Outline Motivation Negation Conjunction Disjunction Sentences Ambiguity The Game in Tarski's World

Boolean Connectives

Torben Amtoft Kansas State University Motivation

Negation

Conjunction

Disjunction

Sentences

Ambiguity

The Game in Tarski's World

Agenda

- Chapter 1 introduced basic FOL (one main aim of book)
- ► Chapter 2 introduced notion of logical consequence (other main aim of book)
- Chapter 3 introduces more features of FOL

Boolean Connectives

Recall that an atomic sentence is a predicate applied to one or more terms:

Older(father(max), max)

We now extend FOL with the boolean connectives:

- ▶ and, to be written ∧
- ▶ or, to be written ∨
- ▶ not, to be written ¬.

Negation ("not")

Truth table:

$$egin{array}{c|c} P & \neg P \\ \hline true & false \\ false & true \\ \hline \end{array}$$

- Symbol ¬ is not standard (cf. p. 91); in emails and on the web I'll write ~.
- ¬¬P is equivalent to P
 unlike English, where double negation emphasizes:
 it doesn't make no difference; there will be no nothing
- ► ¬LeftOf(a, b) is not equivalent to RightOf(a, b)

Conjunction ("and")

Р	Q	$P \wedge Q$
true	true	true
true	false	false
false	true	false
false	false	false

- ▶ in emails and on the web I may write /\ or ^
- ▶ English sentences translated using ∧ may
 - not use "and"

Max is a tall man

 $Tall(max) \land Man(max)$

- carry temporal implications
 - Max went home and went to sleep
- be expressed using other connectives
 Max was home but Claire was not

Disjunction ("or")

P	Q	$P \vee Q$
true	true	true
true	false	true
false	true	true
false	false	false

- ▶ in emails and on the web I may write \/ or v.
- b the interpretation is "inclusive", not "exclusive": true ∨ true = true.
- ▶ In English, the default is often "exclusive", as when a waiter offers soup or salad
- ▶ We can express exclusive or (p. 75):

- ▶ in emails and on the web I may write \/ or v.
- b the interpretation is "inclusive", not "exclusive": true ∨ true = true.
- ▶ In English, the default is often "exclusive", as when a waiter offers soup or salad
- ▶ We can express exclusive or (p. 75): $(P \lor Q) \land \neg (P \land Q)$
- ▶ We can also encode "neither nor": $\neg(P \lor Q)$

Sentences

A sentence *P* is thus given by

- ▶ if *P* is an atomic sentence then *P* is also a sentence;
- ▶ if P_1 and P_2 are sentences then $P_1 \land P_2$ is a sentence;
- ▶ if P_1 and P_2 are sentences then $P_1 \lor P_2$ is a sentence;
- ▶ if P is a sentence then $\neg P$ is a sentence.

This can be written in "Backus-Naur" notation:

	expression	how to read it	how not to read it
Algebra	$3+4\times5$	$3+(4\times 5)=23$	$(3+4)\times 5=35$
	$3 \times 4 + 5$	$(3 \times 4) + 5$	$3\times(4+5)$

	expression	how to read it	how not to read it
Algebra	$3+4\times5$	$3+(4\times 5)=23$	$(3+4)\times 5=35$
	$3 \times 4 + 5$	$(3 \times 4) + 5$	$3\times(4+5)$

Boolean Algebra	interpretation I	interpretation II
true ∨ false ∧ false	$true \lor (false \land false)$	(true \lor false) \land false
	evaluates to true	evaluates to false

	expression	how to read it	how not to read it
Algebra	$3+4\times5$	$3+(4\times 5)=23$	$(3+4)\times 5=35$
	$3 \times 4 + 5$	$(3 \times 4) + 5$	$3 \times (4+5)$

Boolean Algebra	interpretation I	interpretation II
true ∨ false ∧ false	$true \lor (false \land false)$	$(true \lor false) \land false$
	evaluates to true	evaluates to false

▶ In the literature, I is often chosen (as ∧ is considered "multiplication" and ∨ is considered "addition").

	expression	how to read it	how not to read it
Algebra	$3+4\times5$	$3+(4\times 5)=23$	$(3+4)\times 5=35$
	$3 \times 4 + 5$	$(3 \times 4) + 5$	$3 \times (4+5)$

Boolean Algebra	interpretation I	interpretation II
true ∨ false ∧ false	$true \lor (false \land false)$	$(true \lor false) \land false$
	evaluates to true	evaluates to false

- ▶ In the literature, I is often chosen (as ∧ is considered "multiplication" and ∨ is considered "addition").
- ► In the textbook, neither I or II is chosen, instead (p. 80):

 Parentheses must be used whenever ambiguity would result from their omission

	expression	how to read it	how not to read it
Algebra	$3+4\times5$	$3+(4\times 5)=23$	$(3+4)\times 5=35$
	$3 \times 4 + 5$	$(3 \times 4) + 5$	$3 \times (4+5)$

Boolean Algebra	interpretation I	interpretation II
true ∨ false ∧ false	$true \lor (false \land false)$	$(true \lor false) \land false$
	evaluates to true	evaluates to false

- ▶ In the literature, I is often chosen (as ∧ is considered "multiplication" and ∨ is considered "addition").
- ► In the textbook, neither I or II is chosen, instead (p. 80):

 Parentheses must be used whenever ambiguity would result from their omission

Negation binds tightly: $\neg P \land Q$ is **not** equivalent to $\neg (P \land Q)$.

Consider the phrase

you can have soup or salad and pasta.

If the intended meaning is "soup or (salad and pasta)":

Consider the phrase

you can have soup or salad and pasta.

If the intended meaning is "soup or (salad and pasta)":

you can have soup or both salad and pasta

If the intended meaning is "(soup or salad) and pasta":

```
Consider the phrase

you can have soup or salad and pasta.

If the intended meaning is "soup or (salad and pasta)":

you can have soup or both salad and pasta

If the intended meaning is "(soup or salad) and pasta":

you can have soup or salad, and pasta

or
```

```
Consider the phrase

you can have soup or salad and pasta.

If the intended meaning is "soup or (salad and pasta)":

you can have soup or both salad and pasta

If the intended meaning is "(soup or salad) and pasta":

you can have soup or salad, and pasta

or

you can have pasta and either soup or salad
```

The Game in Tarski's World

- ▶ Given sentence $P = \text{Cube}(c) \lor \text{Cube}(d)$.
- Given world where c is a cube but d is not.

We

Opponent

P is false in this world

So c is not a cube?

Eh...I admit defeat

The Game in Tarski's World

۱۸/۵

- ▶ Given sentence $P = \text{Cube}(c) \lor \text{Cube}(d)$.
- Given world where c is a cube but d is not.

vve	Opponent
P is false in this world	
	So c is not a cube?
EhI admit <mark>defeat</mark>	
OK, P is true in this world	
	Because c is a cube or because d is?
Because d is a cube	
	You lost but could have won

O-----

The Game in Tarski's World

- ▶ Given sentence $P = \text{Cube}(c) \lor \text{Cube}(d)$.
- Given world where c is a cube but d is not.

We	Opponent
P is false in this world	
	So c is not a cube?
EhI admit <mark>defeat</mark>	
OK, P is true in this world	
	Because c is a cube or because d is?
Because d is a cube	
	You lost but could have won
OK, because c is a cube	
	You won (finally!)

More about the Game

▶ Given sentence $P = \text{Cube}(a) \lor \neg \text{Cube}(a)$.

We	Opponent
P is true in this world	
	Because a is a cube or
EhI don't know but <i>P</i> will always be true!	because a is not a cube?
	Please answer my question!

► Who won the game???

