3 \times (4 + 5)$

Boolean Algebra	interpretation I	interpretation II
$true \lor false \land false$	$true \lor (false \land false)$	$(true \lor false) \land false$
	evaluates to <mark>true</mark>	evaluates to <mark>false</mark>

- In the literature, I is often chosen (as ∧ is considered "multiplication" and ∨ is considered "addition").
- ▶ In the textbook, neither I or II is chosen, instead (p. 80):

Parentheses must be used whenever ambiguity would result from their omission

★週 ▶ ★ 臣 ▶ ★ 臣 ▶

Resolving Ambiquity

	expression	how to read it	how not to read it
Algebra	3+4 imes 5	$3 + (4 \times 5) = 23$	$(3+4)\times 5=35$
	$3 \times 4 + 5$	$(3 \times 4) + 5$	$3 \times (4+5)$

Boolean Algebra	interpretation I	interpretation II
$true \lor false \land false$	$true \lor (false \land false)$	$(true \lor false) \land false$
	evaluates to <mark>true</mark>	evaluates to <mark>false</mark>

- In the literature, I is often chosen (as ∧ is considered "multiplication" and ∨ is considered "addition").
- ▶ In the textbook, neither I or II is chosen, instead (p. 80):

Parentheses must be used whenever ambiguity would result from their omission

Negation binds tightly: $\neg P \land Q$ is not equivalent to $\neg (P \land Q)$.

Ambiguity in English

Consider the phrase you can have soup or salad and pasta.

If the intended meaning is "soup or (salad and pasta)":

★週 ▶ ★ 臣 ▶ ★ 臣 ▶

Ambiguity in English

Consider the phrase you can have soup or salad and pasta. If the intended meaning is "soup or (salad and pasta)": you can have soup or both salad and pasta you can have soup, or salad and pasta

If the intended meaning is "(soup or salad) and pasta":

Ambiguity in English

Consider the phrase you can have soup or salad and pasta. If the intended meaning is "soup or (salad and pasta)": you can have soup or both salad and pasta you can have soup, or salad and pasta If the intended meaning is "(soup or salad) and pasta": you can have soup or salad, and pasta you can have soup or salad and also pasta you can have pasta and either soup or salad

The Game in Tarski's World

- Given sentence $P = Cube(c) \lor Cube(d)$.
- Given world where c is a cube but d is not.

We *P* is false in this world

So c is not a cube?

A⊒ ▶ ∢ ∃

Opponent

Eh...I admit defeat

The Game in Tarski's World

- Given sentence $P = Cube(c) \lor Cube(d)$.
- Given world where c is a cube but d is not.

WeOpponentP is false in this worldSo c is not a cube?Eh...I admit defeatOK, P is true in this worldOK, P is true in this worldBecause c is a cube or because d is?Because d is a cubeYou lost but could have won

The Game in Tarski's World

Given sentence P = Cube(c) ∨ Cube(d).
 Given world where c is a cube but d is not.
 We Opponent
 P is false in this world
 So c is not a cube?
 Eh...I admit defeat
 OK. P is true in this world

Because c is a cube or because d is?

• 3 >

Because d is a cube

You lost but could have won

OK, because c is a cube

You won (finally!)

More about the Game

• Given sentence $P = Cube(a) \lor \neg Cube(a)$.		
We	Opponent	
<i>P</i> is true in this world		
	Because a is a cube or	
	because a is not a cube?	
EhI don't know		
but <i>P</i> will always be true!		
	Please answer my question!	

Who won the game???

イロン 不同と 不同と 不同と

æ