
Applications of language-based security

Thanks to Andrei Sabelfeld for making his lecture slides available,

on which much of this material is based.

� � � � � � � �� � �

Web services
� Download software (e.g., Quicken for tax)

� Billed as you compute (hypothetical model) – depending on

complexity of tax calculation (multi-state, Enron, etc.)

� Hooks for automatic updates

Another example: File sharing services for file exchange by users;

for example, music files.

� � � � � � � �� � �

In reality. . . “scumware” (AS)

Downloaded software often arrives with:

� Pop-up ads (unsolicited)

� Execution of arbitrary, unchecked code

� Data mining operations (attack on privacy): How do you know

Quicken is not copying your private information, e.g., SSN,

salary, when you send data for billing ?

� � � � � � � �� � �

Tension between contradictions

On the one hand:

� Object-oriented programming: widely adopted because of promise
of reusable software components.

� Languages like Java and C# allow extensible components to be
used in many contexts (platform independence). Large software
assembled using “components”.

On the other:

� Excellent opportunities for attackers

� Easy to distribute worms, viruses, etc.

� Attack once, run everywhere.

Critical to ensure the security of information flowing between multiple

sites, but do not use a sledgehammer.

� � � � � � � �� � �

Defenses against malicious code (Torben)

Several approaches, based on:

� Analysis

� Rewriting

� Monitor

� Audit trails

to enforce security policies like:

� Confidentiality (sensitive data should not flow to untrusted site)

� Integrity (untrusted data should not flow to trusted site)

� Availability (of resources/services)

� Accountability (who authorized/performed a sensitive operation).

� � � � � � � �� � �

The state of the practice
� Access Control: Prevents unauthorized release of information. But

not propagation of information once access is granted.

� Firewalls: Permit selective communication.

� Encryption: Secures communication channel. But leaks possible at
end points.

� Antivirus scanning: Rejects known attacks. Defenseless against
new attacks.

� Digital signatures: Authenticates code producer. But what is the
security guarantee? What security policy can it support?

� Sandboxing: Do not allow foreign code to perform sensitive
operations. Inflexible – this is why JDK changed to stack inspection.

� � � � � � � �� � �

Confidentiality
� Want End-to-end confidentiality: there is no insecure

information flow in the application.

� Standard security mechanisms provide no end-to-end
guarantees.

� An application is a program: hence look inside the program.
This yields:

� Semantics-based security specification: robust semantic
specification of end-to-end security policies; strong reasoning
principles about program semantics.

� Static security analysis: enforcement of end-to-end security
policies; specification of analysis as a security type system...
compile time type checking.

� � � � � � � �� � �

Security type system

Idea: Attacker should not be able to view changes in sensitive

data. So classifying data as � (for Low) and h (for High), want to

disallow “bad flows”:

� � ��� h

� if h then � := 0 else � ��� 1

Attacker is considered Low.

Semantically, what policy is guaranteed to hold?

� � � � � � � �� ���

The JDK getSigners bug
��� �� � � �� �� � 	� �� �

��� � �� � � � �� � �� � �� � � � � �� � �

��� � � � � � � �� � �� � �� � �� � � � � �� � ��
 � �� � � � � � � � �� � � �

�

The call to Class.getSigners() can be used to create an alias

between the private array signers and a malicious client. Then the

client can install itself as a valid signer by updating the alias.

� � � � � � � �� ���

