CIS 301: Logical Foundations of Programming, Exam 2

November 16, 2001

General Notes

- Open textbook (Huth and Ryan), open class notes, open solutions of homework assignments.
- Please write your name on this page.

Good Luck!

1. 9 points. Prove the following sequent:

$$
\forall z \exists x((\forall y P(x, y)) \vee Q(x, z)) \vdash \forall y \exists x(P(x, y) \vee Q(x, y))
$$

2. 8 points. Recall the BNF of terms and formulas in predicate logic:

$$
\begin{aligned}
t & ::=c|x| f\left(t_{1}, \ldots, t_{n}\right) \\
\phi & ::=P\left(t_{1}, \ldots, t_{n}\right)|\neg \phi| \phi_{1} \vee \phi_{2}\left|\phi_{1} \wedge \phi_{2}\right| \phi_{1} \rightarrow \phi_{2}|\forall x \phi| \exists x \phi
\end{aligned}
$$

Write the function freeVar that takes any predicate logic formula ϕ as input and returns the set of free variables in ϕ. For example,

$$
\begin{aligned}
\text { free } \operatorname{Var}(\forall x \forall y(P(x, y, z) \rightarrow Q(y, u))) & =\{z, u\} \\
\text { free } \operatorname{Var}(\forall x \forall y R(x, y)) & =\emptyset
\end{aligned}
$$

3. 8 points. Show that $\forall x(P(x) \vee Q(x)) \not \models(\forall x P(x)) \vee(\forall x Q(x))$. You should proceed in two steps.
(a) 4 points. Construct a model \mathcal{M} such that $\mathcal{M} \models_{[]} \forall x(P(x) \vee Q(x))$.
(b) 4 points. Now show that $\mathcal{M} \not \vDash_{[]}(\forall x P(x)) \vee(\forall x Q(x))$.

Note the empty environment attached to \models above; this is because neither of the formulas contain free variables.

