CIS 301: Logical Foundations of Programming, Exam 3

December 7, 2001

General Notes

- Open textbook (Huth and Ryan), open class notes, open solutions of homework assignments.
- Please write your name on this page.

Good Luck!

1. (a) 2 points. Draw the syntax tree of the formula $\forall x(R(x, b)) \wedge \forall y((\exists z(R(y, z))) \rightarrow R(a, y))$
(b) 2 points. In the above formula, which variables are free and which are bound?
(c) 5 points. Now prove the following sequent:

$$
\forall x(R(x, b)) \wedge \forall y((\exists z(R(y, z))) \rightarrow R(a, y)) \vdash \exists u \forall v(R(u, v))
$$

2. 8 points. Recall the BNF of terms and formulas in predicate logic:

$$
\begin{aligned}
t & ::=c|x| f\left(t_{1}, \ldots, t_{n}\right) \\
\phi & ::=P\left(t_{1}, \ldots, t_{n}\right)|\neg \phi| \phi_{1} \vee \phi_{2}\left|\phi_{1} \wedge \phi_{2}\right| \phi_{1} \rightarrow \phi_{2}|\forall x \phi| \exists x \phi
\end{aligned}
$$

Write the function boundVar that takes any predicate logic formula ϕ as input and returns the set of bound variables in ϕ.
3. 8 points. Consider the following program P :

```
i := 1;
while (n >= 2*i) {
    i := 2*i
}
```

(a) 4 points. What is a suitable invariant for P ?
(b) 4 points. Use the invariant to show $\vdash_{\text {par }}\{n>0\} P\left\{(0<i \leq n) \wedge\left(\exists p . i=2^{p}\right) \wedge(n<2 * i)\right\}$.

