
A Theorem Proving Approach to Analysis of

Secure Information Flow?

Ádám Darvas1, Reiner Hähnle2, and David Sands2

1 Swiss Federal Institute of Technology (ETH), Zurich. Adam.Darvas@inf.ethz.ch
2 Chalmers University of Technology, Sweden. {reiner,dave}@cs.chalmers.se

Abstract. Most attempts at analysing secure information flow in pro-
grams are based on domain-specific logics. Though computationally fea-
sible, these approaches suffer from the need for abstraction and the high
cost of building dedicated tools for real programming languages. We re-
cast the information flow problem in a general program logic rather than
a problem-specific one. We investigate the feasibility of this approach by
showing how a general purpose tool for software verification can be used
to perform information flow analyses. We are able to prove security and
insecurity of programs including advanced features such as method calls,
loops, and object types for the target language Java Card. In addition,
we can express declassification of information.

1 Introduction

By understanding the way that information flows from inputs to outputs in a
program, one can understand whether a program satisfies a certain confidential-
ity policy regarding the information that it manipulates. If there is no informa-
tion flow from confidential inputs to publicly observable outputs—either directly
or indirectly via e.g. control flow—then the program may be considered to be
secure.

An appealing property of information flow is that it can be described in-
dependently of a particular mechanism for enforcing it. This is useful because
in fact the dynamic enforcement of information flow is tricky; information can
flow not only directly as in “public.output(secret);” but also indirectly, as
in “if (secret==0) public.output(1);” or even (using an arithmetic excep-
tion) “tmp = 1/secret; public.output(1);”. Denning [7] pioneered an ap-
proach to determining whether a program satisfies a given information flow
policy using static analysis. Since then (in particularly in the last 5-6 years)
research in the area of information-flow analysis for programs has flourished.
For an excellent overview see [17].

Most attempts at analysing secure information flow in programs have followed
basically the same pattern: information flow is modeled using a domain-specific
logic (such as a type system or dataflow analysis framework) with a predefined

? A preliminary short version of this paper appeared in WITS’03, Workshop on Issues
in the Theory of Security, April 2003. There is no formally published proceedings
for this workshop; the programme with links to papers is currently available on line,
but not in a permanently archived form.



degree of approximation, and this leads to a fully automated but approximate
analysis of information flow. There are two problems stemming from this ap-
proach. Firstly, the degree of approximation in the logic is fixed and thus many
secure programs will be rejected unless they can be suitably rewritten. Secondly,
implementing a domain-specific tool for a real programming language is a sub-
stantial undertaking, and thus there are very few real-language tools available
[17]. Furthermore, these two problems interact: realistic languages possess fea-
tures that are omitted in theoretical studies but which can prove increasingly
difficult to analyse statically with acceptable precision.

This paper investigates a promising alternative approach based on the use of
a general program logic and theorem prover:

– We recast the information flow problem in a general program logic rather
than a problem-specific one. Program logics based on simple safety and live-
ness properties (e.g. Hoare logic or weakest precondition calculus) are inad-
equate for this purpose, since only the most simple information flow proper-
ties can be expressed. Our approach is to use dynamic logic, which admits
a more elegant and far-reaching characterisation of secure information flow
for deterministic programs.

– We investigate the feasibility of the approach by showing how a general pur-
pose theorem proving tool for software verification (based on dynamic logic)
can be used to perform information flow analyses. So far, our examples are
relatively small, but we are able to handle phenomena like partial termi-
nation, method calls, loops, and object types. We are also able to prove
insecurity of programs and to express declassification of information.

2 Modeling Secure Information Flow in Dynamic Logic

The platform for our experiments is the KeY tool [1], which features an interac-
tive theorem prover for formal verification of Java Card programs.3

2.1 A Dynamic Logic for Java Card

In KeY, the target program to be verified and its specification are both modeled
in an instance of dynamic logic (DL) [11] called Java Card DL [3]. Java

Card DL extends variants of DL used so far for theoretical investigations [11]
or verification purposes [2], because it handles such phenomena as side effects,
aliasing, object types, exceptions, finite integer types, as partly explained below.
Other programming languages than Java Card could be axiomatized in DL.
Once this is done, the KeY tool can then be used on them.

Deduction in Java Card DL is based on symbolic program execution and
simple program transformations and is, thus, close to a programmer’s under-
standing of Java. It can be seen as a modal logic with a modality 〈p〉 for every
program p, where 〈p〉 refers to the state (if p terminates) that is reached by
running program p.

3 Another tool that could have been used is the KIV system [19].



The program formula 〈p〉φ expresses that the program p terminates in a state
in which φ holds. A formula φ → 〈p〉ψ is valid if for every state s satisfying
precondition φ a run of the program p starting in s terminates, and in the
terminating state the postcondition ψ holds.

Thus, the DL formula φ → 〈p〉ψ is similar to the total-correctness Hoare
triple {φ} p {ψ} or to φ implying the weakest precondition of p wrt ψ. But in
contrast to Hoare logic and weakest precondition calculus (wpc), the set of for-
mulas of DL is closed under the usual logical operators and first order quantifiers.
For example, in Hoare logic and wpc the formulas φ and ψ are pure first-order
formulas, whereas in DL they can contain programs. In general, program formu-
las can appear anywhere in DL as subformulas.

In addition, Java Card DL includes the dual operator [·] , for which [p]φ ≡
¬〈p〉 ¬φ, with the semantics: p either terminates in a state in which φ holds or it
diverges. In the KeY tool the [·] operator will be supported in the near future.

The programs in Java Card DL formulas are basically executable Java

Card code. Each rule of the calculus for Java Card DL specifies how to execute
one particular statement, possibly with additional restrictions. When a loop or
a recursive method call is encountered, it is necessary to perform induction over
a suitable data structure.

In Java (like in other object-oriented programming languages), different ob-
ject variables can refer to the same object. This phenomenon, called aliasing,
causes serious difficulties for handling of assignments in a calculus for Java

Card DL. For example, whether or not a formula “o1.a = 1” still holds after
the (symbolic) execution of the assignment “o2.a = 2;”, depends on whether or
not o1 and o2 refer to the same object.

Therefore, Java assignments cannot be symbolically executed by syntactic
substitution. In Java Card DL calculus a different solution is used, based on
the notion of (state) updates. These updates are of the form {loc:=val} and
can be put in front of any formula. The semantics of {loc:=val}φ is the same
as that of 〈loc = val;〉φ, but val is syntactically restricted in such a way that
computing its value has no side effects: loc is either (i) a program variable var,
or (ii) a field access obj.attr, or (iii) an array access arr[i]; and val is a logical
term (that is free of side effects). More complex expressions are not allowed in
updates. Such expressions are first decomposed into a sequence of updates when
they occur.

The KeY system has simplification rules to compute the result of applying an
update to logical terms and program-free formulas. Computing the effect of an
update on any program p (that is, a formula 〈p〉φ) is delayed until p was symbol-
ically executed using other rules of the calculus. Thus, case distinctions on object
identity are not merely delayed, but can often be avoided altogether, because
(i) updates are simplified before their effect is computed and (ii) their effect is
computed when maximal information is available (after symbolic execution of
the program).

There is another important usage of updates. In Java Card DL there are
three different types of variables: metavariables, program (local) variables, and



logic variables.4 Metavariables, as explained in Section 2.2, are merely placehold-
ers for ground terms. Program variables can occur in program parts of a formula
as well as outside program parts. Syntactically, they are constants of the logic.
Their semantic interpretation varies with the program execution state. Logic
variables occur only bound (quantified) and never in programs. Syntactically,
they are variables of the logic. Their semantic interpretation is rigid in the sense
that it refers to one particular program state. This is necessary to refer to values
of program variables in different program states within the same formula. Hence,
in Java Card DL quantification over program variables like “∀x. 〈p{x}〉ψ{x}”
is syntactically illegal.

Updates remedy this problem. Suppose we want to quantify over x of type
integer. We declare an integer program variable px, quantify over a logic variable
of type integer lx, and use an update to assign the value of lx to px:

〈int px;〉 (∀lx : int. {px:=lx}〈p{px}〉ψ{lx, px}) (1)

2.2 Automated Proof Search in KeY

Like other interactive theorem provers for software verification, the proving pro-
cess in KeY is partially automated by heuristic control of applicable rules. In
particular, the KeY theorem prover features a metavariable mechanism that
makes elimination of universal quantifiers potentially more efficient: whenever a
universally quantified formula (that is a positive formula of the form5 ∀x.φ{x} or
a negated existential formula) is encountered, then the standard quantifier elim-
ination rules in first order logic allow to derive, for example, φ{t} from ∀x.φ{x}
for any ground term t. This leads to an infinite local search space and, typically,
forces user interaction in order to obtain a term t that advances the proof.

In automated theorem proving (but only in few interactive theorem provers)
it is standard practice to use so-called free variables or metavariables instead [9].
Instead of φ{t} one derives a formula of the form φ{X}, whereX is a placeholder
for a ground term t. The point is that the determination of t can thus be delayed
to a later stage in the proof when a useful value for it becomes obvious.6 This
technique is implemented in the KeY prover. With it, many (but not all) user
interactions due to quantifier elimination are no longer necessary. Below we will
see that in the present application, the metavariable technique is particularly
important.

2.3 Secure Information Flow Expressed in Dynamic Logic

We use the greater expressiveness of DL as compared to Hoare logic and wpc
to give a very natural logic modeling of secure information flow. Let l be the
low-security variables of program p and h the high-security ones. We want to

4 The distinction between program and logic variables is forced by side effects in
imperative programming languages like Java. It is not present in “pure” DL [11].

5 The notation φ{x}, p{x} emphasizes occurrence of variables in formulas or programs.
6 To ensure correctness, the skolemization rules that eliminate existential quantifiers

must, of course, take into account possible dependency on metavariables present.



express that by observing the initial and final values of l, it is impossible to
know anything about the initial value of h [6]. In other words:

“When starting p with arbitrary values l, then the value r of l after
executing p, is independent of the choice of h.”

This can be directly formulated in standard DL:

∀l. ∃r. ∀h. 〈p〉 r
.
= l (2)

To illustrate our formulation in Java Card DL, assume that all variables are
of type integer and (where necessary) program variables and logic variables are
prefixed by “p” and “l”, respectively. Using (1), we obtain the following Java

Card DL version of (2):

〈int pl; int ph;〉 (∀ ll:int. ∃ r:int. ∀ lh:int. {pl:=ll}{ph:=lh}〈p〉 r
.
= pl)

For sake of readability we use the simpler DL notation (2) in the rest of the
paper, unless the actual Java Card DL formulation is of interest.

Dynamic Logic vs Hoare Logic The closest approach to ours is by Joshi &
Leino [12, Cor. 3] who arrive at a characterisation of secure information flow in
Hoare logic that resembles (2). The target language of [12] is a toy language,
and nothing was implemented or even mechanized. A crucial limitation of Hoare
logic is that quantifiers can only occur within an assertion, hence quantifiers that
range over program variables or both pre- and postcondition have to be elim-
inated before one obtains a Hoare triple. In consequence, the existential result
variable r in (2) needs to be replaced by the user with a concrete function. Other
limitations of Hoare logic that we overcome with dynamic logic are character-
ization of information leakage by termination behaviour, proving insecurity of
programs, and declassification.

Information Leakage by Termination Behaviour In DL we can easily
express the additional requirement that no information on the value of h shall
be leaked by p’s termination behaviour:

∀ l. (∃ h. 〈p〉 true→ ∃ r. ∀ h. 〈p〉 r
.
= l) (3)

In addition to (2) this expresses that, for any choice of l, if p terminates for
some initial value of h, then it terminates for all values.

This formula contains an implicit occurrence of the modality [·] . Therefore,
with the current version of the prover this formula cannot be used.

3 Interactive Proving of Secure Information Flow

In our experiments, we considered only problems of the form (2) (it is unneces-
sary to use form (3), because our examples are all terminating, so the antecedent
of the implication is true for all values of h).



3.1 Simple Programs

We start demonstrating the feasibility of our approach with some examples taken
from papers [12, 17]. Table 1 shows the example programs with the corresponding
number of rules applied in the KeY system. Note that l, h, and r are single
variables in each case.

program rules applied

l=h; 7
h=l; 11
l=6; 11

l=h; l=6; 12
h=l; l=h; 12

program rules applied

l=h; l=l-h; 14
if (false) l=h; 16

if (h>=0) l=1; else l=0; 21
if (h==1) l=1; else l=0; l=0; 33

Table 1. Simple programs.

When evaluating the data one must keep in mind that we used the KeY
prover as it comes. The KeY system features so-called taclets [10], a simple,
yet powerful mechanism by virtue of which users can extend the prover with
application specific rules and heuristics.

As is usual in the context of a mechanical sequent proof, the proof obligation
is implicitly negated, so that ∀ quantifiers are treated as existential quantifiers
and ∃ as universal ones. Therefore, the ∀ quantifiers in (2) are simply eliminated
by skolemization, while r must be, in principle, instantiated by the user with the
result value of l after p did terminate (e.g., 6 in program “l = 6;”). Thanks to
the metavariable mechanism, this interaction can mostly be avoided by delaying
the instantiation until a point when the heuristics are able to find the required
instance automatically (that is, after symbolic execution of p).

In fact, none of the proofs on these examples required user interaction and
all proofs were obtained within fractions of a second.

If a program is secure, then the DL formula (2) is provable. For insecure
programs the proof cannot be completed, and there will be one or more open
goal. Among our examples there are two insecure programs. In these cases the
prover cannot find a proper instantiation for r. Furthermore, if we switch off
the metavariable mechanism the prover stops at goals that remain open in an
attempt to prove security. Table 2 contains these goals (in this case one for each
program) and it is easy to observe that these formulas are indeed unprovable.
In fact, the open goals give a direct hint to the source of the security breach.

It is important to note that the number of applied rules (and user interac-
tions) does not increase more than linearly if we take the composition of two
programs. For example, to verify security of the program “h = l; l = 6;”, the
prover applies 12 rules. By comparison, to prove security of the constituents
“h = l;” and “l = 6;”, 11 rule applications are used in each case.

3.2 Proving Insecurity

To prove that the programs in Table 2 are insecure, the property of insecurity has
to be formalized. This can be done by simply taking the negation of formula (2).



program open goal

l=h; ∃r. ∀h. r
.
= h

if (h>=0) l=1; else l=0; ∃r. (∀h. (!(h < 0) → r
.
= 1) & ∀h. (h < 0 → r

.
= 0))

Table 2. Open goals for insecure programs.

The syntactic closure property of DL is crucial again here. Negating (2) and
straightforward simplification7 yields:

∃ l. ∀ r. ∃h. 〈p〉 r 6= l (4)

The intuitive meaning of the formula is the following:

“There is an initial value l, such that for any possible final value r of l
after executing p, there exists an initial value h which can prevent l from
taking that final value r.”

Program “l=h;” can be proved insecure in 14 steps without user interaction.
The proof on the second program takes 33 steps and requires two user interac-
tions: instantiation on h and running the integrated automatic theorem prover
Simplify [8] part of the ESC/Java tool. In the future this type of user interaction
will not be needed, since the run of Simplify will be activated automatically by
the heuristic control of KeY.

The property of insecurity can be adapted to include termination behaviour,
too. In this case (3) has to be negated:

∃ l. (∀ r. ∃h. 〈p〉 r 6= l ∨ (∃h. 〈p〉 true ∧ ∃h. [p] false)) (5)

The intuitive meaning of the formula is the following:

“There is an initial value l such that either there exists a value h for
which p terminates and h interferes with l or there exists a pair of h
values such that for one value p terminates and for the other value p

diverges.”

As mentioned before, currently the prover cannot handle modality [·] , thus for-
mulas of form (5) cannot be proved.

3.3 Loops

In this section we report on an experiment with a program containing a while

loop. The DL formula is the following:

∀ l. ∃ r. ∀ h. (h > 0 → 〈while (h > 0) {h−−; l = h; }〉 r
.
= l) (6)

The loop contains the insecure statement “l = h;” but the condition of exiting
the loop is h

.
= 0, thus the final value of l is always 0, independently of the

7 Using the fact that now we consider only terminating programs.



initial value of h. The precondition ensures that the body of the loop is executed
at least once.

To prove properties of programs containing loops requires in general to per-
form induction over a suitable induction variable. Finding the right induction
hypothesis is not an easy task, but once it is found, completing the proof is
usually a mechanical process; if one runs into problems, this is a hint, that the
hypothesis was not correct. Heuristic techniques to find induction hypotheses
are available in the literature and will be built into KeY in due time.

After the induction hypothesis is given to the prover, three open goals must
be proven: (i) after exiting the loop, the postcondition holds (induction base),
(ii) the induction step, (iii) the induction hypothesis implies the original subgoal.

To prove security of (6), the prover took 164 steps; in addition to establishing
the induction hypothesis, several user interactions were required of the following
kinds: instantiation, unwinding the loop and Simplify.

3.4 Using Object Types

Next we demonstrate that our approach applies to an object-oriented setting in
a natural way. The example presented here is taken from [13, Fig. 5.], where an
object (specified by its statechart diagram) leaks information of a high variable
through one of its operations. The corresponding Java implementation is:

class Account {
private int balance;
public boolean extraService;

private void writeBalance(int amount) {
if (amount >= 10000) extraService = true; else extraService = false;
balance = amount;

}
private int readBalance() {return balance;}
public boolean readExtra() {return extraService;}

}

The balance of an Account object can be written by the method writeBalance

and read by readBalance. If the balance is over 10000, variable extraService is set
to true, otherwise to false. The state of that variable can be read by readExtra.
The balance of the account and the return value of readBalance are secure,
whereas the value of extraService and the return value of readExtra are not.

The program is insecure, since partial information about the high-security
variable can be inferred via the observation of a low-security variable. That is,
calling writeBalancewith different parameters can lead to different observations
of the return value of readExtra.

To prove security and insecurity of this program, we continue to use (2)
and (4), respectively. We give the actual Java Card DL formula of security to
show how naturally objects are woven into the logic. Where necessary, we use



variables with object types in the logic (a detailed account on how to render
object types in first-order logic is [4]).

〈Account o = new Account(); int amount; boolean result;〉
∀ lextraService : boolean. ∃ r : boolean. ∀ lamount : int.
{o.extraService:=lextraService}{amount:=lamount}
〈o.writeBalance(amount); result=o.readExtra();〉 r

.
= result

The prover falls into an infinite search for proper instantiation on r, but by
disabling the search mechanism we get the following unprovable open goal after
65 rule applications:

∃ r : boolean. (∀ lamount : int. (!(lamount < 10000) → r
.
= TRUE) &

∀ lamount : int. (lamount < 10000 → r
.
= FALSE))

Insecurity of the program was proved in 120 steps without user interaction.

4 An Alternative Formulation of Secure Information

Flow in Dynamic Logic

There is a reformulation of the secure information flow property, which captures
it in an even more natural way than (2):

“Running two instances of p with equal low-security values and arbitrary
high-security values, the resulting low-security values are equal too.”

This can be rendered in DL as follows:

∀ l, l′, h, h′. (l
.
= l′ → 〈p{l, h}; p{l′, h′}〉 l

.
= l′) (7)

This approach can be used as is only when the two instances of p do not inter-
fere, that is, p{l, h} accesses only variables l and h. Otherwise, the remaining
environment must be preserved.

The number of branches in a proof for program p corresponds to the number
of symbolic execution paths that must be taken through it. Therefore, in the
worst case, the size of proofs for p; p′ is quadratic in the size of proofs for p.
Theorem 2 below alleviates this problem, but it is future research to find out
exactly when and how the increase can be avoided.

Theorem 1. If p modifies no variables or fields other than l and h, then equa-
tion (2) and (7) are equivalent.

It is worth noting that characterization (7) is probably the most suitable if one
is restricted to Hoare logic or wpc, because it translates directly into a Hoare
triple after elimination of universal quantifiers.

4.1 An Optimization

By exploiting the fact that the two program copies are identical (they just run on
different environments) we can significantly decrease the size of the state space
with the equivalent formula:

∀ l, l′. ∃ h. ∀ h′. (l
.
= l′ → 〈p{l, h}; p{l′, h′}〉 l

.
= l′) (8)



Theorem 2. Equation (7) and (8) are equivalent.

The existentially quantified value of h can be arbitrarily chosen and not bound
by the actual program p in hand. Thus, when a proof is carried out the user can
instantiate it to any value, for example to a value which makes the proof easier.
We will see an example of that in Section 4.2.

A further simplification in actual proofs is that precondition “l
.
= l′” can

be rendered in Java Card DL as two updates8 “{pl:=ll}{pl′:=ll}”. The first
update is needed anyway to enable the quantification over program variable l, as
illustrated by (1). Besides making the proofs somewhat shorter, this optimization
even eliminates otherwise inevitable manual instantiations in some cases.

Using the same idea as for the first approach, we can extend (8) to include
termination behaviour. And by taking the negation of that formula, we get the
formulation of insecurity including termination behaviour.

4.2 Examples

In this subsection we show how this approach performs on the example programs
from Section 3. On the simple programs in Table 1 the number of applied rules
increased, but in most cases not more than linearly. No user interaction was
needed. For the two insecure programs we get trivially unprovable goals again
and to prove them insecure we negate and simplify (8) to get the formula9 of
insecurity:

∃ l, l′. ∀ h. ∃ h′. (l
.
= l′ ∧ 〈p{l, h}; p{l′, h′}〉 l 6= l′) (9)

The automatic proof on program “l=h” takes 18 steps, while the number of
187 applied rules on the second insecure program increased more than threefold
compared to the result from the first approach. This is due to the search for a
proper instantiation of h′ by the prover which leads to a fully automatic proof.

Proving security of the Object Type example introduced in Section 3.4 leads
to an unprovable open goal after 191 steps, while insecurity can be proved in
317 steps without user interaction.

The example program containing the while loop is provable in 300 steps with
several user interactions of kinds: induction, unwinding the loop, instantiation
and Simplify. In the proof we exploit the fact that h can be instantiated to
any value (conforming the precondition “h>0”) as pointed out earlier. Thus, h
is instantiated with 1, hence, the first loop can be symbolically executed (by
unwinding the loop twice) without induction.

Among the example programs, the advantage of (8) compared to (7) is man-
ifested the most strongly by this example. If using (7), none of the loops can be
symbolically executed without providing an appropriate induction hypothesis,
moreover, two significantly differing hypotheses have to be given by the user.
Furthermore, the proof is considerably longer: 497 steps.

8 Prefixing logic and program variables with “l” and “p”, respectively.
9 In Java Card DL the first conjunct can be expressed via updates again.



5 Exceptions and Declassification

In this section we discuss two variations of the secure information flow problem
which are handled in a straightforward manner in dynamic logic, but can be
problematic in standard typed-based approaches.

The section also motivates the need of the Alternative Approach (7), which
may otherwise seem questionable, because it mostly leads to longer proofs as
program p has to be symbolically executed twice.

5.1 Exceptions

Exceptions provide the possibility of additional indirect information flows. The
presence or absence of an exception may reveal information about secret data,
either directly through the source of the exception—e.g. h = 1/h reveals whether
h is zero or not—or indirectly via the context in which the exception is thrown
(see the example below).

In the type system setting, the presence of exceptions can lead to rather
coarse approximations to the information flow, and lead to complications in the
type systems10 such as ad hoc rules to capture common idioms which would
otherwise give unacceptable approximations [16].

As an example of the kind of crude approximation that a type system is re-
quired to make, consider an expression such as “if (h 6= 0) h = 1/h;”. Avoiding
exceptional behaviour of this kind is a natural programming idiom. It is rather
easy for our approach to see that no exception can be raised by this program
fragment, and hence there is no potential information flow from the conditional
test to the exception or its absence. For example, the type rule of [20] requires
that the divisor is always of low security clearance to ensure that a divide-by-
zero exception can never lead to additional information flows—thus the above
program would not be allowed. The JFlow [14] and Flow Caml [16] systems both
contain a more fine grained treatment of exceptions, but are forced to assume
that an exception might be raised by the above code, thus potentially causing a
secure program to be branded as insecure.

Exceptions can, of course, easily lead to genuinely insecure programs. Since
Java Card DL fully models the Java Card semantics, the handling of ex-
ceptions poses no problem for our analysis. First we show a simple example
presented in [14]:

y = true;
try {

if (x) throw new Exception();
y = false;

}
catch(Exception e) {}

Assume x is a confidential and y is a public boolean variable. Then the program
is insecure since the code is equivalent to the assignment y = x.

10 And even errors, such as the error in Meyers’ framework uncovered by Pottier and
Simonet [15]



The program can be proved insecure using formulas (4) and (9) without user
interaction in 48 and 93 steps, respectively. When trying to prove security of the
program with formulas (2) and (7) we get trivially unprovable goals without any
user interaction.

When using the throw command or performing computations which may
raise exceptions, we might want to prove that exceptions are handled in a secure
way or that they cannot occur in our program. We illustrate these cases through
the simple program “h = l/h;”. Since the value of l is not changed the program
can only leak information about whether the initial value of h is 0 or not.

This is easily observed when we try to prove security of the program using
formula (2). The prover stops at the following open goal11:

h
.
= 0 → {var0:=obj 1| : ArithmeticException}〈throw var0;〉 r

.
= l

which describes exactly what we expected: if the value of h is 0, then there is an
uncaught exception of type ArithmeticException (denoted with symbol “| :”).

However, by modifying the program or the proof obligation we can prove the
program secure. One possibility is to handle the exception in a secure way, for
example, by leaving the value of h unchanged if the exception occurs:

try { h=l/h; } catch(ArithmeticException e) { }

Alternatively, we can add the precondition h 6= 0, thus avoiding the raise of the
exception. This leads directly to a proof that the program “if (h 6= 0) h = 1/h;”
is secure. Both cases are proved (using either approach) without user interaction.

5.2 Declassification

In certain cases programs need to leak some confidential information in order
to serve their intended purpose. Obviously we cannot prove security for such
programs, but we can establish some “conditional” security which bounds the
information leaked from a program. Cohen’s early work [6] on information flow
in programs introduces a notion of selective independence which captures this
idea, and this is generalised by e.g. the PER model [18].

For a program which leaks no information about h we observe that the low
output does not change as we vary the high input (as encoded fairly directly by
formulation (7)). The idea when describing the behaviour of “leaky” programs
is to characterize what is leaked and show that if the attacker already has this
information then nothing more is leaked.

Let us take a small example. Suppose that a Swedish national identity num-
ber, a ten digit natural number, is considered a secret. The identity number
encodes information such as the date of birth and the gender of the owner. Sup-
pose that a program handling identity numbers is permitted to leak the gender
of the owner12. For such a policy we wish to prove that if the gender is already

11 Slightly modified for easier reading.
12 The gender is encoded in the second from last digit: if the digit is odd then the

owner is male, otherwise female.



known then there is no additional information revealed about the personal num-
bers.

The basic idea is to represent attacker knowledge—in this example the knowl-
edge of gender—as a partition of the state space. In this concrete example the
state space is partitioned into two sets, M and F (the personal numbers corre-
sponding to males and females, respectively).

To prove that a program is secure under such a policy, following [6] we can
modify (7) to prove security for each partition:

∀ l, l′. ∀ h ∈ M. ∀ h′ ∈M. (l
.
= l′ → 〈p{l, h}; p{l′, h′}〉 l

.
= l′) ∧

∀ l, l′. ∀ h ∈ F. ∀ h′ ∈ F. (l
.
= l′ → 〈p{l, h}; p{l′, h′}〉 l

.
= l′)

or equivalently

∀ l, l′, h, h′. ((h ∈ M ∧ h′ ∈M) ∨ (h ∈ F ∧ h′ ∈ F ) →
(l

.
= l′ → 〈p{l, h}; p{l′, h′}〉 l

.
= l′))

A generalisation of this (which does not require the partition to be finite) is to
represent the partition as an equivalence relation.

Such preconditions can be obtained in a mechanized way in some cases.
Suppose that the domain D of the high value can be partitioned into a finite
number of subdomains: D = D1 ] D2 ] · · · ] Dn. Moreover, assume there are
formulas di(x) for 1 ≤ i ≤ n with exactly one free variable x such that the value
of x is in Di iff di(x) holds. Then also ∀x : D. d1(x)∨d2(x)∨ · · · ∨dn(x) holds.13

Now, if we add the precondition

(d1(h) ∧ d1(h
′)) ∨ (d2(h) ∧ d2(h

′)) ∨ · · · ∨ (dn(h) ∧ dn(h′)) (10)

to (7), then at most one subdomain for each given pair of h and h′ is selected
and the security property on that subdomain is checked. But since h and h′ are
universally quantified the formula checks in fact security of the whole domain of
h. Note that we cannot use (8) here, since that would verify only one subdomain.

Let us give two examples on the usage of (10). Suppose we can afford to
leak (a) the sign of h or (b) the least significant bit of h. Then we would add the
following preconditions:

(a). ((h ≥ 0) ∧ (h′ ≥ 0)) ∨ ((h < 0) ∧ (h′ < 0))

(b). ((h mod 2 ≡ 0) ∧ (h′ mod 2 ≡ 0)) ∨ ((h mod 2 ≡ 1) ∧ (h′ mod 2 ≡ 1)).

Obviously, precondition “hmod 2
.
= h′mod 2” merely is a simplification of (b).

To demonstrate declassification we proved that “if (h>=0) l=1; else l=0;”
does not leak out more information than the sign of h. We merely needed to add
precondition (a) to formula (7) and run the prover, which yields a proof in 96
steps without user interaction. Without the additional precondition, the program
is insecure, and a proof attempt terminates with the expected open goals.

By means of declassification, the following scenario can be envisaged: if prov-
ing security of a program fails, we analyse the open goal(s) to figure out the

13 As the Di form a partition of D, this is even true when ∨ is replaced by XOR.



source of the information leakage, that is, give an upper bound for the leakage.
After adding the declassifying precondition there are two possibilities: either the
proof can be completed, thus, we know an upper bound on the amount of infor-
mation leaked. If we can afford this leakage then we have a “relatively” secure
program. Otherwise, we have to find a lower upper bound and try the proof with
the corresponding precondition; if the proof still cannot be completed, then we
underestimated or miscalculated the amount of leakage and have to retry the
proof with a stronger or different precondition.

We note that declassification is also expressible with the first approach using
the following formulation:

∀l. ∃r. ∀h. (d1(h) → 〈p〉 r
.
= l) ∧ ∀l. ∃r. ∀h. (d2(h) → 〈p〉 r

.
= l)

∧ · · · ∧ ∀l. ∃r. ∀h. (dn(h) → 〈p〉 r
.
= l)

The drawback of this is that each subdomain has to be proved secure separately
by symbolically executing program p n times. This might result in considerable
proof overhead.

6 Discussion and Future Work

In this paper we suggested to use an interactive theorem prover for program ver-
ification and dynamic logic as a framework for checking secure information flow
properties. We showed the feasibility of the approach by applying it to a num-
ber of examples taken from the literature. The examples are small, but current
security-related papers typically present examples of similar complexity. Even
without any tuning of the prover, all examples could be mechanically checked
with few very user interactions. The relatively high degree of automation, the
support of full Java Card, and the possibility to inspect failed proofs and open
goals are major advantages from using a theorem prover.

Most approaches to secure information flow are based on static analysis meth-
ods using domain-specific logics. These have the advantage of being usually de-
cidable in polynomial time. On the other hand, they must necessarily abstract
away from the target program. This becomes problematic when dealing with
complex target languages such as Java Card. By taking a theorem proving
approach and Java Card DL, which fully models the Java Card semantics,
we can prove any property that is provable in first-order logic.

An important advantage shared by Hoare logic and dynamic logic is that they
are transparent with respect to the target language, that is, programs are first-
class citizen. In contrast to formalisms based on higher-order logic, no encoding
of programs and their semantics is required. In addition, verification is based
on symbolic program execution. Both are extremely important, when a proof
requires user interaction, and the human user has to understand the current
proof state.

In terms of the way in which we formulated the security condition, the clos-
est approach is that of Joshi & Leino [12], who consider how security can be
expressed in various logical forms, leading to a characterisation of security using
a Hoare triple. This characterisation is similar to the one used here—with the



crucial difference that their formula contains a Hoare triple, but it is not a state-
ment in Hoare logic, and thus requires (interactive) quantifier elimination before
it can be plugged into a verification tool based on Hoare logic. Neither leakage by
termination behaviour nor insecurity nor declassification are captured by their
formula (although these aspects are discussed elsewhere in the same article).
Thus, the greater expressivity of dynamic logic has important advantages over
Hoare logic in this context. We can provide mechanized, partially automated
proofs for Java Card as target language.

The paper presented two approaches to express security in DL. Though the
second approach necessarily leads to longer proofs because of the two program
copies, it has important advantages. With the use of (8) and instantiating h with
any value that conforms present preconditions, the formula does not contain any
existential quantifier, thus the metavariable mechanism is not used. This provides
a higher degree of automation of proofs by eliminating a manual instantiation.
More experience is needed to determine which approach, if any, is the better.

Automated static analyses have the advantage that they do not require pro-
grammer interaction. This is achieved by approximations in terms of accuracy,
in favour of good compositionality properties. For example, a simple type system
might insist that to prove while(b)p secure one must prove independently that
b only depends on the low parts of the state, and that p is secure. Assuming
such a rule is sound (it depends on the language and perhaps other properties
of b) then it amounts to a very simple but incomplete way to handle a loop.
The KeY system is currently used “as-is”. It can and should be further tuned
and adapted to security analysis. Many of the benefits of a type-based approach
might be obtained by the addition of proof rules akin to the compositional rules
offered by such systems. In particular, we have performed a first experiment on
adding taclets which circumvent the need to prove termination of a loop in a
case like the above. The experiment was successful and the taclet was simple
to add; by proving that the condition and the body of the loop is secure, we
can conclude that the loop is secure independently of its termination behaviour.
Thus, in such cases there is no need for induction.

The KeY system will feature additional modalities in the near future. As
mentioned before, some of our formulas require the [·] modality. Experiments on
such formulas will be soon possible. Furthermore, modality [[·]] (“throughout”,
modeled after “future” operators in temporal logic) will be implemented in due
time [5]. This makes it possible to specify and verify properties of intermediate
states of terminating and non-terminating programs. Among other scenarios it
will become possible to prove security and insecurity of Java Card applications
even when a smart card is “ripped out” of the reader or terminal leading to
unexpected termination.

Acknowledgements

We would like to thank Heiko Mantel for valuable discussions. He also suggested
the optimization embodied in formula (8). We also thank Gilles Barthe and
Tamara Rezk for their constructive comments.



References

1. W. Ahrendt, T. Baar, B. Beckert, M. Giese, R. Hähnle, W. Menzel, W. Mostowski,
and P. H. Schmitt. The KeY system: Integrating object-oriented design and formal
methods. In R.-D. Kutsche and H. Weber, editors, Proc. FASE, volume 2306 of
LNCS, pages 327–330. Springer-Verlag, 2002.

2. M. Balser, W. Reif, G. Schellhorn, K. Stenzel, and A. Thums. Formal system
development with KIV. In T. Maibaum, editor, Proc. FASE, volume 1783 of LNCS.
Springer-Verlag, 2000.

3. B. Beckert. A dynamic logic for the formal verification of Java Card programs. In
I. Attali and T. Jensen, editors, Java on Smart Cards: Programming and Security,
volume 2041 of LNCS, pages 6–24. Springer-Verlag, 2001.

4. B. Beckert, U. Keller, and P. H. Schmitt. Translating the Object Constraint Lan-
guage into first-order predicate logic. In Proc. VERIFY Workshop at FLoC, Copen-

hagen, Denmark, 2002.
5. B. Beckert and W. Mostowski. A program logic for handling Java Card’s transac-

tion mechanism. In Proc. FASE, volume 2621 of LNCS, pages 246–260. Springer-
Verlag, April 2003.

6. E. S. Cohen. Information transmission in sequential programs. In R. A. DeMillo,
D. P. Dobkin, A. K. Jones, and R. J. Lipton, editors, Foundations of Secure Com-

putation, pages 297–335. Academic Press, 1978.
7. D. E. Denning and P. J. Denning. Certification of programs for secure information

flow. Commun. ACM, 20(7):504–513, July 1977.
8. D. L. Detlefs, G. Nelson, and J. B. Saxe. A theorem prover for program checking.

Research report 178, Compaq SRC, 2002.
9. M. C. Fitting. First-Order Logic and Automated Theorem Proving. Springer-

Verlag, New York, 2nd edition, 1996.
10. M. Giese. Taclets and the KeY prover. In User Interfaces for Theorem Provers

Workshop at TPHOLS, Rome, Italy, 2003.
11. D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press, 2000.
12. R. Joshi and K. R. M. Leino. A semantic approach to secure information flow.

Science of Computer Programming, 37(1–3):113–138, 2000.
13. J. Jürjens. UMLsec: Extending UML for secure systems development. In J.-M.

Jézéquel, H. Hussmann, and S. Cook, editors, Proc. UML, volume 2460 of LNCS,
pages 412–425. Springer-Verlag, 2002.

14. A. C. Myers. JFlow: Practical mostly-static information flow control. In Proc.

POPL, pages 228–241, Jan. 1999.
15. F. Pottier and V. Simonet. Information flow inference for ML. In Proc. POPL,

pages 319–330, Jan. 2002.
16. F. Pottier and V. Simonet. Information flow inference for ML. ACM Trans. on

Progr. Langs. and Systems, 25(1):117–158, Jan. 2003.
17. A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE J.

Selected Areas in Communication, 21(1), Jan. 2003.
18. A. Sabelfeld and D. Sands. A per model of secure information flow in sequential

programs. Higher-Order and Symbolic Computation, 14(1):59–91, March 2001.
19. K. Stenzel. Verification of JavaCard programs. Technical report 2001-5, Institut

für Informatik, Universität Augsburg, Germany, 2001.
20. D. Volpano and G. Smith. Eliminating covert flows with minimum typings. Proc.

IEEE Comp. Sec. Founds. Workshop, pages 156–168, June 1997.



A Proofs

Proofs omitted from the main text for lack of space are included here for the
convenience of the reviewers.

We introduce two notations:

– fp(l, h) denotes the final low value of program p{l, h}. Note that the theo-
rems consider only terminating programs, thus there is always such a value
and since Java Card programs are deterministic there is exactly one such
value.

– A relation between pairs of high-security values. Ip(h0, h1) relates two high
values iff after executing two copies of program p with equal initial low values
and arbitrary initial high values h0 and h1 one has fp(l, h0) = fp(l, h1).

Proof of Theorem 1 Assume that (2) holds. Then r(l) = fp(l, h) for all l,
h and some function r depending only on l.14 We may rename h into h′, hence
r(l) = fp(l, h

′) for all l, h′. Combining these we obtain fp(l, h) = fp(l, h
′) for all

l, h, h′. If we introduce another low variable l′ and stipulate l′ = l to hold before
the execution of p then this is equivalent to saying that fp(l, h) = fp(l

′, h′) for
all l, l′, h, h′. But this is nothing else than (7).

The other direction is very similar. The crucial step is the observation that
if fp(l, h) = fp(l, h

′) for all l, h, h′, then the value of fp can only depend on l.
Hence, there is an r such that r(l) = fp(l, h) for all l, h. ut

Proof of Theorem 2 (7) =⇒ (8): trivial since (8) is a weakened form of (7).
(8) =⇒ (7):

First, we note that as the order of execution of the two program copies is
arbitrary, relation I is symmetric: Ip(h0, h1) = Ip(h1, h0) for all h0, h1.

Moreover, I is even transitive, that is, Ip(h0, h1) and Ip(h1, h2) imply Ip(h0, h2)
for any h0, h1 and h2. To see this, recast the claim as

fp(l, h0) = fp(l, h1) and fp(l, h1) = fp(l, h2) imply fp(l, h0) = fp(l, h2) ,

which is obvious by transitivity of equality.
We want to show (7): for any given l and for all h′, h′′ the relation Ip(h

′, h′′)
holds. We know (8): for any given l there exists a value h0 such that for all h′

Ip(h0, h
′) holds. Therefore, it is sufficient to show that Ip(h0, h

′) implies Ip(h
′, h′′)

for arbitrary h′′.15

By assumption we know that Ip(h0, h1) holds for some h0 and all h1. By
symmetry of I we have Ip(h2, h0), where h2 is an arbitrary value. Instantiation
of h1 with h′ gives Ip(h0, h

′), and instantiation of h2 with h′′ gives Ip(h
′′, h0).

From these we have Ip(h
′′, h′) immediately by transitivity of I . By symmetry,

again, we obtain Ip(h
′, h′′). ut

14 This is similar to the notion and use of “cylinder” in [12].
15 Of course the values must conform to any present precondition.


