
A Theorem Proving Approach to
Analysis of Secure Information Flow

A Paper by Ádám Darvas, Rainer Hänle, and David
Sands

Georg Jung

jung@cis.ksu.edu

Department of Computing and Information Sciences, Kansas State University

Secure Information Flow by Theorem Proving · CIS KSU – p. 1/18



Overview

Introduction to Dynamic Logic

The KeY Theorem Prover

Application of the Framework

On Wednesday I hope to be able to present

The theorem prover running “life”

A meaningful example

Secure Information Flow by Theorem Proving · CIS KSU – p. 2/18



Overview

Introduction to Dynamic Logic

The KeY Theorem Prover

Application of the Framework

On Wednesday I hope to be able to present

The theorem prover running “life”

A meaningful example

Secure Information Flow by Theorem Proving · CIS KSU – p. 2/18



Overview

Introduction to Dynamic Logic

The KeY Theorem Prover

Application of the Framework

On Wednesday I hope to be able to present

The theorem prover running “life”

A meaningful example

Secure Information Flow by Theorem Proving · CIS KSU – p. 2/18



Overview

Introduction to Dynamic Logic

The KeY Theorem Prover

Application of the Framework

On Wednesday I hope to be able to present

The theorem prover running “life”

A meaningful example

Secure Information Flow by Theorem Proving · CIS KSU – p. 2/18



Overview

Introduction to Dynamic Logic

The KeY Theorem Prover

Application of the Framework

On Wednesday I hope to be able to present

The theorem prover running “life”

A meaningful example

Secure Information Flow by Theorem Proving · CIS KSU – p. 2/18



Overview

Introduction to Dynamic Logic

The KeY Theorem Prover

Application of the Framework

On Wednesday I hope to be able to present

The theorem prover running “life”

A meaningful example

Secure Information Flow by Theorem Proving · CIS KSU – p. 2/18



Overview

Introduction to Dynamic Logic

The KeY Theorem Prover

Application of the Framework

On Wednesday I hope to be able to present

The theorem prover running “life”

A meaningful example

Secure Information Flow by Theorem Proving · CIS KSU – p. 2/18



Structure of the Dynamic Logic

Secure Information Flow by Theorem Proving · CIS KSU – p. 3/18



Basics of Dynamic Logic

Dynamic Logic (DL) (David Harel, Dexter Kozen, Jerzy
Tiuryn, 1984) was designed to reason about programs.

DL combines

First Order Predicate Logic

Modal Logic

Algebra of Linear Events

Usually, the truth value of a formula φ is determined by a
valuation of the free variables. The valuation though is
immutable.
DL instead features syntactic constructs to explicitly change
a valuation. These constructs are referred to as programs.
In this presentation I describe a special DL called JAVA
CARD DL, which is introduced by the referred paper.

Secure Information Flow by Theorem Proving · CIS KSU – p. 4/18



Basics of Dynamic Logic

Dynamic Logic (DL) (David Harel, Dexter Kozen, Jerzy
Tiuryn, 1984) was designed to reason about programs.
DL combines

First Order Predicate Logic

Modal Logic

Algebra of Linear Events

Usually, the truth value of a formula φ is determined by a
valuation of the free variables. The valuation though is
immutable.
DL instead features syntactic constructs to explicitly change
a valuation. These constructs are referred to as programs.
In this presentation I describe a special DL called JAVA
CARD DL, which is introduced by the referred paper.

Secure Information Flow by Theorem Proving · CIS KSU – p. 4/18



Basics of Dynamic Logic

Dynamic Logic (DL) (David Harel, Dexter Kozen, Jerzy
Tiuryn, 1984) was designed to reason about programs.
DL combines

First Order Predicate Logic

Modal Logic

Algebra of Linear Events

Usually, the truth value of a formula φ is determined by a
valuation of the free variables. The valuation though is
immutable.
DL instead features syntactic constructs to explicitly change
a valuation. These constructs are referred to as programs.
In this presentation I describe a special DL called JAVA
CARD DL, which is introduced by the referred paper.

Secure Information Flow by Theorem Proving · CIS KSU – p. 4/18



Basics of Dynamic Logic

Dynamic Logic (DL) (David Harel, Dexter Kozen, Jerzy
Tiuryn, 1984) was designed to reason about programs.
DL combines

First Order Predicate Logic

Modal Logic

Algebra of Linear Events

Usually, the truth value of a formula φ is determined by a
valuation of the free variables. The valuation though is
immutable.
DL instead features syntactic constructs to explicitly change
a valuation. These constructs are referred to as programs.
In this presentation I describe a special DL called JAVA
CARD DL, which is introduced by the referred paper.

Secure Information Flow by Theorem Proving · CIS KSU – p. 4/18



Basics of Dynamic Logic

Dynamic Logic (DL) (David Harel, Dexter Kozen, Jerzy
Tiuryn, 1984) was designed to reason about programs.
DL combines

First Order Predicate Logic

Modal Logic

Algebra of Linear Events

Usually, the truth value of a formula φ is determined by a
valuation of the free variables. The valuation though is
immutable.
DL instead features syntactic constructs to explicitly change
a valuation. These constructs are referred to as programs.
In this presentation I describe a special DL called JAVA
CARD DL, which is introduced by the referred paper.

Secure Information Flow by Theorem Proving · CIS KSU – p. 4/18



Basics of Dynamic Logic

Dynamic Logic (DL) (David Harel, Dexter Kozen, Jerzy
Tiuryn, 1984) was designed to reason about programs.
DL combines

First Order Predicate Logic

Modal Logic

Algebra of Linear Events

Usually, the truth value of a formula φ is determined by a
valuation of the free variables. The valuation though is
immutable.

DL instead features syntactic constructs to explicitly change
a valuation. These constructs are referred to as programs.
In this presentation I describe a special DL called JAVA
CARD DL, which is introduced by the referred paper.

Secure Information Flow by Theorem Proving · CIS KSU – p. 4/18



Basics of Dynamic Logic

Dynamic Logic (DL) (David Harel, Dexter Kozen, Jerzy
Tiuryn, 1984) was designed to reason about programs.
DL combines

First Order Predicate Logic

Modal Logic

Algebra of Linear Events

Usually, the truth value of a formula φ is determined by a
valuation of the free variables. The valuation though is
immutable.
DL instead features syntactic constructs to explicitly change
a valuation. These constructs are referred to as programs.

In this presentation I describe a special DL called JAVA
CARD DL, which is introduced by the referred paper.

Secure Information Flow by Theorem Proving · CIS KSU – p. 4/18



Basics of Dynamic Logic

Dynamic Logic (DL) (David Harel, Dexter Kozen, Jerzy
Tiuryn, 1984) was designed to reason about programs.
DL combines

First Order Predicate Logic

Modal Logic

Algebra of Linear Events

Usually, the truth value of a formula φ is determined by a
valuation of the free variables. The valuation though is
immutable.
DL instead features syntactic constructs to explicitly change
a valuation. These constructs are referred to as programs.
In this presentation I describe a special DL called JAVA
CARD DL, which is introduced by the referred paper.

Secure Information Flow by Theorem Proving · CIS KSU – p. 4/18



Modalities of JAVA CARD DL

DL offers two modalities for every program p:

〈p〉 refers to the state (if p terminates) that is reached by
running p.
The program formula 〈p〉φ hence expresses that p
terminates in a state in which φ holds.

Its dual [p]φ ≡ ¬〈p〉¬φ expresses that 〈p〉 either diverges
or terminates in a state in which φ holds.

The [.] modality is not yet implemented in the presented
analysis system’s backbone, the KeY Theorem Prover.

For technical reasons there is also the update
{loc :=val} which has the same semantics as
〈loc = val;〉, only that the evaluation of val cannot have
side effects.

Secure Information Flow by Theorem Proving · CIS KSU – p. 5/18



Modalities of JAVA CARD DL

DL offers two modalities for every program p:

〈p〉 refers to the state (if p terminates) that is reached by
running p.
The program formula 〈p〉φ hence expresses that p
terminates in a state in which φ holds.

Its dual [p]φ ≡ ¬〈p〉¬φ expresses that 〈p〉 either diverges
or terminates in a state in which φ holds.

The [.] modality is not yet implemented in the presented
analysis system’s backbone, the KeY Theorem Prover.

For technical reasons there is also the update
{loc :=val} which has the same semantics as
〈loc = val;〉, only that the evaluation of val cannot have
side effects.

Secure Information Flow by Theorem Proving · CIS KSU – p. 5/18



Modalities of JAVA CARD DL

DL offers two modalities for every program p:

〈p〉 refers to the state (if p terminates) that is reached by
running p.
The program formula 〈p〉φ hence expresses that p
terminates in a state in which φ holds.

Its dual [p]φ ≡ ¬〈p〉¬φ expresses that 〈p〉 either diverges
or terminates in a state in which φ holds.

The [.] modality is not yet implemented in the presented
analysis system’s backbone, the KeY Theorem Prover.

For technical reasons there is also the update
{loc :=val} which has the same semantics as
〈loc = val;〉, only that the evaluation of val cannot have
side effects.

Secure Information Flow by Theorem Proving · CIS KSU – p. 5/18



Modalities of JAVA CARD DL

DL offers two modalities for every program p:

〈p〉 refers to the state (if p terminates) that is reached by
running p.
The program formula 〈p〉φ hence expresses that p
terminates in a state in which φ holds.

Its dual [p]φ ≡ ¬〈p〉¬φ expresses that 〈p〉 either diverges
or terminates in a state in which φ holds.

The [.] modality is not yet implemented in the presented
analysis system’s backbone, the KeY Theorem Prover.

For technical reasons there is also the update
{loc :=val} which has the same semantics as
〈loc = val;〉, only that the evaluation of val cannot have
side effects.

Secure Information Flow by Theorem Proving · CIS KSU – p. 5/18



Modalities of JAVA CARD DL

DL offers two modalities for every program p:

〈p〉 refers to the state (if p terminates) that is reached by
running p.
The program formula 〈p〉φ hence expresses that p
terminates in a state in which φ holds.

Its dual [p]φ ≡ ¬〈p〉¬φ expresses that 〈p〉 either diverges
or terminates in a state in which φ holds.

The [.] modality is not yet implemented in the presented
analysis system’s backbone, the KeY Theorem Prover.

For technical reasons there is also the update
{loc :=val} which has the same semantics as
〈loc = val;〉, only that the evaluation of val cannot have
side effects.

Secure Information Flow by Theorem Proving · CIS KSU – p. 5/18



Variable Types in DL

program variables are simply the locations used in the
programs. Program variables can be updated, their
interpretation varies with the program state.

logic variables the quantified variables. Logic variables
cannot be updated.

metavariables are introduced in the skolemization
process.

Note: quantification over program variables is illegal in JAVA

CARD DL.
To express the quantification ∀x.〈p(x)〉ψ(x), we hence have
to write

〈int x;〉(∀l : int .{x := l}〈p(x)〉ψ(l , x))

Secure Information Flow by Theorem Proving · CIS KSU – p. 6/18



Variable Types in DL

program variables are simply the locations used in the
programs. Program variables can be updated, their
interpretation varies with the program state.

logic variables the quantified variables. Logic variables
cannot be updated.

metavariables are introduced in the skolemization
process.

Note: quantification over program variables is illegal in JAVA

CARD DL.
To express the quantification ∀x.〈p(x)〉ψ(x), we hence have
to write

〈int x;〉(∀l : int .{x := l}〈p(x)〉ψ(l , x))

Secure Information Flow by Theorem Proving · CIS KSU – p. 6/18



Variable Types in DL

program variables are simply the locations used in the
programs. Program variables can be updated, their
interpretation varies with the program state.

logic variables the quantified variables. Logic variables
cannot be updated.

metavariables are introduced in the skolemization
process.

Note: quantification over program variables is illegal in JAVA

CARD DL.
To express the quantification ∀x.〈p(x)〉ψ(x), we hence have
to write

〈int x;〉(∀l : int .{x := l}〈p(x)〉ψ(l , x))

Secure Information Flow by Theorem Proving · CIS KSU – p. 6/18



Variable Types in DL

program variables are simply the locations used in the
programs. Program variables can be updated, their
interpretation varies with the program state.

logic variables the quantified variables. Logic variables
cannot be updated.

metavariables are introduced in the skolemization
process.

Note: quantification over program variables is illegal in JAVA

CARD DL.
To express the quantification ∀x.〈p(x)〉ψ(x), we hence have
to write

〈int x;〉(∀l : int .{x := l}〈p(x)〉ψ(l , x))

Secure Information Flow by Theorem Proving · CIS KSU – p. 6/18



Variable Types in DL

program variables are simply the locations used in the
programs. Program variables can be updated, their
interpretation varies with the program state.

logic variables the quantified variables. Logic variables
cannot be updated.

metavariables are introduced in the skolemization
process.

Note: quantification over program variables is illegal in JAVA

CARD DL.

To express the quantification ∀x.〈p(x)〉ψ(x), we hence have
to write

〈int x;〉(∀l : int .{x := l}〈p(x)〉ψ(l , x))

Secure Information Flow by Theorem Proving · CIS KSU – p. 6/18



Variable Types in DL

program variables are simply the locations used in the
programs. Program variables can be updated, their
interpretation varies with the program state.

logic variables the quantified variables. Logic variables
cannot be updated.

metavariables are introduced in the skolemization
process.

Note: quantification over program variables is illegal in JAVA

CARD DL.
To express the quantification ∀x.〈p(x)〉ψ(x),

we hence have
to write

〈int x;〉(∀l : int .{x := l}〈p(x)〉ψ(l , x))

Secure Information Flow by Theorem Proving · CIS KSU – p. 6/18



Variable Types in DL

program variables are simply the locations used in the
programs. Program variables can be updated, their
interpretation varies with the program state.

logic variables the quantified variables. Logic variables
cannot be updated.

metavariables are introduced in the skolemization
process.

Note: quantification over program variables is illegal in JAVA

CARD DL.
To express the quantification ∀x.〈p(x)〉ψ(x), we hence have
to write

〈int x;〉(∀l : int .{x := l}〈p(x)〉ψ(l , x))

Secure Information Flow by Theorem Proving · CIS KSU – p. 6/18



Comparison to Hoare Logic

The DL formula φ→ 〈p〉ψ is similar to the total correctness
Hoare triple {φ}p{ψ} (C. A. R. Hoare. An axiomatic basis for
computer programming. ACM 1969)

In Hoare Logic, quantifiers are only allowed within the
assertions, quantification over program variables is not
possible.

Hoare Logic does not provide for characterization of
termination behavior.

Secure Information Flow by Theorem Proving · CIS KSU – p. 7/18



Comparison to Hoare Logic

The DL formula φ→ 〈p〉ψ is similar to the total correctness
Hoare triple {φ}p{ψ} (C. A. R. Hoare. An axiomatic basis for
computer programming. ACM 1969)

In Hoare Logic, quantifiers are only allowed within the
assertions, quantification over program variables is not
possible.

Hoare Logic does not provide for characterization of
termination behavior.

Secure Information Flow by Theorem Proving · CIS KSU – p. 7/18



Comparison to Hoare Logic

The DL formula φ→ 〈p〉ψ is similar to the total correctness
Hoare triple {φ}p{ψ} (C. A. R. Hoare. An axiomatic basis for
computer programming. ACM 1969)

In Hoare Logic, quantifiers are only allowed within the
assertions, quantification over program variables is not
possible.

Hoare Logic does not provide for characterization of
termination behavior.

Secure Information Flow by Theorem Proving · CIS KSU – p. 7/18



Example 1

Consider two variables h and l. We want to express that no
information flows from h to l:

〈int l; int h;〉(∀x : int .∃r : int .∀y :
int .{l := x}{h := y}〈p〉r = l)

Remember that the update has pure technical reasons. For
the presentation we can write:

∀l.∃r .∀h.〈p〉r = l

Secure Information Flow by Theorem Proving · CIS KSU – p. 8/18



Example 1

Consider two variables h and l. We want to express that no
information flows from h to l:

〈int l; int h;〉(∀x : int .∃r : int .∀y :
int .{l := x}{h := y}〈p〉r = l)

Remember that the update has pure technical reasons. For
the presentation we can write:

∀l.∃r .∀h.〈p〉r = l

Secure Information Flow by Theorem Proving · CIS KSU – p. 8/18



Example 1

Consider two variables h and l. We want to express that no
information flows from h to l:

〈int l; int h;〉(∀x : int .∃r : int .∀y :
int .{l := x}{h := y}〈p〉r = l)

Remember that the update has pure technical reasons. For
the presentation we can write:

∀l.∃r .∀h.〈p〉r = l

Secure Information Flow by Theorem Proving · CIS KSU – p. 8/18



Example 2

In addition to the independence of the result value r from
any validation of the variable h we want to express that no
information about h leaks from the termination behavior of
〈p〉.

∀l.(∃h.〈p〉true →∃r .∀h.〈p〉r = l)

Note that this formula contains an implicit use of the [.]
modality and can therefore not be handled by the present
implementation of KeY.

Secure Information Flow by Theorem Proving · CIS KSU – p. 9/18



Example 2

In addition to the independence of the result value r from
any validation of the variable h we want to express that no
information about h leaks from the termination behavior of
〈p〉.

∀l.∃r .∀h.〈p〉r = l

∀l.(∃h.〈p〉true →∃r .∀h.〈p〉r = l)

Note that this formula contains an implicit use of the [.]
modality and can therefore not be handled by the present
implementation of KeY.

Secure Information Flow by Theorem Proving · CIS KSU – p. 9/18



Example 2

In addition to the independence of the result value r from
any validation of the variable h we want to express that no
information about h leaks from the termination behavior of
〈p〉.

∀l.(∃h.〈p〉true →∃r .∀h.〈p〉r = l)

Note that this formula contains an implicit use of the [.]
modality and can therefore not be handled by the present
implementation of KeY.

Secure Information Flow by Theorem Proving · CIS KSU – p. 9/18



Example 2

In addition to the independence of the result value r from
any validation of the variable h we want to express that no
information about h leaks from the termination behavior of
〈p〉.

∀l.(∃h.〈p〉true →∃r .∀h.〈p〉r = l)

Note that this formula contains an implicit use of the [.]
modality and can therefore not be handled by the present
implementation of KeY.

Secure Information Flow by Theorem Proving · CIS KSU – p. 9/18



The KeY Theorem Prover

Secure Information Flow by Theorem Proving · CIS KSU – p. 10/18



The KeY Theorem Prover

Available at www.key-project.org

User guided proof search

Extensible with user defined taclets
Combination of primitive rules and tactics.
Can easily be added to the system.

Proof goals are implicitly negated. If all goals can be
completed, then the security is proven, if goals remain
open, then the program is insecure.

Existentially quantified variables (which become
universally quantified through implicit negation) are
replaced by meta variables, so that they can be
instantiated later (delayed instantiation).

Secure Information Flow by Theorem Proving · CIS KSU – p. 11/18



The KeY Theorem Prover

Available at www.key-project.org

User guided proof search

Extensible with user defined taclets
Combination of primitive rules and tactics.
Can easily be added to the system.

Proof goals are implicitly negated. If all goals can be
completed, then the security is proven, if goals remain
open, then the program is insecure.

Existentially quantified variables (which become
universally quantified through implicit negation) are
replaced by meta variables, so that they can be
instantiated later (delayed instantiation).

Secure Information Flow by Theorem Proving · CIS KSU – p. 11/18



The KeY Theorem Prover

Available at www.key-project.org

User guided proof search

Extensible with user defined taclets
Combination of primitive rules and tactics.
Can easily be added to the system.

Proof goals are implicitly negated. If all goals can be
completed, then the security is proven, if goals remain
open, then the program is insecure.

Existentially quantified variables (which become
universally quantified through implicit negation) are
replaced by meta variables, so that they can be
instantiated later (delayed instantiation).

Secure Information Flow by Theorem Proving · CIS KSU – p. 11/18



The KeY Theorem Prover

Available at www.key-project.org

User guided proof search

Extensible with user defined taclets
Combination of primitive rules and tactics.
Can easily be added to the system.

Proof goals are implicitly negated. If all goals can be
completed, then the security is proven, if goals remain
open, then the program is insecure.

Existentially quantified variables (which become
universally quantified through implicit negation) are
replaced by meta variables, so that they can be
instantiated later (delayed instantiation).

Secure Information Flow by Theorem Proving · CIS KSU – p. 11/18



The KeY Theorem Prover

Available at www.key-project.org

User guided proof search

Extensible with user defined taclets
Combination of primitive rules and tactics.
Can easily be added to the system.

Proof goals are implicitly negated. If all goals can be
completed, then the security is proven, if goals remain
open, then the program is insecure.

Existentially quantified variables (which become
universally quantified through implicit negation) are
replaced by meta variables, so that they can be
instantiated later (delayed instantiation).

Secure Information Flow by Theorem Proving · CIS KSU – p. 11/18



Application of the Framework

Secure Information Flow by Theorem Proving · CIS KSU – p. 12/18



A Toy Example

To prove the formula ∀l.∃r .∀h.〈p〉r = l it has to be negated:

∃l.∀r .∃h.〈p〉r 6= l

The paper claims that the program “l = h;” can be proven
insecure in 14 steps without user interaction. I was not yet
able to reproduce the proof and the paper does not give any
further information but the goal which fails:

∃r.∀h.r = h

Secure Information Flow by Theorem Proving · CIS KSU – p. 13/18



A Toy Example

To prove the formula ∀l.∃r .∀h.〈p〉r = l it has to be negated:
∃l.∀r .∃h.〈p〉r 6= l

The paper claims that the program “l = h;” can be proven
insecure in 14 steps without user interaction. I was not yet
able to reproduce the proof and the paper does not give any
further information but the goal which fails:

∃r.∀h.r = h

Secure Information Flow by Theorem Proving · CIS KSU – p. 13/18



A Toy Example

To prove the formula ∀l.∃r .∀h.〈p〉r = l it has to be negated:
∃l.∀r .∃h.〈p〉r 6= l

The paper claims that the program “l = h;” can be proven
insecure in 14 steps without user interaction. I was not yet
able to reproduce the proof and the paper does not give any
further information but the goal which fails:

∃r.∀h.r = h

Secure Information Flow by Theorem Proving · CIS KSU – p. 13/18



More Realistic

The following example is considered in the paper:
class Account {

private int balance;

public boolean extraService;

private void writeBalance (int amount) {

if (amount >= 10000) extraService = true;

else extraService = false;

balance = amount; }

...

Secure Information Flow by Theorem Proving · CIS KSU – p. 14/18



More Realistic
...

private int readBalance () {

return balance; }

public boolean readExtra () {

return extraService; }

}

Secure Information Flow by Theorem Proving · CIS KSU – p. 15/18



More Realistic

We formalize the goal:

〈Account o = new Account (); int amount; boolean result;〉

∀e : boolean.∃r : boolean.∀a : int .

{o.extraService := e}{amount := a}
〈o.writeBalance(amount); result = o.readExtra();〉
r = result

Secure Information Flow by Theorem Proving · CIS KSU – p. 16/18



More Realistic

We formalize the goal:
〈Account o = new Account (); int amount; boolean result;〉

∀e : boolean.∃r : boolean.∀a : int .

{o.extraService := e}{amount := a}
〈o.writeBalance(amount); result = o.readExtra();〉
r = result

Secure Information Flow by Theorem Proving · CIS KSU – p. 16/18



More Realistic

We formalize the goal:
〈Account o = new Account (); int amount; boolean result;〉

∀e : boolean.∃r : boolean.∀a : int .

{o.extraService := e}{amount := a}
〈o.writeBalance(amount); result = o.readExtra();〉
r = result

Secure Information Flow by Theorem Proving · CIS KSU – p. 16/18



More Realistic

We formalize the goal:
〈Account o = new Account (); int amount; boolean result;〉

∀e : boolean.∃r : boolean.∀a : int .

{o.extraService := e}{amount := a}

〈o.writeBalance(amount); result = o.readExtra();〉
r = result

Secure Information Flow by Theorem Proving · CIS KSU – p. 16/18



More Realistic

We formalize the goal:
〈Account o = new Account (); int amount; boolean result;〉

∀e : boolean.∃r : boolean.∀a : int .

{o.extraService := e}{amount := a}
〈o.writeBalance(amount); result = o.readExtra();〉

r = result

Secure Information Flow by Theorem Proving · CIS KSU – p. 16/18



More Realistic

We formalize the goal:
〈Account o = new Account (); int amount; boolean result;〉

∀e : boolean.∃r : boolean.∀a : int .

{o.extraService := e}{amount := a}
〈o.writeBalance(amount); result = o.readExtra();〉
r = result

Secure Information Flow by Theorem Proving · CIS KSU – p. 16/18



Exceptions

The following example is considered in the paper:
l = true;

try {

if (h) trow new Exception ();

l = false;

}

catch (Exception e) {}

Secure Information Flow by Theorem Proving · CIS KSU – p. 17/18



Exceptions

Again, we formalize the goal:

〈boolean l; boolean h;〉
∀x : boolean.∃r : boolean.∀a : boolean.

{l := x}{h := y}
〈p〉
r = l

Secure Information Flow by Theorem Proving · CIS KSU – p. 18/18



Exceptions

Again, we formalize the goal:
〈boolean l; boolean h;〉

∀x : boolean.∃r : boolean.∀a : boolean.

{l := x}{h := y}
〈p〉
r = l

Secure Information Flow by Theorem Proving · CIS KSU – p. 18/18



Exceptions

Again, we formalize the goal:
〈boolean l; boolean h;〉
∀x : boolean.∃r : boolean.∀a : boolean.

{l := x}{h := y}
〈p〉
r = l

Secure Information Flow by Theorem Proving · CIS KSU – p. 18/18



Exceptions

Again, we formalize the goal:
〈boolean l; boolean h;〉
∀x : boolean.∃r : boolean.∀a : boolean.

{l := x}{h := y}

〈p〉
r = l

Secure Information Flow by Theorem Proving · CIS KSU – p. 18/18



Exceptions

Again, we formalize the goal:
〈boolean l; boolean h;〉
∀x : boolean.∃r : boolean.∀a : boolean.

{l := x}{h := y}
〈p〉

r = l

Secure Information Flow by Theorem Proving · CIS KSU – p. 18/18



Exceptions

Again, we formalize the goal:
〈boolean l; boolean h;〉
∀x : boolean.∃r : boolean.∀a : boolean.

{l := x}{h := y}
〈p〉
r = l

Secure Information Flow by Theorem Proving · CIS KSU – p. 18/18


	Overview
	Overview
	Overview
	Overview
	Overview
	Overview
	Overview

	hypertarget {STRUCTURE}Structure of the Dynamic Logic
	Basics of Dynamic Logic
	Basics of Dynamic Logic
	Basics of Dynamic Logic
	Basics of Dynamic Logic
	Basics of Dynamic Logic
	Basics of Dynamic Logic
	Basics of Dynamic Logic
	Basics of Dynamic Logic

	Modalities of 	extsc {Java Card} DL {}
	Modalities of 	extsc {Java Card} DL {}
	Modalities of 	extsc {Java Card} DL {}
	Modalities of 	extsc {Java Card} DL {}
	Modalities of 	extsc {Java Card} DL {}

	Variable Types in DL 
	Variable Types in DL 
	Variable Types in DL 
	Variable Types in DL 
	Variable Types in DL 
	Variable Types in DL 
	Variable Types in DL 

	Comparison to Hoare Logic
	Comparison to Hoare Logic
	Comparison to Hoare Logic

	Example 1
	Example 1
	Example 1

	Example 2
	Example 2
	Example 2
	Example 2

	hypertarget {KEY}The emph {KeY} Theorem Prover
	The KeY Theorem Prover
	The KeY Theorem Prover
	The KeY Theorem Prover
	The KeY Theorem Prover
	The KeY Theorem Prover

	hypertarget {APPLICATION}Application of the Framework
	A Toy Example
	A Toy Example
	A Toy Example

	More Realistic
	More Realistic
	More Realistic
	More Realistic
	More Realistic
	More Realistic
	More Realistic
	More Realistic

	Exceptions
	Exceptions
	Exceptions
	Exceptions
	Exceptions
	Exceptions
	Exceptions


