
CIS 890: Language Based Security
Torben Amtoft and Anindya Banerjee

Kansas State University

CIS 890: Language Based Security – p.1/11



Fred B. Schneider and Greg Morrisett and Robert Harper:
A Language-Based Approach to Security
Informatics—10 Years Back, 10 Years Ahead, LNCS 2000

Goal: Leverage program rewriting and program analysis to
enforce security policies

CIS 890: Language Based Security – p.2/11



Enduring Design Principles

Minimal Trusted Computing Base

but now kernels are huge (for
reasons of efficiency)

Principle of Least Privilege but now almost all code runs on
behalf of single user

Violation of principles provides excellent conditions for vira:
scripts hidden in emails run with all the privileges of the user that
receives the message.

Principles can no longer be ensured by operating systems, but
can be supported by Language-based security

CIS 890: Language Based Security – p.3/11



Enduring Design Principles

Minimal Trusted Computing Base but now kernels are huge (for
reasons of efficiency)

Principle of Least Privilege but now almost all code runs on
behalf of single user

Violation of principles provides excellent conditions for vira:
scripts hidden in emails run with all the privileges of the user that
receives the message.

Principles can no longer be ensured by operating systems, but
can be supported by Language-based security

CIS 890: Language Based Security – p.3/11



Enduring Design Principles

Minimal Trusted Computing Base but now kernels are huge (for
reasons of efficiency)

Principle of Least Privilege

but now almost all code runs on
behalf of single user

Violation of principles provides excellent conditions for vira:
scripts hidden in emails run with all the privileges of the user that
receives the message.

Principles can no longer be ensured by operating systems, but
can be supported by Language-based security

CIS 890: Language Based Security – p.3/11



Enduring Design Principles

Minimal Trusted Computing Base but now kernels are huge (for
reasons of efficiency)

Principle of Least Privilege but now almost all code runs on
behalf of single user

Violation of principles provides excellent conditions for vira:
scripts hidden in emails run with all the privileges of the user that
receives the message.

Principles can no longer be ensured by operating systems, but
can be supported by Language-based security

CIS 890: Language Based Security – p.3/11



Enduring Design Principles

Minimal Trusted Computing Base but now kernels are huge (for
reasons of efficiency)

Principle of Least Privilege but now almost all code runs on
behalf of single user

Violation of principles provides excellent conditions for vira:
scripts hidden in emails run with all the privileges of the user that
receives the message.

Principles can no longer be ensured by operating systems, but
can be supported by Language-based security

CIS 890: Language Based Security – p.3/11



Enduring Design Principles

Minimal Trusted Computing Base but now kernels are huge (for
reasons of efficiency)

Principle of Least Privilege but now almost all code runs on
behalf of single user

Violation of principles provides excellent conditions for vira:
scripts hidden in emails run with all the privileges of the user that
receives the message.

Principles can no longer be ensured by operating systems, but
can be supported by Language-based security

CIS 890: Language Based Security – p.3/11



Reference Monitors
Examples

access control

traps for system calls

Trade-off between effectiveness and protection from subversion

Reference monitors can always be simulated by software

But an analyzer operating on program text more powerful
than operating on single execution only.

CIS 890: Language Based Security – p.4/11



Security Policies

Implementable by reference monitor?

Yes: Access control

No: information flow, availability

Requirements:

acceptable sequences prefix closed

non-acceptable sequences rejected after finite number of
steps

sufficient to examine one sequence (i.e., a property)

Whether information flows from x to y: is not a property:

public := 1; if secret = 7 then public := 0

Sequence (public := 1) seems benign, but is not!

CIS 890: Language Based Security – p.5/11



Security Policies

Implementable by reference monitor?

Yes: Access control

No: information flow, availability

Requirements:

acceptable sequences prefix closed

non-acceptable sequences rejected after finite number of
steps

sufficient to examine one sequence (i.e., a property)

Whether information flows from x to y: is not a property:

public := 1; if secret = 7 then public := 0

Sequence (public := 1) seems benign, but is not!

CIS 890: Language Based Security – p.5/11



Security Policies

Implementable by reference monitor?

Yes: Access control

No: information flow, availability

Requirements:

acceptable sequences prefix closed

non-acceptable sequences rejected after finite number of
steps

sufficient to examine one sequence (i.e., a property)

Whether information flows from x to y: is not a property:

public := 1; if secret = 7 then public := 0

Sequence (public := 1) seems benign, but is not!

CIS 890: Language Based Security – p.5/11



Language based approaches
Program Rewriting (inlined execution monitors)

Program Analysis

Certifying Compilation

CIS 890: Language Based Security – p.6/11



Inlined Execution Monitors
Rewrite incoming code by inserting checks (must ensure that
target program cannot bypass these)

One most define

security events

security state

security updates

Method is compositional.

For sensible inlining, some structure and/or annotation must be

present

CIS 890: Language Based Security – p.7/11



Type Systems

Shifts burden of proof from recipient to consumer

Well-typed programs do not go wrong
for instance, cannot apply wrong operations to wrong values

Run-time checks still needed for array bounds etc., in the absence

of stronger systems (like dependent types)

CIS 890: Language Based Security – p.8/11



Certifying Compilers

Compiler produces object code equipped with proof

Certificate checker part of trusted base, compiler not!

Types as proofs (until recently, type systems for high-level
languages only):

JVM code (but policy supported very weak)

TAL (Typed Assembly Language)

Most aggressive and general: PCC (Proof Carrying Code)

CIS 890: Language Based Security – p.9/11



Synergy among approaches

Adding IRM, checking for say array bounds, to

type systems

These can check complex properties like
information flow, but it is cumbersome to check for array
bounds

certifying compilers These can also check complex
properties, but it may be burdensome to prove at compile
time that an index gets never out of bound.

CIS 890: Language Based Security – p.10/11



Synergy among approaches

Adding IRM, checking for say array bounds, to

type systems These can check complex properties like
information flow, but it is cumbersome to check for array
bounds

certifying compilers These can also check complex
properties, but it may be burdensome to prove at compile
time that an index gets never out of bound.

CIS 890: Language Based Security – p.10/11



Synergy among approaches

Adding IRM, checking for say array bounds, to

type systems These can check complex properties like
information flow, but it is cumbersome to check for array
bounds

certifying compilers These can also check complex
properties, but it may be burdensome to prove at compile
time that an index gets never out of bound.

CIS 890: Language Based Security – p.10/11



More synergy

IRM + certifying compilers

rewriting should be followed by optimizations.

would not like optimization routines to be part of trusted
base.

Insert proofs that removed checks are not needed!

CIS 890: Language Based Security – p.11/11



More synergy

IRM + certifying compilers

rewriting should be followed by optimizations.

would not like optimization routines to be part of trusted
base.

Insert proofs that removed checks are not needed!

CIS 890: Language Based Security – p.11/11



More synergy

IRM + certifying compilers

rewriting should be followed by optimizations.

would not like optimization routines to be part of trusted
base.

Insert proofs that removed checks are not needed!

CIS 890: Language Based Security – p.11/11


	Enduring Design Principles
	Reference Monitors
	Security Policies
	Language based approaches
	Inlined Execution Monitors
	Type Systems
	Certifying Compilers
	Synergy among approaches
	More synergy

