Boolean Connectives

Torben Amtoft
Kansas State University

Motivation

Negation

Conjunction
Disjunction
Sentences
Ambiguity
The Game in Tarski's World

Agenda

- Chapter 1 introduced basic FOL (one main aim of book)
- Chapter 2 introduced notion of logical consequence (other main aim of book)
- Chapter 3 introduces more features of FOL

Boolean Connectives

Recall that an atomic sentence is a predicate applied to one or more terms:

Older (father (max) , max)
We now extend FOL with the boolean connectives:

- and, to be written \wedge
- or, to be written \vee
- not, to be written \neg.

Negation ("not")

Truth table:

P	$\neg P$
true	false
false	true

- Symbol \neg is not standard (cf. p. 91);
in emails and on the web l'll write ~.
- $\neg \neg P$ is equivalent to P
unlike English, where double negation emphasizes:
it doesn't make no difference; there will be no nothing
- $\neg \operatorname{LeftOf}(\mathrm{a}, \mathrm{b})$ is not equivalent to $\operatorname{RightOf(a,b)}$

Conjunction ("and")

P	Q	$P \wedge Q$
true	true	true
true	false	false
false	true	false
false	false	false

- in emails and on the web I may write $/ \backslash$ or ${ }^{\wedge}$
- English sentences translated using \wedge may
- not use "and"

Max is a tall man Tall (max) \wedge Man (max)

- carry temporal implications

Max went home and went to sleep

- be expressed using other connectives

Max was home but Claire was not

Disjunction ("or")

P	Q	$P \vee Q$
true	true	true
true	false	true
false	true	true
false	false	false

- in emails and on the web I may write $\backslash /$ or v.
- the interpretation is "inclusive", not "exclusive": true \vee true $=$ true.
- In English, the default is often "exclusive", as when a waiter offers soup or salad
- We can express exclusive or (p.75):

Disjunction ("or")

P	Q	$P \vee Q$
true	true	true
true	false	true
false	true	true
false	false	false

- in emails and on the web I may write $\backslash /$ or v.
- the interpretation is "inclusive", not "exclusive": true \vee true $=$ true.
- In English, the default is often "exclusive", as when a waiter offers soup or salad
- We can express exclusive or (p. 75): $(P \vee Q) \wedge \neg(P \wedge Q)$
- We can also encode "neither nor": $\neg(P \vee Q)$

Sentences

A sentence P is thus given by

- if P is an atomic sentence then P is also a sentence;
- if P_{1} and P_{2} are sentences then $P_{1} \wedge P_{2}$ is a sentence;
- if P_{1} and P_{2} are sentences then $P_{1} \vee P_{2}$ is a sentence;
- if P is a sentence then $\neg P$ is a sentence.

This can be written in "Backus-Naur" notation:

$$
\begin{array}{rll}
P::= & \text { atomic sentence } \\
\mid & P \wedge P \\
\mid & P \vee P \\
\mid & \neg P
\end{array}
$$

Resolving Ambiquity

$$
\begin{array}{ll|l|l}
& \text { expression } & \text { how to read it } & \text { how not to read it } \\
\cline { 2 - 4 } \text { Algebra } & 3+4 \times 5 & 3+(4 \times 5)=23 & (3+4) \times 5=35 \\
\hline 3 \times 4+5 & (3 \times 4)+5 & 3 \times(4+5)
\end{array}
$$

Resolving Ambiquity

	expression	how to read it	how not to read it
Algebra	$3+4 \times 5$	$3+(4 \times 5)=23$	$(3+4) \times 5=35$
$3 \times 4+5$	$(3 \times 4)+5$	$3 \times(4+5)$	

Boolean Algebra	interpretation I	interpretation II
true \vee false \wedge false	true $\vee($ false \wedge false $)$ evaluates to true	(true \vee false $) \wedge$ false evaluates to false

Resolving Ambiquity

	expression	how to read it	how not to read it
Algebra	$3+4 \times 5$	$3+(4 \times 5)=23$	$(3+4) \times 5=35$
$3 \times 4+5$	$(3 \times 4)+5$	$3 \times(4+5)$	

Boolean Algebra	interpretation I	interpretation II
true \vee false \wedge false	true $\vee($ false \wedge false $)$	$($ true \vee false $) \wedge$ false
evaluates to true	evaluates to false	

- In the literature, I is often chosen (as \wedge is considered "multiplication" and \vee is considered "addition").

Resolving Ambiquity

	expression	how to read it	how not to read it
Algebra	$3+4 \times 5$	$3+(4 \times 5)=23$	$(3+4) \times 5=35$
$3 \times 4+5$	$(3 \times 4)+5$	$3 \times(4+5)$	

Boolean Algebra	interpretation I	interpretation II
true \vee false \wedge false	true $\vee($ false \wedge false $)$	(true \vee false) \wedge false
evaluates to true	evaluates to false	

- In the literature, I is often chosen (as \wedge is considered "multiplication" and \vee is considered "addition").
- In the textbook, neither I or II is chosen, instead (p. 80): Parentheses must be used whenever ambiguity would result from their omission

Resolving Ambiquity

	expression	how to read it	how not to read it
Algebra	$3+4 \times 5$	$3+(4 \times 5)=23$	$(3+4) \times 5=35$
$3 \times 4+5$	$(3 \times 4)+5$	$3 \times(4+5)$	

Boolean Algebra	interpretation I	interpretation II
true \vee false \wedge false	true $\vee($ false \wedge false $)$	$($ true \vee false $) \wedge$ false
evaluates to true	evaluates to false	

- In the literature, I is often chosen (as \wedge is considered "multiplication" and \vee is considered "addition").
- In the textbook, neither I or II is chosen, instead (p. 80): Parentheses must be used whenever ambiguity would result from their omission
Negation binds tightly: $\neg P \wedge Q$ is not equivalent to $\neg(P \wedge Q)$.

Ambiguity in English

Consider the phrase
you can have soup or salad and pasta.
If the intended meaning is "soup or (salad and pasta)":

Ambiguity in English

Consider the phrase
you can have soup or salad and pasta.
If the intended meaning is "soup or (salad and pasta)":
you can have soup or both salad and pasta
If the intended meaning is "(soup or salad) and pasta":

Ambiguity in English

Consider the phrase
you can have soup or salad and pasta.
If the intended meaning is "soup or (salad and pasta)":
you can have soup or both salad and pasta
If the intended meaning is "(soup or salad) and pasta":
you can have soup or salad, and pasta
or

Ambiguity in English

Consider the phrase
you can have soup or salad and pasta.
If the intended meaning is "soup or (salad and pasta)":
you can have soup or both salad and pasta
If the intended meaning is "(soup or salad) and pasta":
you can have soup or salad, and pasta
or
you can have pasta and either soup or salad

The Game in Tarski's World

- Given sentence $P=$ Cube (c) \vee Cube(d).
- Given world where c is a cube but d is not.

We
P is false in this world

Opponent

So c is not a cube?

Eh. . . I admit defeat

The Game in Tarski's World

- Given sentence $P=\operatorname{Cube}(\mathrm{c}) \vee$ Cube(d).
- Given world where c is a cube but d is not.

We

Opponent

P is false in this world
So c is not a cube?
Eh.. . I admit defeat
OK, P is true in this world
Because c is a cube or because d is?
Because d is a cube
You lost but could have won

The Game in Tarski's World

- Given sentence $P=$ Cube (c) \vee Cube(d).
- Given world where c is a cube but d is not.

Opponent
P is false in this world
So c is not a cube?
Eh.. .I admit defeat
OK, P is true in this world
Because c is a cube or because d is?
Because d is a cube
You lost but could have won
OK, because c is a cube
You won (finally!)

More about the Game

- Given sentence $P=\operatorname{Cube}(\mathrm{a}) \vee \neg \operatorname{Cube}(\mathrm{a})$.
We
P is true in this world

Opponent
Because a is a cube or because a is not a cube?
Eh. . . I don't know
but P will always be true!
Please answer my question!

- Who won the game???

