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ABSTRACT 
 

The Air Force, as well as all of industry, is currently faced with the problem of having to 

produce larger and more complex software systems that run efficiently and reliably as well as 

being extensible and maintainable.  This research addresses this problem by developing a 

knowledge representation language that can be used to unambiguously specify and design 

software systems in a verifiable, efficient, and understandable manner.  The language is a 

combination of object-oriented and component-based methodologies and makes use of both 

graphics and text to represent information.  Although designed for the development of any type of 

software system, the language has been implemented in agentTool, a multi-agent development 

environment.  
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A COMPONENT BASED APPROACH TO AGENT 

SPECIFICATION 

I.  Introduction 

With the size and complexity of software systems increasing, the overall design, 

specification, and verification of the structure of systems turns into a crucial concern for software 

engineers.  Software engineering as a whole has made very few significant advances in the past 

two decades in the realm of software development [MM97].  Structured programming, 

declarative specifications, object-oriented programming, formal methods, and visual 

programming were supposed to bring software development to a level capable of implementing 

software systems correctly and efficiently.  Unfortunately, this has not happened and software 

systems have not kept pace with the rest of the computing industry.  While processor performance 

increased at a rate of 48% per year, and network capacity increased at a 78% annual rate, 

software productivity increased by only 4.6% and the power of programming languages and tools 

has been growing 11% per year [MM97].   

The Air Force, as well as all of industry, is currently faced with the problem of having to 

produce larger and more complex software systems that run efficiently and reliably as well as 

being extensible and maintainable.  The lack of a well-established notation upon which software 

engineers may agree has made solving this problem even more difficult.  The goal of this research 

is to develop a knowledge representation language that can be used to unambiguously specify and 

design software systems in a verifiable, efficient, and understandable manner.  To ensure 
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maximum understandability and ease of use, the language should make use of both graphics and 

text to represent information. 

1.1  Background 

A newer paradigm that is gaining in acceptance and use in the realm of software 

engineering is multi-agent systems design.  Multi-agent systems are computational systems in 

which several semi-autonomous software agents interact or work together to perform some set of 

tasks or to satisfy some set of goals.  These systems vary from those involving computational 

agents that are homogeneous or heterogeneous, to those including participation on the part of 

humans and intelligent computational agents.  Research and use of these systems generally 

focuses on problem solving, communication, and coordination aspects, as opposed to low-level 

parallelization or synchronization issues that are more the focus of distributed computing.  A 

significant advantage seen to using multi-agent systems is their ability to handle distributed 

problem solving.  Large, complex problems that were normally solved by single applications on 

single machines can now be broken down and distributed to multiple applications running on 

multiple machines.  Parallelism can be achieved by assigning different tasks or sub-problems to 

different agents.  Possible coordination and information sharing can take place between agents in 

a manner that is totally transparent to the user.  Another advantage to using multi-agent systems is 

their scalability.  Since they are inherently modular, it is a simple to add a new agent to a multi-

agent system in order to adapt to new problems without having to rewrite or redesign the whole 

system.   

A methodology being revived to help improve the development of software systems is 

formal methods.  Formal methods involve the use of mathematically based languages, techniques, 

and tools for specifying and verifying systems.  Although formal methods have existed for quite 
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some time, a lack of usable tools and general acceptance has left the methodology a virtually 

untapped resource in software development.  The majority of past research has been concerned 

with developing formal notation and inference rules while very little effort has been put toward 

the development of methodology and tool support [FKV94].    The correct use of formal methods 

allows requirements to be better understood, contradictions and ambiguities to be removed, 

specifications verified for correctness, and allows for a much smoother transition from 

specification to design to implementation [FKV94]. 

Graphical modeling is very much the opposite of formal methods.  Although it is said that 

a picture is worth a thousand words, it should also be added that a picture is worth a thousand 

interpretations.  A problem with modeling using graphical tools is user understanding.  Often 

pictures and diagrams do not contain enough detail to eliminate ambiguities in how the designer 

wishes to represent something.  The advantage of visual descriptions is seen in their ability to 

communicate complex relationships.  Figures and diagrams are usually much easier to convey to 

others and are also easier for others to understand.  These two points make graphical modeling a 

very attractive addition to software engineering.   

The combination of multi-agent systems, formal methods, and graphical modeling is not 

a silver bullet that will take software engineering to a realm of creating correct software the first 

time every time.  However, the correct use of certain aspects of each methodology offers a means 

to achieve robust reliable software capable of solving a large number of complex problems.  The 

Air Force Institute of Technology (AFIT) is currently conducting research in the development of 

a multi-agent design tool called agentTool.  The overall methodology is based on the Multiagent 

Systems Engineering (MaSE) [MASE99] approach to agent system design proposed by DeLoach.  

This thesis will define the Agent Definition Language (AgDL) used in MaSE.  DeLoach’s AgDL 
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is based on the development of a knowledge representation language for completely describing 

the internal behavior of individual agents of a system.  

1.2  Problem Statement 

The Air Force currently does not implement any type of formal methodology for 

developing software systems.  As systems are becoming larger and more distributed, the need to 

integrate complex systems in distributed environments requires that systems have some common 

methodology.  This statement has led to a two-fold problem the Air Force is currently struggling 

to correct.  First, the problem of finding a useful, easy to use methodology that can be 

implemented Air Force wide and allows for software reuse, easy documentation, and the removal 

of ambiguities.  Second, the problem of finding a way to formally represent this methodology so 

verification and maintenance of software can be done easily and cheaply.  Many methodologies 

currently exist and are well defined for the development of software.  However, in choosing any 

one of these methodologies to solve the first problem, the second remains almost completely 

intact and vice versa.  The solution to this dilemma does not involve abandoning current software 

practices to use one methodology to solve all of these problems, but rather an integration of 

formal methods within a software design methodology to create a formal, more verifiable 

software system [BH95].   

The area that can benefit most from this integration is the specification phase of software 

development.  The creation of a formally based knowledge representation language that is also 

easy to read and write will allow for unambiguous specifications to be written quickly and 

efficiently.  Ensuring the language is also easily decomposable allows for maximum reuse.  The 

use of such a language in a multi-agent development system will allow for individual agents to be 

formally specified, allowing for the verification of all components of the system. 



 

 

 5

1.3  Thesis Overview 

Chapter 2 provides a review of literature including a definition of what a knowledge 

representation language is, what it is composed of, types of knowledge that must be represented 

in a knowledge representation language, and representation languages used in the past and 

present.  Chapter 3 outlines the specific methodology followed to allow the transition from 

problem definition to design.  Chapter 4 presents the design decisions made relating to the 

definition of the language as well as presents an implementation of the language.  Chapter 5 

defines software architectural styles relating to the field of artificial intelligence.  Chapter 6 

provides conclusions and areas requiring future work. 
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II.  Background 

 

2.1  Overview 

The goal of this chapter is to review knowledge representation and how it may be used in 

Artificial Intelligence (AI) agent-based systems.  To effectively design a knowledge 

representation language for a multi-agent system such as agentTool, past and present work in the 

area must be reviewed.  A knowledge representation language needs to be defined and broken 

down into its most basic parts to determine what a representation language is and what is 

necessary to clearly and completely define such a language.     

Section 2.2 addresses what knowledge representation languages are, why they are 

needed, and possible requirements.  This thesis views representation languages at two levels of 

abstraction: architectural and internal.  Section 2.3 outlines various aspects of architectural 

languages and representations while Section 2.4 does the same for internal languages and 

representations.  Section 2.5 summarizes the chapter.  

2.2  Knowledge Representation 

Newell and Simon argued in their Turing Award lecture in 1976 that intelligent activity 

in a human or machine is achieved through the following: 

1. Symbol patterns to represent significant aspects of a problem domain.   

2. Operations on these patterns to generate potential solutions to problems. 

3. Search to select a solution from among these possibilities. 
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The physical symbol system hypothesis is based on these three assumptions and outlines 

the major focus of most AI research: specifying the symbol structures and operations required for 

problem solving and defining efficient and correct strategies to search the plausible solutions 

generated by the structures and operations [LS98].  Brachman and Levesque [BL85] state that 

knowledge representation “simply has to do with writing down, in some language or 

communicative medium, descriptions or pictures that correspond in some salient way to the world 

or some state of the world.”  At first, the task at hand does appear “simple”.  Write things down in 

some language, be it graphical or textual (or both), in such a manner that the pictures and 

descriptions match what you are trying to represent.  Unfortunately, the problem is not so easily 

solved.  A number of issues must be addressed when defining a knowledge representation 

language, such as: [LS98, CM87, REICH91] 

•= what must be represented by the language 

•= how to formally specify the semantics of the language 

•= how to deal with incomplete knowledge  

•= how to maintain current knowledge 

•= how to control multiple inferencing 

•= how to represent meta-knowledge 

These topics will be looked into more closely in the remainder of this thesis. 

2.2.1  Representation Language Defined 

Knowledge representation languages consist of two main components, syntax and 

semantics [RN95].  The syntax of a language deals with the manner in which information is 
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stored in an explicit format and describes the possible configurations that constitute a valid 

sentence.  Semantics define the meaning of the symbols.  If the semantics of a language are 

formally and completely specified, then a group of symbols can only be interpreted in one way.   

Specification is the act of writing down information in a precise manner.  A formal 

specification uses a representation language with precisely defined syntax and semantics in order 

to specify what a system is supposed to do.  Because specifications eliminate distracting detail 

and only provide a general description, they become resistant to future system modifications 

[NASA95].  Regardless of the manner in which it is accomplished, specification is a 

representation process.  In the realm of software engineering, these requirements are depicted in a 

manner that will lead to the successful implementation of a piece of software [PRES97].  The 

quality, timeliness, and completeness of any software project can usually be traced back to how 

much time was spent developing a specification of the system [PRES97]. 

Once it has been determined what knowledge representation is and why it is necessary, 

the issue of language requirements needs to be addressed.   

2.2.2  Language Requirements 

Luck and d’Inverno [DAF97, SZS95] describe three requirements they believe must be 

met in order for a language to be used to specify agents. 

1. A language must precisely and unambiguously provide meanings for common concepts 
and terms and do so in a readable and understandable manner 

2. A language should enable alternative designs of particular models and systems to be 
explicitly presented, compared and evaluated.  It must provide a description of the 
common abstractions found within that class of models as well as a means of further 
refining these descriptions to detail particular models and systems.   

3. A language should be sufficiently well structured to provide a foundation for subsequent 
development of new and increasingly more refined concepts.  In other words, 
practitioners should be able to choose the level of abstraction suitable for their purpose. 
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The first requirement states the language must have a formally defined syntax and 

semantics as well as be easy to understand.  The first half of this requirement does not pose a 

significant problem since a number of formally defined languages exist today.  However, 

requiring something to be “readable” and “understandable” is a rather vague requirement since 

both words are subject to interpretation.  Computer engineers often get caught up in defining 

information so that it is easier for a machine to understand, but often forget there is a human 

element interacting at some point in the process.  The use of visual descriptions often aids in the 

ability to communicate complex relationships and concepts.  Therefore, using graphics along with 

text should yield a much more clear and understandable description of a system rather than just 

using either approach independently of the other.   

The second requirement states the language should have the flexibility to allow designers 

to represent a model in multiple ways.  If the language is not flexible enough to allow multiple 

representations of a problem, the designer may be constrained to a single solution.  The ability to 

represent and model numerous solutions to the same problem often provides insight that would 

otherwise be difficult to attain.  This flexibility can lead to possible performance gains and 

improved resource usage not otherwise available.  Multiple representations may greatly impact 

the implementation of the system.   

The last requirement implies the language must have ability to represent multiple levels 

of abstraction.  Any time a modular approach to a software problem is taken, as is the case in 

multi-agent systems, multiple levels of abstraction are found.  At the highest level, a solution is 

stated in broad terms in a domain specific language.  This may be as simple as a box and line 

diagram depicting the overall software system.  At lower levels, a more procedural approach is 

taken and specific details are addressed [PRES97]. 
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As with the flexibility, abstraction also allows issues such as performance and resource 

usage to be examined at various levels.  For example, the designer may look at a design at the 

agent interaction level and find no way to improve performance.  Upon closer inspection of the 

internal details, the designer may find several redundant communication requests that can be 

removed, thus reducing network congestion and increasing the overall performance of the system.   

Another benefit of multiple levels of abstraction is the ability to hide information.  If a 

design is being developed by multiple teams, each of which is working on a different aspect of 

the same problem, certain teams may not need to look at all levels of the design.  The team 

interested in the agent communication structure is not concerned with the internal representation 

of each component making up the design.  They do not need to know the internal representation 

to correctly model their portion of the design.   

The final advantage of multiple levels of abstraction is communication and 

understandability.  A design is much easier to communicate if it can be presented in multiple 

layers of abstraction.  Software designs are often very large and complex.  Multiple layers of 

abstraction allow a design to be communicated at a more incremental pace instead of having to 

understand the whole thing at once.      

2.2.2.1  Multi-agent Requirements 

The language requirements imposed thus far are fine if someone is just defining one 

agent, but in order to define agents in a multi-agent system, a number of additional requirements 

must be taken into account.  A paper written by d'Inverno, Fisher, Lomuscio, Luck, de Rijke, 

Ryan and Wooldridge defines specific requirements a multi-agent language should contain 

[FMS97].  
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1. The multiplicity of agents 

2. Group properties of agent systems, such as common knowledge and joint 
intention 

3. Interaction among agents, such as communication and cooperation 

The first requirement addresses the fact that a single agent type may be defined for a 

particular problem requiring multiple instances of the agent type to exist at any one time.  The 

specification language chosen must be able to represent this attribute.  Requirement two states 

that the language must allow for the representation of shared agent properties.  Agents must be 

able to have common data stores that can be accessed and manipulated by all agents.  The last 

statement implies that the interaction occurs strictly between agents.  Interaction must not only 

exist between agents, but also between an agent and its environment.   

2.2.2.2  Additional Requirements 

Although all requirements mentioned thus far imply that the language needs to be 

expressive, the actual word is never used.  The expressiveness of the language used to define any 

type of software system should not be overlooked.  A language must be able to represent complex 

data types and operators.  Many existing languages offer a number of predefined data types and 

operators a designer may use, but the key is being able to define new data types and operators not 

available.  If a chosen language cannot be adapted to represent new language requirements, it will 

quickly become outdated. 

A general requirement desirable in most languages is the ability to represent knowledge 

in a modular and reusable fashion.  Although modularity does not guarantee reuse, for software to 

be reusable it is beneficial if it is modular.  It has been stated that “modularity is the single 

attribute of software that allows a program to be intellectually manageable” [MYE78].  A “divide 

and conquer” approach offers a means of breaking a problem into smaller pieces that can be more 
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easily solved.  If some thought is put into what should be considered a module, patterns may be 

identified which may in turn lead to reuse of existing modules, or the definition of new modules 

to be reused in the future.     

A final language requirement not specifically addressed by any of those previously 

mentioned is the ability to capture the dynamic behavior of the agents.  All requirements 

mentioned to this point have applied to the static structure of an agent, rather than its ability to 

express the dynamics of a system.  Describing a system’s static structure reveals what a system is 

composed of and how the parts are related, but it does nothing to explain how all of these parts 

work together to make the system more functional [EP98].  Because of this, an important 

requirement that should be considered when defining a language is the ability to capture the static 

and dynamic behavior of a system. 

2.3  Architectural Representation 

As stated in the chapter introduction, this thesis views knowledge representation at two 

levels of abstraction, architectural and internal.  Maes defines an agent architecture as “a 

particular methodology for building [agents].  It specifies how the agent can be decomposed into 

the construction of a set of component modules and how these modules should be made to 

interact” [MAE91].  Agent architectures provide a higher level of abstraction for constructing and 

viewing agents and agent systems.  Section 2.3.1 outlines the most common languages used for 

representing architectures.  Sections 2.3.2 through 2.3.6 review the most common types of agent 

architectures and the components they are constructed from.  Section 2.3.7 reviews the 

communication component that is common to all multi-agent architectures. 
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2.3.1  Architecture Description Language (ADL) 

Software architectures define the high-level structure of a software system, showing its 

overall organization as a collection of interacting components [ACME97].  The structure of the 

system may include “global control structure; the protocols for communication, synchronization, 

and data access; the assignment of functionality to design elements; physical distribution; the 

composition of design elements; scaling and performance; dimensions of evolution; and selection 

among design alternatives”[GS96].  Simply stated, a software architecture defines elements from 

which software systems are built, the communication that takes place between these elements, the 

patterns of combination between one another, and the constraints that exist on these patterns 

[GS96].  Software architectures are important because of their ability to make complex systems 

manageable by describing them at a high level of abstraction and by allowing designers to take 

advantage of recurring patterns of system organization [AES95].  The basic elements comprising 

any software architecture are components and connectors.  Components represent the repository 

for computation and state while connectors explicitly describe the interaction between these 

components.  Each component has an interface specification that describes its properties.  These 

properties may include, but are not limited, to the signature and functionality of its resources as 

well as performance properties [GS96].  Components are classified and named according to 

function.  Examples of component types are filters, memory, and server.  Connectors have 

protocol specifications that may include hookup rules, ordering rules, and performance properties 

as well as others [GS96].  Like components, connectors are also categorized by function and 

contain the following types; remote procedure call, pipeline, broadcast, etc. 

Architectural design of software systems is not a totally new concept in the realm of 

software engineering, but until recently the process had been rather adhoc, lacking in formality 

and re-invented for each new design.  Because of this, “architectural designs are often poorly 
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understood by developers; architectural choices are based more on default than solid engineering 

principles; architectural designs cannot be analyzed for consistency or completeness; architectural 

constraints assumed in the initial design are not enforced as a system evolves; and there are 

virtually no tools to help architectural designers with their tasks.” [ACME97]  In response to 

these problems, architecture description languages (ADLs) were developed to act as a formal 

notation for representing and analyzing architectural designs.  ADLs generally consist of a 

language and an environment.  The language is used to define the component as well as the 

interconnection between components while the environment provides a medium to make the 

descriptions usable and reusable.  The generic elements of an ADL are shown in Figure 1.   

 

 

 

 

 

 

Figure 1 Generic Elements of ADL [AES95] 

Although the above figure is specific to the Aesop [AES95] ADL, most ADLs are similar.  

Components and connectors were described above.  Configurations define topologies of 

components and connectors.  Ports define the component interfaces and determine the 

component’s points of interaction with the environment.  Roles are the connector interfaces and 

identify the participants of the interaction.  Representations (not shown in figure) refer to the 

descriptions of the “contents” of components and connectors.  Bindings are used to define the 
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correspondence between elements of the internal configuration and the external interfaces of the 

component or connector.   

ADLs also typically provide parsing, unparsing, displaying, compiling, and analyzing 

tools.  Some of the more popular ADLs include Aesop, Adage, UniCon, and Wright [AES95, 

CS93, UNI95].  Although the purpose of each language is to represent the architectural design of 

software, each provides slightly different capabilities than the next.  Aesop is primarily concerned 

with the use of architectural styles; Adage allows for the description of architectural frameworks 

for avionics navigation and guidance; UniCons use of a high-level compiler allows for the 

support of a mixture of component and connector types; and Wright allows for the specification 

and analysis of interactions between components [ACME97]. 

ADLs do not offer the user the ability to completely specify software systems.  They do 

offer a means to analyze the overall structure of the system and the interaction that takes place 

between its parts before the internals of these parts are specified.   

2.3.2  BDI Architecture 

A widely used agent architecture is the Belief, Desire, Intention (BDI) architecture.  This 

architecture consists of four basic components: beliefs, desires, intentions, and plans. The exact 

definition of these components varies slightly from author to author, but most generally agree that 

all four need to be present in one form or another when using this architecture.  In this 

architecture, the agent’s beliefs represent information that the agent has about the world, which in 

many cases may be incomplete or incorrect [DMAR97].  The content of this knowledge can be 

anything from knowledge about the agent's environment to general facts an agent must know in 

order to act rationally.  The desires of an agent are a set of long-range goals, where a goal is 

typically a description of a desired state of the environment. An agent’s goals simply represent 
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some desired end state.  These goals may be defined by a user or may be adopted by the agent.  

New goals may be adopted by an agent due to an internal state change in the agent, an external 

change of the environment, or because of a request from another agent.  State changes may cause 

rules to be triggered or new information to be inferred that may cause the generation of a new 

goal.  Requests for information or services from other agents may cause an agent to adopt a goal 

that it currently does not possess.  An agent’s desires provide it with motivations to act.  When an 

agent chooses to act on a specific desire, that desire becomes an intention of the agent.  The agent 

will then try to achieve these intentions until it believes the intention is satisfied or the intention is 

no longer achievable [DMAR97].  The intentions of an agent provide a commitment to perform a 

plan.  Although not mentioned in the acronym, plans play a significant role in this architecture.  A 

plan is a representation outlining a course of action that, when executed, allows an agent to 

achieve a goal or desire.  Plan representation will be discussed in greater detail in Section 2.3.6.  

2.3.2.1  PRS-CL 

One of the best established agent architectures currently available [DMAR97, WJ94], 

PRS has been used for several significant real world applications ranging from fault diagnosis on 

the space shuttle to air traffic control management [DMAR97, WJ94].  PRS is a BDI architecture 

that includes a plan library as well as explicitly defined symbolic representations for beliefs, 

desires, and intentions. PRS provides an architectural framework to express and execute 

knowledge in an easy and efficient manner.  First described by [LG87], the architecture has 

evolved over the years to a number of usable implementations.  One implementation of the PRS 

architecture is PRS-CL developed at SRI International.   

PRS-CL consists of the following components  [PRS99]:  

•= A database containing the agent’s current beliefs or facts of the world 
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•= A set of goals to be realized 

•= A set of plans describing how goals are achieved and how situations are reacted to 

•= An intention structure containing the plans chosen for eventual execution  

Figure 2 shows a graphical depiction of the architecture.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 PRS-CL Architecture [PRS99] 

The PRS-CL database contains an agent’s beliefs, which include facts about the static and 
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logical formula” [PRS99].  For example, the goal of (USE-RESOURCE(A B C)) indicates 

resources A, B, and C are needed for the completion of the Act to occur.  

The backbone of the PRS-CL architecture is its use of Acts (Acts will be discussed in 

greater detail in Section 2.3.6.2).  Acts are declarative procedure statements containing 

knowledge on how to accomplish goals and how to react to given situations.  So although PRS is 

procedural by definition, the majority of the knowledge is represented in a declarative format.  

All Acts stored in PRS consist of a body and an invocation condition.  The body of the Act 

describes the steps of the procedure to be taken.  The Act body is considered a plan or plan 

schema in this architecture.  The invocation condition contains triggering information describing 

all events that must occur before an Act is executed.  In PRS-CL, Acts are represented as graphs 

containing a start node and one or more end nodes.  The nodes of the graph are labeled with all 

subgoals to be achieved in carrying out the plan.  The successful completion of a plan is realized 

when all subgoals between the start node and end node are achieved.   

The final portion of the PRS-CL architecture is the intention structure.  The intention 

structure holds the tasks the agent has chosen to execute.  Intentions may either be executed 

immediately or at some time in the future depending on the invocation condition.  Because of 

this, the intention structure of an agent may contain zero to many intentions, some of which are 

not currently active due to deferment or the waiting for certain conditions to become true.     

2.3.2.2  Distributed Multi-Agent Reasoning System (dMARS) 

D’Inverno, Kinny, Luck, & Wooldridge propose another PRS-based BDI architecture 

that is very similar to the one proposed by SRI except that it is based on formally specifying the 

agents [DMAR97].  One of the drawbacks to using PRS-CL is that the agent specification has no 

formal backbone.  Ambiguities and program correctness cannot be easily verified until the agent 

system has been completely constructed.  A significant advantage offered by dMARS is that an 
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agent specification is written using the Z formal specification language.  Agent’s beliefs, goals, 

intentions, plans, and actions are all specified using Z.  Doing this allows system verification to 

be accomplished before implementation as well as the possibility of going from specification to 

implementation in a systematic manner.    

2.3.3  Reactive Architectures 

Perhaps simplest and among the most widely used agent architectures are reactive 

architectures.  Wooldridge and Jennings [WJ94] describe a reactive architecture as an architecture 

that does not have a central world model and does not use complex reasoning.  Unlike 

knowledge-based agents that have an internal symbolic model from which to work, reactive 

agents act by stimulus-response to environmental states.  A simple example would be “If it starts 

raining, close all windows”.  The agent perceives an environmental change and reacts 

accordingly.  Reactive agents can also react to messages from other agents.  An example of a 

simple reactive agent may be a database “wrapper”.  The “wrapper” surrounds the database 

intercepting and interpreting all interactions with the database.  Whenever a query for data comes 

in, the agent collects the appropriate data and returns it to the requestor.  Although reactive agents 

are basic and can only perform simplistic tasks, they do form a building block from which other 

more complex agents can be built.  By adding a knowledge base to a simple reactive agent, you 

now have an agent capable of making decisions that take into account previously encountered 

state information.  By adding goals and a planning mechanism, you can create a rather complex 

goal directed agent.  One of the more elaborate uses of reactive agents was seen in Brook’s 

Subsumption Architecture [BRK85].  The Subsumption Architecture is based on Brook’s belief 

that the Artificial Intelligence community need not build "human level" intelligence directly into 

machines.  Citing evolution as an example, he claims we can first create simpler intelligences, 
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and gradually build on the lessons learned from these to work our way up to more complex 

behaviors.  Brooks uses a layered finite state machine for representation of the agent’s function.  

Although complex patterns of behavior can be developed using reactive agents, their primary 

goals usually consist of being robust and having a fast response time.  Most agent architectures 

contain a reactive component of some kind, but are not actually truly reactive agents.  The 

majority of reactive architectures can be modeled using a basic “IF-THEN” rule structure. 

2.3.4  Knowledge-Based Architectures 

Although the BDI architecture has a knowledge base, a large number of architectures 

exist built around a centralized knowledge store.  In general these are referred to as knowledge-

based or expert systems.  Knowledge-based systems use data structures consisting of explicitly 

represented problem-solving information.  This knowledge can be viewed as a set of facts about 

the world.  Three aspects of knowledge-based systems making them powerful are: 

1. They can accept new tasks in the form of explicitly described goals 

2. They can achieve competence quickly by being told or learning new knowledge 
about the environment 

3. They can adapt to changes in the environment by updating the relevant knowledge. 
[RN95] 

In general, knowledge-based systems represent knowledge using a formal declarative 

language.  Using a declarative language allows knowledge to be added or deleted from the 

knowledge base quickly and easily without affecting the rest of the system.  Using a declarative 

language such as first-order logic also allows new information to be derived from the current 

knowledge stored in the system using inference mechanisms.  An inference mechanism can 

perform two actions.  First, given a knowledge base, it can generate new sentences that are 

necessarily true, given that the old sentences are true.  Second, given a knowledge base and a 
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sentence, it can determine whether or not the sentence was generated by the knowledge base 

[RN95].  The relation just described between sentences is called entailment and is used a great 

deal in knowledge-based systems. 

A common use of standalone knowledge-based systems is seen in expert systems.  

Although the name is often used synonymously with knowledge-based systems, expert systems 

are really a specific instantiation of a knowledge-based system.  The first expert system, 

DENDRAL, was used to interpret the output of a mass spectrometer, an instrument used to 

analyze the structure of organic chemical compounds.  A major result of the research done on 

expert systems has been the development of techniques that allow users to model information at 

increasing levels of abstraction. These techniques allow programs to be designed closely 

resembling human logic thus allowing for easier development and maintenance.  Rule-based 

programming is the most common technique for the development of expert systems.  Rules are 

used to represent heuristics specifying a set of actions to be performed for a given input.  The 

foundation behind an expert system is its inference engine, which automatically matches facts 

against patterns and determines which rules are applicable.  Once the inference engine finds an 

applicable rule, the actions of the rule are executed.  The execution of the particular actions may 

affect the list of applicable rules by adding or removing facts.  The inference engine then selects 

another rule and executes its actions.  This process continues until no applicable rules remain.  

Figure 3 shows a general expert system architecture.  

The general knowledge base in Figure 3 holds the problem-solving knowledge 

normally represented as a set of if-then rules.  The inference engine is used to determine which 

actions to execute based on the information provided by the user.  Case specific data is used to 

hold facts, conclusions, and other information relevant to the particular case being analyzed. 
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Figure 3 Architecture of a typical expert system [LS98] 

 

An explanation subsystem is usually used to display to the user the reasoning used by 

the inference engine.  The knowledge-based editor is simply a programming tool to allow a 

programmer to correct bugs in the knowledge base.   

A significant problem in the design and use of expert systems is developing the 

knowledge needed to populate the knowledge base.   The MYCIN expert system used for 

diagnosing spinal meningitis was developed in approximately 20 person-years.  A number of 

tools were developed to aid in the design of expert systems.  Two of these will be addressed in the 

remainder of this section. 

2.3.4.1  C Language Integrated Production System (CLIPS) 

CLIPS is an environment for the construction of rule and object-based expert systems.  It 

is currently used by all NASA sites, all branches of the military, numerous federal bureaus, 

government contractors, universities, and many companies [CLIP98].  CLIPS allows for the 

handling of a variety of knowledge and includes support for rule-base, object oriented, and 
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procedural programming paradigms.  Knowledge and queries to the system are formatted in a 

declarative Lisp-like syntax.  CLIPS can be embedded within procedural code, and integrated 

with languages such as C, FORTRAN and ADA.  This makes CLIPS ideal for either the 

embedding of knowledge within an agent or as a standalone expert system.  CLIPS also provides 

a number of tools to support the verification and validation of expert systems.  These tools 

provide support for modular design and partitioning of a knowledge base and semantic analysis of 

rule patterns to determine if inconsistencies could prevent a rule from firing or generating an error  

[CLIPS98].  

A rule in CLIPS is similar to an IF THEN statement in a procedural language like Ada, 

C, or Pascal.   An example of an actual rule would be as follows: 

(defrule duck "Here comes the quack" ; Rule header
(animal-is duck) ; Pattern
=> ; THEN arrow
(assert (sound-is quack))) ; Action

Rules normally start with an optional rule-header comment which is specified in quotes.  

There can be only one rule-header comment and it must be placed after the rule name and before 

the first pattern.  Following the rule-header is one or more patterns and actions. The number of 

patterns and actions do not have to be equal, which is why different indices, N and M, were used 

for the rule patterns and actions as seen in the above example. 

Each pattern consists of one or more fields. In the duck rule, the pattern is (animal-is

duck), where the fields are animal-is and duck.  CLIPS attempts to match the patterns of 

rules against facts in its fact list.  The fact-list consists of one or more declaratively defined 

CLIPS facts.  Pattern matching can be done against a pattern entity, which is either a fact or an 

instance of a user-defined class.  

An action in CLIPS is a function which typically has no return value, but performs some 

useful action, such as an assert or retract.  The above example shows the function named 
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assert and its argument sound-is quack.  This function returns no value, but instead 

asserts the fact sound-is quack.  As with most programming languages, CLIPS recognizes a 

number of reserved keywords.  The keyword assert is used to add data to the CLIPS fact-list.  

2.3.4.2  Java Expert System Shell (JESS) 

JESS is an expert system shell written in Java to develop rule-based expert systems that 

can be integrated in other Java code [JESS98].  Jess started as a clone of CLIPS, but evolved into 

a distinct environment of its own.  In spite of this fact, JESS is still compatible with CLIPS and 

many JESS scripts are valid CLIPS scripts or vice-versa.  JESS may be used to build Java applets 

and applications possessing the ability to reason over knowledge supplied by the user. Like 

CLIPS, Jess uses a declarative Lisp-like syntax for defining knowledge and rules. 

2.3.5  Reusable Task Structure-based Intelligent Network Agents (RETSINA) 

RETSINA was developed at Carnegie Melon as a technique “for developing distributed 

and adaptive collections of agents that coordinate to retrieve, filter and fuse information relevant 

to the user, task and situation, as well as anticipate a user’s information needs.” [SYC96]  One 

reason that RETSINA is an important architecture is that it does not follow any of the “major” 

architectures covered in this chapter.  In developing a robust knowledge representation language, 

one must take into account information in well-known architectures as well as those that are not 

as widely used.  This section will show how even lesser known architectures contain the same 

knowledge components that the more common architectures possess.   

RETSINA is a multi-agent infrastructure consisting of reusable agent types that can be 

adapted to address a variety of different domain-specific problems.  RETSINA has three types of 

agents; interface agents, task agents, and information agents.  In order for all of the agents to  
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effectively use and coordinate their resources, a common architectural backbone is needed for the 

agents to interact with.  This architecture is shown in Figure 4.   

 

 

 

 

 

 

 

 

Figure 4 RETSINA Architecture [SYC96] 

The communication and coordination module accepts and interprets Knowledge Query 

Manipulation Language (KQML) messages from other agents.  In addition to this, interface 

agents also accept and interpret e-mail messages.  Messages can contain requests for services that 

become goals of the recipient agent. 

The planning module takes a set of goals as input and produces a plan that satisfies those 

goals.  In RETSINA, the agent planning process is based on a hierarchical task network (HTN) 

planning formalism.  Agents have a domain-independent library of plan fragments, which can be 

indexed by goals, as well as a domain-specific library of plan fragments that can be retrieved and 

incrementally instantiated according to input parameters.   
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The scheduling module is used to schedule each of the steps in a given plan.  The 

scheduling process takes an agent’s current set of plan instances (the set of executable actions) 

and decides which are to be executed next (if any).  The action is identified as a fixed intention 

(as seen in BDI architectures) until it has been satisfied.   

The execution monitor takes the agent’s next intended action and prepares, initiates, and 

monitors its execution until completion.   

2.3.6  Planning Architectures 

A number of authors give various definitions for planning, but all boil down to the same 

essential facts.  Planning is the process of formulating a list of actions in order to achieve a 

specified goal [MP92, RN95, PB94, LS98].  In Artificial Intelligence, a planner uses knowledge 

about the actions it may perform and their consequences, as well as knowledge about the 

environment, in order to formulate a list of acceptable state transforming operators that can 

transform the agent from an initial state to a goal state.  As seen in BDI and RETSINA, planning 

architectures are usually embedded in other agent architectures to determine actions an agent will 

perform.  Within a given agent architecture, plans may be either synthesized dynamically or 

defined ahead of time and placed in a plan library.  In general, plans come in two varieties; total 

order and partial order.  Total order plans simply consist of a list of steps that an agent must 

follow to accomplish some goal.  These steps have a definite order that must be followed for the 

goal to be achieved.  Partial ordered plans may have some steps ordered while the order of other 

steps is arbitrary and inconsequential to reaching the goal.  An example of this would be putting 

on your pants.  Given a goal to put your pants on, and a plan with the unordered steps “put left leg 

in pants” and “put right leg in pants”, the order in which these are carried out does not matter as 

long as both of them are accomplished.  If the step “zip up pants” is added to the list of steps, a 
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partial order now needs to be imposed.  The first two mentioned steps can still be done in any 

order, but now they must both be accomplished before the zipping can occur.  At one more level 

of abstraction, plans can be fully or partially instantiated.  The steps of a plan are generally 

operators containing parameters that need to be set to some value in order for the operator to 

function.  A fully instantiated plan is one in which all of these parameters are set to some value.  

Sometimes committing a variable to early in the planning process may overly constrain or limit 

the planner.  For this reason, variables are often left uncommitted until a later time.   

Russell and Norvig [RN95] state that a plan is a formally defined data structure that 

contains the following components: 

•= A set of plan steps.  Each step is one of the operators of the problem. 

•= A set of step ordering constraints.   

•= A set of variable binding constraints. 

•= A set of causal links to record the purpose(s) of steps in the plan 

The goal of this portion of the thesis is not to understand how a planner works, but to 

understand what knowledge a planner needs to function properly.   

2.3.6.1  PRODIGY 

One of the best known planning architectures is PRODIGY.  PRODIGY has been used 

primarily as a research testbed in the areas of planning, machine learning, and knowledge 

acquisition.   

In the simplest terms, PRODIGY searches for a list of actions that will transform an 

initial state into a goal state.  In order to do this transformation, PRODIGY requires a certain 
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amount of information be available to it.  All knowledge entered into PRODIGY must be in the 

PRODIGY4.0’s Description Language (PDL4.0), which is essentially a watered down version of 

first order logic.   

The first, and perhaps most critical piece of information PRODIGY needs is the domain 

theory, also called the domain specification.  The domain specification consists of a type 

hierarchy for all entities in the domain, a set of operators, inference rules, and search control rules 

[PROD92].  The type hierarchy defines all of the objects that may be able to have operators 

applied to them.  Once the type hierarchy is entered, operators and inference rules are defined.  

Operators are representations of actions leading to changes in the state.  Operators have a set of 

effects, commonly referred to as postconditions, describing changes to the world that take place 

when the operator is applied.  Inference rules represent all of the legal inferences that can be 

made for a given domain.  For example, in a domain specified for a robot, there may be a single 

inference rule used to indicate that the robots arm is empty (represented by  (arm-empty)). 

Every operator and inference rule has a precondition, which must be satisfied before the operator 

can be applied.  An effects list describes how the application of the operator changes the state of 

the environment [PROD92]  

Once the domain is totally described, an initial state and goal expression (any arbitrary 

PDL expression) can be defined.  Prodigy then uses a backward chaining mechanism to find a 

sequence of operators that produce a state satisfying the goal expression.  Figure 5 shows a 

simple example of how this works using the Extended-Strips Domain. Figure 5a shows the initial 

state of the world and figure 5b displays the goal state.  The initial state consists of a robot, three 

boxes, and four doors.  The robot starts in room 1, boxes 2 and 3 are in room 3, and box 3 is in 

room 4.  The doors between rooms 1 and 3 and rooms 1 and 2 are open, while the doors between 

rooms 3 and 4 and rooms 2 and 4 are closed. 
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Figure 5 Prodigy Example [PROD92] 

 
The goal is for the robot to end up next to box 3 with the door between rooms 3 and 4 closed.  

Prodigy’s solution is shown below. 

Solution:
<goto-dr door13 room1>
<go-thru-dr door13 room1 room3>
<goto-dr door34 room3>
<open-door door34>
<go-thru-dr door34 room3 room4>
<close-door door34>
<goto-obj box3 room4>

 

To use PRODIGY in an agent system, the domain specification for each agent would 

need to be entered into PRODIGY.  When an agent is presented with a goal inconsistent with its 

given state, it would have to transform its initial state and goal state into PDL and submit the 

information to PRODIGY.  The agent would then be returned a solution, which would contain a 

list of actions the agent would have to sequentially execute in order to achieve its goal state. 

(inroom robot room1)   (inroom box1 room3)    (and (dr-closed door34) 
(inroom box2 room3)    (inroom box3 room4)    (next-to robot box3)) 
(dr-open door12)       (dr-open door13) 
(dr-closed door34)     (dr-closed door24) 
  (a) Initial State              (b) Goal State
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2.3.6.2  Act Formalism      

While PRODIGY is a domain independent planning architecture, the Act formalism is a 

domain independent language for the representation of plans.  The Act formalism is a language 

used to represent knowledge necessary to develop complex plans.   

For the most part, plan generation and reactive execution are considered separate entities 

in Artificial Intelligence [WM94].  The purpose of Act is to serve as a general representation 

language for sharing knowledge between multiple planning and execution systems.  As discussed 

in Section 2.3.1.1.1, the basic unit used in the Act formalism is the Act.  An Act “describes a set 

of actions that can be taken to fulfill some designated purpose under certain conditions” and can 

describe procedures, planning “operators”, or plans [WM97].  Environment conditions define the 

purpose and applicability criteria for a given Act.  Action specifications are referred to as plots 

and consist of a partially ordered set of actions and subgoals.  The environment conditions and 

plots are both specified using goal expressions.   

Goal expressions define all requirements on the planning/execution process and the 

desired states to reach [WM97].  Goal expressions consist of predefined Act metapredicates 

applied to a logical formula built from predicates specified in first-order logic, connectives, and 

Act names. The predicates of the expressions describe possible goals and beliefs of the system.  

These goals and beliefs are interpreted in the same manner as they would be in a BDI 

architecture.  Metapredicates allow for the specification of many modes of activity to include 

goals of achievement, maintenance, and testing [WM97].  Once defined, a goal expression 

specifies both the applicability conditions for environment conditions and subgoals for plot 

nodes.  Metapredicates such as TEST or ACHIEVE can be used in conjunction with logical 

formula to specify wants or needs of the system.  For example, (TEST P) in the precondition 
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means P must be true in order for the Act to be applied, while (ACHIEVE G) means the system 

must currently have G as a goal in order for the Act to be applied. 

Figure 6 is an example of an Act describing an operator for deploying an air force to a 

particular location.  The environment conditions are listed on the left side of the screen and the 

plot nodes (discussed below) are on the right.  When the overall system achieves the goal of 

executing this deployment, the Cue will be invoked. 

The precondition ensures various constraints on the intermediate locations get enforced, 

while the setting is used to look up the cargo to send by air and sea for this particular deployment. 

The plot (right side of figure 6) shows the activities for accomplishing the purpose of an 

Act and consists of a directed graph whose nodes represent actions and whose arcs impose a 

partial order of execution [WM94].  A plot contains one start node and one or more termination 

nodes.  Each plot node also contains a list of goal expressions (subgoals) that must be satisfied for 

the action to take place.   Plots are composed of conditional  (displayed as rectangles) and parallel 

(displayed as rounded squares) nodes.  Arcs coming into and going out of parallel nodes are 

conjunctive and must be executed, while arcs coming into and going out of conditional nodes are 

disjunctive and only one arc needs to be executed.  If a conditional node has multiple successor 

nodes, the system will execute all successor nodes until one is found whose goals are satisfied.  

Execution will now commit to that branch in the tree and will ignore all other branches.  

Completion of a plot requires the successful execution of all nodes along a given branch of plot 

from the start node to some terminal node.  A significant advantage Act has over many other plan 

representation languages is the Act-Editor.  The Act-Editor, developed by SRI, is a graphical tool 

used for the interactive viewing, creating, modifying, and verifying of Acts. This offers the user 

not only a graphical user interface for the creation and modification of plans, but more 

importantly, a way to verify their correctness. 
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Figure 6 Act diagram example [WM97] 

2.3.7  Multi-Agent Communication 

When dealing with multi-agent systems, an area of critical importance is communication.  

Communication is the basis for interaction and organization without which agents would be 

unable to cooperate, coordinate, or sense changes in their environment.  There are three forms of 

agent communication that may take place: agents may communicate directly with other agents via 

message passing, agents may communicate with the environment using sensors and effectors, and 
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     (NEAR SEAPORT.1 LOCATION.1)    
     (PARTITION-FORCE AIR.1     
      CARGOBYAIR.1 CARGOBYSEA.1)   
     (TRANSIT-APPROVAL AIRFIELD.2) 
     (TRANSIT-APPROVAL SEAPORT.2) 
     (NEAR SEAPORT.2 AIRFIELD.2) 
     (ROUTE-ALOC AIRFIELD.1  
      AIRFIELD.3 AIR-LOC.1) 
     (ROUTE-SLOC SEAPORT.1  
      SEAPORT.2 SEA-LOC.1))) 
 
Setting: 

(TEST 
(AND (NOT (= AIRFIELD.2 AIRFIELD.1)) 
     (NOT (= SEAPORT.1 SEAPORT.2)))) 

 

Resources: 

- no entry - 

Properties: 

((AUTHORING-SYSTEM SIPE-2(CLASS  
  OPERATOR)) 

 
Comment: 
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agents may communicate with other agents by effecting changes to the environment using 

effectors.   

2.3.7.1  Message Passing 

A multitude of languages exist allowing for the communication needs of agents.  

Telescript, Java, TcL, and Python name just a few.  These language capabilities combined with 

infrastructural capabilities (such as CORBA) form complete agent communications mechanisms 

[KJ98].  However, because more than just agent state and simple messages may need to be 

passed, more is needed.  Because agents act on complex rules and ontologies, specific protocols 

need to be defined for message passing between agents.  The Knowledge Query and 

Manipulation Language (KQML) from the Defense Advanced Research Project Agency 

(DARPA) and the Agent Communication Language (ACL) from the Foundation for intelligent 

Physical Agents (FIPA) represent the two most utilized representations to date.  These languages 

provide the designer with a standard syntax for forming messages as well as a number of 

performatives that define the intent of the message.  A performative is a keyword that designates 

the type of illocutory act associated with a message.  Using these agent communication languages 

allows agents to share knowledge and information to cooperate with each other to perform 

complex tasks.  These languages used in conjunction with the aforementioned communication 

protocols provides a means for agents running on disparate systems to communicate effectively 

and efficiently.   

Regardless of communication format, the overall message-passing model can be 

simplified to two methods; send and receive.  Although explicit details of how these methods are 

implemented will be strictly dependent on the type of messaging protocol being used, they do 

have a number of general characteristics.  An agent send function will generally take a formatted 
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agent message and extract specific “address” information in order to deliver the message to the 

correct agent.  This may consist of an internet protocol (IP) address or could simply be a name 

that can be interpreted by the agent.  Receive functions are generally event driven and are invoked 

by the act of a message arriving from another agent.  What actually happens once the receive 

method is called can be specified by the designer of the system. 

2.3.7.2  Communicating with the Environment 

Communication does not only take place between agents, but can also occur between an 

agent and its environment.  Agents can be implemented with sensors and effectors to allow the 

agent to interact with its surroundings.  Sensors are required in order for an agent to interpret 

changes in the environment, while effectors are used to impose a change to the environment.  

Both sensors and effectors may be implemented in hardware or software but will normally have a 

software interface to the agent itself. 

Agent sensors can be either functional or persistent.  Functional sensors allow an agent to 

get a piece of information on demand.  An example of this type of sensor could be used by an 

agent system deployed on a satellite.  Periodically temperature readings may need to be taken and 

reported back to earth.  The agent would query the temperature sensor and then send a message 

containing the results.  Persistent sensors are those that perceive changes in the environment and 

continuously update the agent.  Using the example just stated, the same agent system may need to 

keep track of the internal temperature of the satellite.  If certain components overheated they 

could be permanently damaged.  For this reason, the sensor would continually update the agent 

with internal temperature readings of the satellite components. 
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Agent effectors can be looked at as the actions that an agent may perform on its 

environment.  If an agent system has a robotic arm, it may use this arm to make changes to its 

surroundings.   

2.3.7.3  Communicating Through the Environment 

A less direct model of agent communication has to do with one agent effecting a change 

on the environment and other agents perceiving this change and acting accordingly.  Instead of 

sending a message directly to another agent, an agent may use it effectors to change the 

environment in a way that can be perceived and interpreted by the sensors of other agents.  This 

method is not as effective as message communication since it assumes that all agents will 

interpret this environmental change in the same manner.  However, it does offer a significant 

advantage if message passing capability between agents is lost but coordination between agents is 

still required. 

2.3.8  Architectural Summary 

This section reviewed some of the most popular architectures currently being used in the 

field of agents.  Although seemingly disparate, many similarities exist in the types of knowledge 

represented in each architecture.  

Not explicitly addressed in any of the architectures but of critical importance in agent 

systems is communication.  If a representation language is to be used in any type of multi-agent 

based system, some means must exist to represent how agents communicate with other agents as 

well as their environment.  The majority of agent architectures designed on paper or implemented 

in the real world utilize some form of communication. 
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2.4  Internal Agent Representation 

In order to completely describe the internal behavior of an agent a representation 

language is needed.  Knowledge representation languages in artificial intelligence and software 

engineering are not new, and a great deal of research has been done concerning this issue.  It 

would be nice if natural language could be used as a knowledge representation language since it 

is well known and for the most part well understood.  However, a number of issues regarding the 

use of natural language quickly dispel any thoughts of its use.  Bigus and Bigus [BB97] point out 

that natural language is very expressive, but is more appropriate for communication than 

representation since the meaning of natural language is very dependent on the context in which it 

is spoken or written.  

A formal language is a language having a vocabulary, syntax, and semantics that are 

formally defined and usually have a mathematical basis.  Ideally you want a knowledge 

representation language combining the advantages of both natural and formal languages.   

An issue that must be addressed when selecting a knowledge representation language is 

determining the type of representation scheme needed.  Knowledge representation schemes 

categorize the general types of knowledge represented in a program.  Two schools of thought 

exist: declarative and procedural [WIN75].   

2.4.1  Declarative Representations 

Architectures whose internal representation is based on declarative knowledge are 

formatted in a way that may be manipulated, decomposed and analyzed by a reasoning engine 

independently of the content.  Declarative knowledge deals with representing knowledge as a set 

of facts.  The most well known declarative representation is logic.  A significant advantage of a 

declarative representation is the ability to use knowledge in ways the system designer did not 
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foresee.  Since a piece of knowledge is not inextricably linked to the manipulation of that 

knowledge, multiple uses can be obtained from a single statement.  Ease of modification also 

represents a major advantage of the declarative approach.  A single fact may be easily added, 

deleted, or modified without affecting any other facts being stored.  A final advantage of the 

declarative approach described by Winograd is that much of the information we know can be 

more easily stated using declarations.  He states that human communication in general consists of 

breaking information into statements that are passed from person to person.     

2.4.2  Procedural Knowledge Representation  

In contrast to declarative knowledge, which can be read and modified by humans and all 

processes that know the format, procedural knowledge is in a machine-optimal representation that 

cannot be read or modified by humans or other internal processes.  Procedural representations are 

characterized by their ability to store knowledge in a faster-to-access but less flexible format. 

An advantage procedural representations have over declarative is the representation of 

second order or metaknowledge.  “In applied AI, metaknowledge is that part of the knowledge 

which the system has about its internal knowledge.” [PB94]  In its most general terms, 

metaknowledge is knowledge about the domain knowledge.  This is an important concept since it 

essentially gives the ability to acquaint a system with what it knows.   

2.4.3  Declarative and Procedural Summary 

The arguments for declarative and procedural approaches have been made, but there is no 

clear winner.   Genesereth and Ketchpel [GK94] believe that although functional representations 

may be winning the battle due to their familiarity, declarative representations will overall win the 

war.  Genesereth and Ketchpel are referring to agent communications languages but the statement 

seems just as applicable in knowledge representation languages.   
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Once all aspects of the problem have been accounted for, the basic approach to be taken 

is to look at the overall problem and try to determine if the knowledge needed is more easily 

represented declaratively or procedurally.  Once a scheme has been chosen, the next decision to 

be made is the language that it will be implemented in. 

2.4.4  Languages     

The majority of research done in knowledge representation languages fall into four major 

areas: logic, semantic networks, frames, and production systems.  

2.4.4.1  Logic     

Formal logic was one of the first attempts to model knowledge unambiguously.  It is one 

of the most studied and best-understood schemes to date [PB94].  Based on predicate calculus, 

logic is used primarily to communicate declarative rather than procedural knowledge.  The ability 

to reason over sentences is obtained by using axioms and inference rules that specify how new 

sentences can be derived from given sentences  [HODG91].   

The advantages of using logic are its clear semantics and expressiveness [REICH91].  

Having a clearly defined mathematical semantics ensures a lack of ambiguity in all expressions.  

The expressiveness of logic can be seen in its ability to express incomplete knowledge.  First 

order logic “determines not so much what can be said, but what can be left unsaid.” [REICH91]  

This means that details not yet known do not have to be represented.  There are numerous logics 

to choose from.  One may use temporal logic to represent and reason about time or epistemic 

logic to represent and reason about knowledge and belief.   

Since logic represents declarative knowledge it also has all of the advantages and 

disadvantages discussed in Section 2.4.1.    In spite of its limitations, logical representation is still 
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one of the most studied knowledge representation languages for use in artificial intelligence 

[PB94].  Three well-known logic-base knowledge representation languages are surveyed next: the 

Object Constraint Language (OCL), Z  (pronounced “zed”), and the Knowledge Interchange 

Format (KIF). 

2.4.4.1.1 Object Constraint Language (OCL) 

OCL was designed to be used with the Unified Modeling Language (UML) to describe 

constraints on object-oriented models [WK99].  Rumbaugh et al. [RUM91] defines a constraint 

as a “functional relationship between entities of an object model” while Booch [BOO94] defines 

it as “the expression of some semantic condition that must be preserved.”  Instead of focusing on 

any one definition, “OCL tries to express the common factor, thereby setting a standard that is 

understandable and easy to use and allows the modeler to specify what is necessary.” [WK99] 

OCL is considered to be a “side effect free” language since OCL expressions cannot 

change anything in a model.  An OCL expression can never change the state of the system even 

though an OCL expression can be used to specify such a state change (e.g., in a post-condition) 

[OCLW99].  OCL is also considered to be a “reasonably” formal language, since although OCL 

is based on well-known and defined set-theoretic concepts, a formal semantics has not yet been 

defined.  Because of its basis in these concepts, it is not considered a difficult task to define the 

semantics [KWC98].  A metamodel for OCL has been created that defines the syntax of all OCL 

concepts such as types, expressions, and values in an abstract way and by means of UML features 

[RG99].  This also aids in bringing OCL closer to being considered a completely formal 

language. Many arguments exist for not using formally based languages due to their inability to 

be written and read by non-mathematical experts.  Unlike many formal languages, OCL is touted 

as being “a formal language, which remains easy to read and write” [OCLW99].  OCL has a 
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familiar look and feel to it that can easily be learned by anyone familiar with programming 

notations [KWC98]. Using OCL with traditionally non-formal graphical models provides the 

precise, unambiguous information normally lacking in graphic based models.  OCL was written 

to give users the power of a formal language as well as an easy to read and write format.  Because 

OCL is a modeling language, it is not possible to write program logic or flow control and 

therefore, it is not directly executable.  

OCL expressions are used to specify pre- and postconditions of operations and methods 

[WK99].  As is normally the case, a precondition must be true at the moment that the operation is 

going to be executed while a postcondition must be true at the moment that the operation has just 

ended its execution.  Besides pre- and postconditions, OCL is also used to define invariants.  

Used in this context, an invariant is a constraint that states a condition that must always be 

satisfied. 

OCL has declaratively defined semantics and contains a large number of predefined data 

types to represent collections, enumerations, strings, booleans, integers, and reals.  OCL has the 

predefined types set, bag, and sequence to work with collections of objects and supplies a wide 

range of predefined operations ranging from manipulation to checking the status of these 

collections.  OCL is also very robust in terms of how it handles characters and strings.  

Concatenation, size, substring, equals, and not equals operations allow a user the flexibility to 

handle most string and character problems that may be defined.  An equally robust set of 

predefined operators is also seen in dealing with boolean, integer, and real types. Besides the 

“standard” data types just mentioned, a user also has access to a number of unique data types 

particular to OCL.  OclType refers to all predefined OCL types as well as any type defined in a 

UML model.  Access to this type allows a modeler access to the meta-level of the model.  For 

example, type.attributes returns the set of names of the attributes of type as defined in the UML 
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model (were type is the instance of OclType).  OclAny is the supertype of all types in a model.  

All classes in a UML model inherit all of the features defined on OclAny.  Like the previously 

mentioned types, a useful set of predefined operations exists for each type. 

A significant difference between OCL and many other modeling languages is the fact that 

it is dependent on predefined graphical models.  In order to use an attribute or method, that 

attribute or method must first be defined in an object oriented (UML based) model.  This offers a 

significant advantage in that the model can easily be viewed from varying levels of abstraction.  

The graphical model alone offers a “big picture” view of the system while the OCL offers the 

ability to specify precise details about the system.  

Another advantage offered by using OCL in conjunction with UML is the ability to 

model communication between objects using events, signals, and messages.  In UML, an event is 

something that occurs in the system or environment that the system must react to and handle.  

Four different types of events exist in UML: a condition becoming true, receipt of an explicit 

signal object, receipt of an operation call, or passage of time [EP98].  A signal object is sent from 

one object to another and may contain attributes and operations.  Events may occur at the 

software or hardware level.  [MASE99] and [COOL95] both address agent communication by 

using event diagrams to model agent coordination.  Signals are a special case of events.  In UML, 

signals are defined as named events that may be raised.  A signal is described as a class (with the 

<<signal>> stereotype) representing an event that occurs in the system.  Signals are passed as 

messages synchronously or asynchronously between objects in a system.  Messages are used to 

communicate between passive objects, active and passive objects, or between active objects.  

Messages are implemented by operation calls or as signal objects placed in a mailbox or queue 

[EP98].  In real-time systems, message receipt is normally considered an event.  To depict 
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communication between objects, messages are shown in the following UML diagrams; sequence, 

collaboration, state, and activity.   

A simple example of how to specify a problem using OCL would be modeling non-

military and military students at a university.  Both military and non-military students contain the 

following attributes: first name, middle initial, last name, date of birth, social security number, 

gender, height, weight, and age.  All students have a grade point average (GPA) that is between 

0.000 and 4.000.  Persons in the military have an associated rank and must also meet weight 

requirements.  Military students must be between the ranks of 1LT and Capt, must be under the 

age of 35, and must maintain a GPA greater than or equal to 3.000.  The object model shown in 

Figure 7 captures the main classes needed, their relationships to one another, and the attributes of 

each class (there are no methods needed for this example).  Figure 7 shows the main class Person 

contains all of the attributes shared by a student and military member.  Student inherits all of 

those attributes and adds the attribute GPA.  Military inherits the same attributes as student but 

adds the attribute military_rank.  MilitaryStudent inherits all of the attributes from Student, 

Military, and Person.  OCL can now be used to specify the constraints needed.  The context to 

which an OCL expression applies is always underlined and is followed by OCL expressions.  The 

constraints shown below satisfy the original conditions specified in the problem. 

Student
GPA >= 0.000 and GPA <= 4.000

Military
weight <= 3*height

MilitaryStudent
military_rank = 1LT or 2LT or CPT
gpa >= 3.000
age <= 35
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Figure 7 OCL Object Model 

A problem often seen when using any type of graphical model in a knowledge representation 

language is finding a way to represent the model so that the computer can interpret it.  A parser 

has been developed by IBM to read in the models and OCL using a simple syntax.  Type 

declarations start and end with the keyword <type and can be followed by optional supertypes 

starting with the key word <supertype.  An example of how to convert the Person and Student 

classes for Figure 7 is shown below: 

<features
<type Person
lastname : String;
initial : char;
firstname : String;
birthdate : date;
ssan : Integer;
sex : enum {male, female};

 Person 

lastname : String 
initial : char 
firstname : String 
birthdate : date 
ssan : Integer 
sex : enum {male, 
female} 
height : Integer 
weight : Integer 
age : Integer

 Student 

GPA : Integer  

 Military 

military_rank : enum 
{2LT, 1LT, CPT, MAJ, 
LTC, COL}  

MilitaryStudent 
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height : Integer;
weight : Integer;
age : Integer;

<type Student <supertype Person
GPA : Integer

The constraints themselves are written in the standard OCL syntax described earlier and are 

stored in a separate file.  The object model along with the OCL constraints allows the problem to 

be specified in an easy to read unambiguous manner that can be easily parsed and interpreted by a 

computer.    

2.4.4.1.2 Z 

The formal specification notation Z (pronounced “zed”) is based on Zermelo-Fraenkel set 

theory and first order predicate logic.  It has been developed by the Programming Research Group 

(PRG) at the Oxford University Computing Laboratory (OUCL) and elsewhere since the late 

1970s.  Z offers essentially the same expressive power seen in OCL.  Luck and d’Inverno [LD95] 

provide three primary arguments for the use of Z in agent based systems. 

1. Z allows for precise and unambiguous definition of common concepts and terms in a 
readable way. 

2. Z is sufficiently expressive to allow for a consistent, unified and structured account 
of a computer system and its associated operations. 

3. Z provides a foundation for development of new and increasingly more refined 
concepts. 

Given the reasons cited by Luck and d’Inverno, one would think that Z would be a 

universal standard for knowledge representation in AI as well as software engineering.  One of 

the reasons Z has not been globally adopted is that although Luck and d’Inverno find Z very 

readable and easy to use, most of the rest of the general population does not.  Z is based on first 

order logic, which in itself is mathematically very simple.  The problem comes when complex 

information must be represented and/or manipulated.  The syntax and semantics of Z tend to 

collapse everything together making it difficult to correctly interpret the specification even 
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though it has been formally written.  Another problem is that computers do not easily represent 

much of the notation needed to write Z specifications and the shortcut notation needed by most 

interpreters makes the knowledge virtually unreadable in a non-compiled format.  Point two and 

three made by Luck and d’Inverno are very strong and make Z a viable contender when choosing 

a representation language, as long as all parties involved are aware of the overhead that comes 

along with using it.  Using the same student example as seen in Section 2.4.4.1.1, a Z 

specification can be shown from start to finish.  Figure 8 shows a Z depiction of all of the 

attributes, constraints, and associations specified in the original problem.  From this simple 

example it is easy to see a small problem can quickly become unmanageable using Z as a 

specification language.  A problem not brought out by the example is the fact that Z contraints are 

difficult to understand and ambiguous at first glance. 

2.4.4.1.3 Knowledge Interchange Format (KIF) 

Another alternative to OCL or Z is KIF.  KIF was developed as part of the Advanced 

Research Project Agency (ARPA) sponsored Knowledge Sharing Effort to aid in the sharing and 

reuse of knowledge.  KIF was specifically designed to be an “interlingua”, which is essentially a 

mediator to translate other languages.   

KIF is a prefix version of first order predicate calculus that added a number of extensions 

to support non-monotonic reasoning and definitions.  Although not specifically designed as a 

knowledge representation language, KIF possesses all of the attributes one would want in a 

language. KIF has declarative semantics giving the advantages discussed in Section 2.4.1.  KIF is 

also logically comprehensive in that it provides for the expression of arbitrary sentences in the 

first-order predicate calculus.  

 



 

 

 46

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 Z Representation 

The language provides for the representation of knowledge about knowledge, allowing a 

user to make representation decisions explicit, as well as permitting users to introduce 

new representation constructs without changing the language.  In terms of representing 

logic, KIF can handle all standard logical sentences containing any combination of negations, 

lastname: seqChar 
initial: CHAR 
firstname: seqChar 
birthdate: DATE 
ssan: SSAN 
sex: GENDER 
height: Ζ 
weight: N1 
age: N1 
 
age ≥ 1 ∧ age  ≤ 120 

Person 

Person 
gpa: ℜ 
 
gpa ≥ 0.000 
gpa ≤ 4.000 

Student 

Student 
Military 
 
 
military_rank = 1LT ∨ military_rank = 2LT ∨ military_rank = CPT 
gpa ≥ 3.000 
age ≤ 35 

MilitaryStudent 

Person 
military_rank: MIL_RANK 
  
weight ≤ 3*height 

Military  
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conjunctions, disjunctions, implications, equivalences, existential quantifications, and universal 

quantifications.  KIF is also very expressive in its ability to represent numbers.  KIF has 

predefined types for integer, real, and complex numbers as well as an extensive list of operators 

and functions that can be performed on each type.  KIFs ability to represent sequences and sets is 

also robust enough to deal with most problems a user may want to specify.  A downside to KIF is 

its lack of functions for dealing with characters and strings.  Characters and strings are easily 

represented in KIF, but there are no functions for manipulating these strings once created.     

Another disadvantage of using KIF is that knowledge must be represented in prefix 

notation, which does not always lend itself to readability and understanding.  A possible solution 

to the problem is using infix KIF.  Every expression written in infix KIF can be translated to a 

logically equivalent expression in prefix KIF.  The opposite is not true in that every prefix KIF 

expression cannot be translated to infix.   

The student example used for OCL and Z cannot be easily represented in KIF since KIF 

offers no predefined constructs for handling object-oriented models.  A KIF representation of the 

internal structure of the person class and its constraints is shown below. 

 string lastname
char initial
string firstname
integer birthdate
integer ssan
string sex
integer height
integer weight
integer age
(and (>= age 1)

(<=age 120))
(>= (height 1))

 

Although not as challenging as Z, even moderately complicated expressions can quickly become 

difficult to read even to those very familiar with prefix notation. 
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2.4.4.2  Semantic Networks 

Semantic networks allow for the graphical representation of relationships based on 

patterns of nodes that are interconnected by arcs.  Knowledge is depicted in labeled, directed 

graphs by the nodes, representing the objects or concepts, and the arcs representing the 

relationships between the elements.  An important point to make is that no information is stored 

in the nodes themselves; all knowledge is represented by the links between the nodes.  Semantic 

networks offer the advantage of being represented graphically as opposed to the textual 

representation of Z or KIF.  The biggest disadvantage seen in using semantic network 

representations is that there is no formal semantics of what a given representational structure 

means.  A partial representation of the student example of Section 2.4.4.1.1 using a semantic 

network is shown in Figure 9.   

 

 

 

 

 

 

 

 

 

Figure 9 Semantic Network Example 
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 The most well known semantics network system is the Semantic Network Processing 

System (SNePS) [KM98, SHAP99].  The OK BDI architecture [KS94], is an evolved version of 

SNePS based on the BDI formalism.   

2.4.4.3  Frame-Based Systems 

Frame-based systems in AI are usually composed of mutually linked frames that are 

ordered hierarchically.  Frames extend semantic networks by giving the ability to organize 

knowledge in a hierarchical and descriptive manner.  An individual frame may be viewed as a 

“record” data structure containing information relevant to specific entities.  A frame is composed 

of slots that contain attributes of the object being represented by the frame itself.  The slots of the 

frame may contain the following information [LS98]: 

1. Frame identification 

2. Relationship of current frame to other frames 

3. Descriptors of requirements for frame match 

4. Procedural information on use of the structure described 

5. Frame default information 

6. New instance information 

The need for each of the slots and the amount of detail needed in each is dependent on the 

particular situation being addressed.  The ability to attach procedures to frames is important since 

it gives the ability to represent knowledge not easily represented in a declarative format.  

Procedures called demons are invoked as side effects of some other action in the knowledge base 

[LS98].  
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An advantage seen in using frames is its ability to represent declarative as well as 

procedural knowledge [PB94].  General frames allow knowledge that is common to a class of 

objects to be stored while specific frames describe specific objects.  Frames allow for an object-

oriented approach to knowledge representation where frames represent objects, slots represent 

attributes, and daemons represent the methods of an object.  The use of general frames as well as 

inheritance has made frames one of the most efficient tools for knowledge representation [PB94].  

Although not intuitively obvious, both semantic nets and frames are closely related to predicate 

logic.  Russell and Norvig [RN95] describe a procedure to transform both semantic networks and 

frames into first-order logic [BB98].  It is because of this that semantic networks and frames offer 

all of the major advantages and disadvantages associated with logic.  The primary down side seen 

to using frames is the lack of a formal theory for representing the knowledge.  This fact has 

significantly limited the use of frames in AI systems. A representation of the student example of 

Section 2.4.4.1.1 using a frame representation is shown in Figure 10. 

2.4.4.4  Production Rules 

Production rules are a knowledge representation formalism consisting of two parts, a left 

hand side and a right hand side.  The conditional part (the left side) is used to show when a rule 

should be applied.  The transformational part (the right side) shows what actions should be taken 

when the rule is applied.  Production rules are used extensively in expert systems since expert 

knowledge can be easily represented using these IF-THEN types of rules.  The greatest advantage 

to using production rules for expert systems is the modularity offered by representing data in this 

manner. Rules can be added, modified, or deleted independently without effecting the rest of the 

knowledge base. A complete description of these systems is outlined in Section 2.3.4.   
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Figure 10 Frame Example 

The main drawback to using this type of representation is the limited scope in which these 

systems can be used.  

2.4.5  Section Summary 

Although arguments have been made for the use of declarative and procedural 

representation schemes, it seems that of most research is directed toward the declarative 

approach.  The stated benefits along with a formal foundation allow agent systems to be specified 

easily and unambiguously.  Logic languages represent the most direct and implementable way of 

 Person 

lastname : String 
initial : char 
firstname : String 
birthdate : date 
ssan : Integer 
sex : enum {male, 
female} 
height : Integer 
weight : Integer 
age : Integer

 Student 

GPA : Integer  

 Military 

military_rank : enum 
{2LT, 1LT, CPT, MAJ, 
LTC, COL}  

MilitaryStudent 

isa 

isa 

isa

isa
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representing declarative knowledge.  The majority of current agent implementations use some 

form of first order logic for the representation of certain  knowledge.   

2.5  Summary 

Knowledge representation is needed in all AI systems in one aspect or another.  Despite 

the research that has been done, a formal knowledge representation standard still does not exist.  

Many specific representation languages have been defined for specific architectures, but no effort 

has been made to define a language that will work with multiple architectures.    By examining 

agent architectures and looking for common knowledge representation components, a generic 

language can begin to take shape.  Continued research is needed to review past and present work 

in order to determine a way to effectively incorporate knowledge representation and formal 

methods. 
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III.  Approach 

As stated in Chapter 1, the goal of this research is to create a precise specification 

language for defining the structure and behavior of agents in a multi-agent development 

environment.  When developing a representation language for use in a multi-agent (or any 

software) system, a number of considerations must be taken into account.  This chapter describes 

the approach followed in developing the language.  Figure 11 depicts this approach graphically. 

 

 

 

 

 

 

 
 

Figure 11 Approach 

Section 3.2 defines how requirements are chosen for the language to specify agents in a multi-

agent system.  Section 3.3 outlines the process of selecting a language based on the requirements 

of Section 3.2.  Section 3.4 details how the problem syntax and semantics are defined and Section 

3.5 outlines the process of creating templates to test the language.   
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3.1  Language Requirements 

Figure 12 depicts the first step of the approach. 

 

 

 

 

 

 

 

Figure 12 Step One 

The first step in defining a knowledge representation language for a multi-agent design 

system is to determine all requirements the language must satisfy.  This thesis follows an iterative 

refinement approach in developing the requirements.  The first step is to look at the problem 

domain and try to determine the most basic requirements the language must satisfy.  For example, 

if the language is to be used to specify multi-agent systems, a basic requirement may be the 

ability to define an agent.  Basic requirements may also be “pre-defined” by users or designers of 

the system.  An example of this could be that users want to interact with the system using a 

graphical interface.  An extensive review of literature should also be accomplished since the 

development of specification languages is well researched and a number of known issues may 

have already been identified.  Once all basic requirements are determined, each of these should 

then be re-examined to decide if a lower level of requirements exist.  Building off the above 
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example, an additional requirement might be that agents should be viewed at multiple layers of 

abstraction.  For example, an agent may need an external graphical view as well as an internal 

textual view.  This refinement process is repeated until a complete listing of language 

requirements is developed. 

The importance of this first step should not be underestimated since it forms the 

foundation from which the language will be built.  Once completed, this first step is repeated at 

least once more to verify the completeness of the list of requirements.   

3.2  Selecting a Language 

Figure 13 depicts the second step of the approach. 

 

 

 

 

 

 

 

Figure 13 Step Two 

Once the requirements for the language are specified, the next step is to choose a 

language or languages to satisfy them.  The three options available are to choose an existing 
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language, modify or adapt an existing language, or define a new language.  Of these choices, 

using an existing language offers the most potential advantages, which include documentation, 

wide use and acceptance, and rigorous testing.  Because of this, the first step in this portion of the 

approach is to examine as many existing languages as possible.  Languages used to solve similar 

types of problems should be examined first.  In regards to agent specification, the two best areas 

to concentrate on are artificial intelligence and software engineering.  Both fields address the 

software specification problem at varying levels of abstraction and a large amount of research has 

been focused in this area.  Documentation and literature of each language should then be carefully 

reviewed to determine the requirements the language will satisfy.  The best approach is to make a 

table listing all language requirements and all languages examined.  It is then possible to check 

off which languages meet which requirements.  If no one language can meet all requirements, the 

next step is to see if multiple languages can be used to meet the requirements.  Often, different 

aspects of the same problem may need different languages to satisfy all the requirements.  Using 

the table, it is easy to see which languages may be used to do this.  If numerous languages don’t 

meet all requirements, then the next step is to examine the requirements not met.  Choose the 

language or languages satisfying the most requirements and then examine the specific 

requirements that still need to be met.  It may be possible to modify or extend an existing 

language so that it is able to meet the remaining requirements.  If this is not possible, then the last 

resort is to define a new language.   

Defining a new language is by far the most undesirable solution but must be addressed in 

case all other attempts fail.  [FMS97] states that “at least 90% of the next 700 formalisms for 

reasoning about agents will have no impact whatsoever on the development field.”  A serious 

problem currently being faced in software engineering is one of standardization.  Software 

engineering is a relatively new discipline and as such, contains very few (if any) agreed upon 
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practices in the area of software development.  Writing a new language tailored to a specific 

problem will solve the problem at hand, but at the same time will add to the problem at large.  

Because of the mentioned downsides, as well as the fact that defining a new language can be a 

time consuming and difficult task, this option should only be used as a last resort to solving the 

problem.    

3.3  Object Model Definition 

Figure 14 depicts the third step of the approach. 

 

 

 

 

 

 

 

 

Figure 14 Step Three 

Once a language is selected, the problem syntax and semantics must be specified.  

Defining an object model can do this.  Selecting a language that meets all the problem 

requirements provides a medium to solve the problem, but it does not provide the means.  This 

portion of the approach is based on Rumbaugh’s object-oriented analysis (OOA) techniques for 
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creating an object model [PRES97].  The goal is to separate the problem into its most basic parts 

so it may be seen what these parts consist of and how they are connected.  The steps to follow are 

shown below. 

1. Identify classes relevant to the problem 

2. Define attributes and associations 

3. Define object links 

4. Organize classes using inheritance 

An example of using these steps to define a generic solution to specifying agent architectures 

follows.  Using Maes definition (Section 2.3) of an agent architecture, the relevant classes 

identified in step one consist of components and connectors.  Figure 15 shows an object-oriented 

representation of these classes along with the associations between them.  Definitions of attributes 

are left out of this example for simplicity, but would normally be done at this time. 

Figure 15 A Generic Agent Architecture 

According to the template, an agent architecture consists of one or more components 

linked together by connectors.  Each component is connected by zero or more connectors and 

each connector joins exactly two components.  Once completely defined, the classes along with 

their required attributes represent the problem syntax.  How the classes can be constructed and 
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connected together to solve the problem constitute the problem semantics.  Together, the syntax 

and semantics define the problem object model.   

The representation of a truly generic solution is important for a number of reasons, the 

first of which is extensibility.  By defining a template that all solutions are based upon, new 

components can easily be created and integrated within existing solutions.  This leads to another 

advantage of a generic solution, which is compatibility.  Any component built according to the 

template should be able to be integrated with any other components previously defined.  

3.4  Language Validation 

Figure 16 depicts the fourth step of the approach. 

 

 

 

 

 

 

 

 

 

 

Figure 16 Step Four 

 When defining an agent specification language, an issue of significant importance is 

ensuring most agent types can be specified using the language.  In order to test for this, it must 
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first be determined what knowledge is needed to define any agent type.  This portion of the 

approach outlines the testing needed to verify the completeness of the language chosen.  A 

beneficial side effect of the testing is the creation of agent templates that can be used for the 

design of agent systems.   

One methodology to testing the language is to look at all multi-agent implementations 

and try to extract required agent knowledge from each.  This information could then be grouped 

according to function and made into generic components that could be used to construct agents.  

If the language chosen could specify all of the components, then it would obviously be a wise 

choice.  While this proposal may seem like an obvious answer, it is definitely not the easiest.  

Besides the fact that there are an extremely large number of agent implementations in existence at 

this time, this is more a brute force solution than one based on sound engineering principles.  In 

order for a component to be a reusable asset, more must be done than just taking a monolithic 

design of complete solutions and then just breaking it down into fragments [CS98].  Descriptions 

must first be carefully generalized in order to allow reuse to be possible in many contexts.  

Looking at the problem at a higher level of abstraction, another approach is to examine the more 

generic agent architectures from which the implementations were derived.  Using the Maes 

definition of agent architecture from Section 2.3, it should be possible to decompose each 

architecture into a set of components and connectors, which can then be specified using the 

chosen language.  A problem seen to following this methodology is the fact that the recent 

popularity of agents has created a large number of distinct agent architectures.  The solution 

involves looking at the problem at its absolute highest level of abstraction; the architectural style.   

An architectural style defines a class of systems in terms of a pattern of structural 

organization.  It determines the vocabulary of the components and connectors that can be used in 

instances of that style, together with a set of constraints on how they can be combined [SWA94].  
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To determine the basic agent architectural styles, architectures must be reviewed and categorized 

according to the below criteria proposed by Garlan and Shaw [GS96]. 

•= Design vocabulary – types of components and connectors 

•= Allowable structural patterns 

•= Underlying computational model 

•= Invariants of the style 

To go about this review and categorization in the most comprehensive manner possible, each 

architecture must be modeled using object-oriented techniques.  Object-oriented design and 

component-based design are closely related to one another.  A component is likely to come into 

existence through objects and will normally consist of one or more classes or constant prototype 

objects [SZY98].  Modeling each architecture as a collection of classes and associations 

significantly aids in identifying the basic components and connectors that each is composed of.  It 

also shows the basic structure of the specific architecture.  

The first step in decomposing an architecture is to determine the basic classes needed to 

model the architecture.  An example of this using the PRS-CL architecture of Section 2.3.2.1 can 

be seen in Figure 17. 

 

 

 

 

Figure 17 Generic BDI Architecture 

As described in the previous chapter, the architecture consists of beliefs, goals, and 

intentions as well as a plan library, interpreter, and interface to the environment.  Each class must 

Beliefs Plan_Library Goals Intentions Interpreter IO_Interface

PRS-CL_Architecture

1..* 1 1..* 0..* 1 11..* 1 1..* 0..* 1 1
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then examined to see if it can be further decomposed.  A possible decomposition of the 

Plan_Library, Goals, and IO_Interface can be seen in Figure 18. 

 

 

 

 

 

 

Figure 18 Refined BDI Architecture 

This process is repeated for each class until no further breakdown of classes is 

appropriate or needed.  Once all classes are defined, iterative refinement of each class is done to 

specify attributes, methods, and data structures.  Dependencies and interactions between classes 

are then examined to determine what can be modeled as a component.  Using Figure 17 as an 

example, candidate components are Beliefs, Plan Library, Goals, Intentions, Interpreter, and 

IO_Interface.  The whole process must then be repeated for a different architecture.  Architectures 

should be grouped according to the types of components and connectors they contain as well as 

how these components and connectors are organized.  After reviewing a number of specific 

architectures, a general set of agent styles should begin to take shape.  Once a listing of styles is 

completed that the majority of architectures belong to, a general set of components are extracted.  

The components should then be specified in the language selected in Section 3.3 to verify its 

applicability. 
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3.4.1  Template and Testing Summary 

Determining a set of generic architectural styles and generic components not only allows 

the language to be thoroughly tested, but it also provides a set of templates a designer can use in 

creating agents.  The templates are not meant to limit the designer in any way, only aid in the 

rapid design of agent-based systems.    

3.5  Chapter Summary 

This chapter has outlined the general approach to be followed in order to define a 

knowledge representation language for a multi-agent system.  Section 3.2 discussed the method 

of determining the requirements that should be imposed on the language.  Section 3.3 elaborated 

the steps to be followed in selecting a language once the requirements have been defined.  

Although three options were presented, the third was highly discouraged because of significant 

drawbacks.  Section 3.4 defined the method for determining the language object model and 

Section 3.5 outlined the approach for validating the language through the use of architectural 

styles. 
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IV.  Design and Implementation 

The purpose of Chapter 3 was to outline the generic approach that can be used to 

reproduce the results of this research.  This chapter covers the first three steps of the approach.  

Chapter 5 is dedicated to the final step of the approach.  Section 4.1 defines the requirements the 

language must possess.  Section 4.2 evaluates two existing languages against the requirements 

defined in Section 4.1.  Section 4.3 completely defines the language and Section 4.4 uses this 

definition to create the language object model.  Section 4.5 describes how the language was 

implemented within the agentTool multi-agent design environment.   

4.1  Defining the Requirements 

This section of the thesis outlines the language requirements chosen and the reasoning 

behind their selection.  The complete list of language requirements is shown below.   

1. The language must precisely and unambiguously provide meaning for common concepts 
and terms and do so in a readable and understandable manner. 

 
2. The language must allow agents to be specified using a combination of graphics and text. 
 
3. The language must allow for interaction among agents as well as interaction between 

agents and their environment. 
 
4. The language must support design modularity. 
 
5. The language must allow for the development and viewing of multiple levels of 

abstraction for a given design. 
 
6. The language must allow for the representation of complex data structures and 

operations. 
 
7. The language must allow alternative designs of particular models and systems to be 

presented, compared, and evaluated. 
 

8. The language must allow for the static and dynamic behavior of the system to be 
captured. 
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The remainder of this section describes the rationale behind the selection of each 

language requirement.   

The first two requirements were originally addressed as thesis goals in Chapter 1.  The 

first states that the internal agent representation must be specified using a precise and 

unambiguous language.  This requirement is also addressed by Luck and d’Inverno and is 

covered in Section 2.2.2.  The reasoning behind this requirement are the possibility of agent 

verification, automated code generation, and overall ease of understanding.   The second 

requirement outlined in Chapter 1 states that agents must be specified using a combination of 

graphics and text so as to aid in understanding and composition of agent systems.   

The next requirement was imposed by the multi-agent characteristics of the problem.  

Because the language will be used to specify agents in a multi-agent system, it is assumed an 

agent system may contain multiple agents capable of interacting with one another.  To allow for 

this, the third language requirement states that the language must have the ability to represent 

interaction among agents as well as interaction between agents and their environment.  

The next requirements were realized after closer examination of what an agent can 

represent.  Agents can range in complexity from simple reactive agent to complex reasoning 

agents.  Because of this, a number of additional requirements were needed to ensure agents of 

varying degrees of complexity could be specified.  The first of these requirements is derived from 

Section 2.2.2.2 and states that the language must support design modularity.  In order to 

efficiently and effectively specify agents, the language must allow for large and difficult 

problems to be partitioned into manageable pieces.  The next requirement is derived from Section 

2.2.2 and states that the language must allow agents to be developed and viewed at multiple levels 

of abstraction.  As agents become more complex, it may not be desirable or even possible to 
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represent the internal details of an agent at one level of abstraction.  The final requirement in 

regard to agent complexity is derived from Section 2.2.2.2 and states that the language must allow 

for elaborate data structures and operations to be represented.  Even the most basic agent may 

need complex data structures to store information and complex operations to manipulate it. 

Not all language requirements were extracted by examination of the problem.  After 

reviewing literature on agent specification languages, an additional requirement was realized.   

Derived from Section 2.2.2.2, this requirement states that a multi-agent language should enable 

alternative designs of particular models and systems to be presented, compared, and evaluated.  

This requirement is important when defining a language to specify any type of software system 

since it provides the designer with options.  Just because a design solves a problem does not mean 

it is the best design.  Options give the designer the ability to compare and contrast designs and 

then choose the most appropriate. 

The final language requirement specified was the ability to represent an agent 

dynamically.  Until now, all requirements dealt with the static structure of the agent and have not 

addressed agent execution.  As stated in Section 2.2.2.2, a dynamic representation is needed to 

address how the structure or system configuration may change due to external events [PRES97].   

4.2  Review of Existing Languages 

Using the language descriptions of Section 2.4.4.1.1 and 2.4.4.1.2, Z and the combination 

of UML and OCL were evaluated against the requirements specified in Section 4.1.  After 

reviewing a number of existing languages, Z and the combination of UML and OCL were 

determined the best candidates for satisfying the requirements of Section 4.1.  A report card of 

how well each language met the requirements is shown in Table 1.  Grades are based on the 

standard academic grading scheme.   
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Requirement Z OCL & UML
1 B+ B+ 
2 D A 
3 D A 
4 A A 
5 B A 
6 A A 
7 A A 
8 B A 

Table 1 Language Report Card 

An A is excellent, B is above average, C is average, and D is below average.  Plus and 

minus symbols may be added to further delineate levels of good and bad appropriately.  Sections 

4.2.1 and 4.2.2 review the reasoning behind the grading of each language. 

4.2.1  Z 

Z is a formal specification language adopted by a number of researchers [DAF97, 

DMAR97, SZS95] to construct formal agent frameworks.  As stated in Section 2.4.4.1.2, Z is 

based on set theory and first-order logic. 

The first requirement for the language was that it be able to represent information 

precisely, unambiguously, and do so in the most readable and understandable manner possible.  

Without question Z offers the ability to represent information precisely and unambiguously by 

having clearly and completely defined syntax and semantics.  However, the ability for Z 

specification to be considered readable and understandable is arguable (Section 2.4.4.1.2), which 

is the reason the requirement was rated B+.  

In regards to the language using graphics and text for representation of information, Z 

meets the textual portion of the requirement with ease, it is the graphical portion that is lacking.  

The only graphics used in Z are the lines bordering a schema (see Figure 8).  Z may be used in 
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conjunction with graphical languages such as object-oriented diagrams, but because Z was not 

designed to be used in this fashion, it is questionable if the overall interpretation could still be 

considered precise and unambiguous, thus further compromising Requirement 1. 

Requirement 3 addresses the ability to model agent interaction.  A downside to using Z to 

specify agent systems is that it is inappropriate for modeling interactions between agents 

[FMS97].  When it is necessary to model some sort of communication structure, a formalism such 

as the Communicating Sequential Process (CSP) algebra may be more appropriate [FMS97].  

CSP allows a system to be modeled as a collection of processes that communicate with one 

another.  CSPs lack of use in the realm of multi-agent systems is based on the fact that CSP was 

developed in relation to distributed processes and the semantics of parallel languages.  These are 

not always well suited to the problems of multi-agent systems, especially those in which agents 

carry out actions in an environment [JF99]. 

In regards to modularity, Z schemas allow Requirement 4 to be met.  As stated in Section 

2.4.4.1.2, the schema is the main element in Z to decompose a specification into smaller, more 

manageable pieces.     

In a paper written by Luck and d’Inverno, they specifically address the ability of Z to 

satisfy Requirements 5 and 7, the ability to support multiple levels of abstraction and the ability 

to compare and evaluate a design in multiple ways.  They state that through the use of schemas 

and schema inclusion, Z depicts a system description at different levels of abstraction, thus 

satisfying requirement five [FMS97].  Something not stated by Luck and d’Inverno, is that 

although multiple levels of abstraction are possible, they are not always beneficial.  Because Z is 

a textual language, it is difficult to visualize multiple layers of abstraction.  Luck and d’Inverno 

also state Z is expressive enough in representing a consistent, unified, and structured view of a 
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computer system and its operations to allow for alternative designs of agent models to be 

presented, compared, and evaluated [FMS97].  This satisfies Requirement 7. 

Z’s ability to represent complex data structures and operations was addressed in Section 

2.4.4.1.2, and is adequate to satisfy Requirement 6. 

The final requirement states the language must be able to represent the static and dynamic 

behavior of a system.  Although [ZRM98] states that Z schemas are used to describe both static 

and dynamic aspects of a system, dynamic representation in Z can be hard to follow.  Z offers no 

“big picture” view of the dynamics of a system, making interpretation difficult. 

4.2.2  UML & OCL 

Although UML and OCL are two separate languages, OCL was designed for use with 

UML diagrams.  Because of this, UML and OCL were evaluated together against the 

requirements of Section 4.1.   

In regards to representing information in a precise and unambiguous manner, OCL has 

selected ideas from formal methods and combined them with diagrammatic, object-oriented 

modeling thus resulting in a precise, robust, and expressive notation.  Like Z, OCL is based on 

predicate logic.  As stated in Section 2.4.4.1.1, OCL currently has no complete formal semantics 

defined, but because it is based on logical and set-theoretic concepts, it is not seen as a significant 

problem to define them.  Addressing the readability and understandability portions of this 

requirement, OCL is intended to be simple to read and write, having a familiar syntax that can be 

readily learned by anyone comfortable with programming notation.  Because of its lack of formal 

semantics, OCL is rated B+ in satisfying Requirement 1. 
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Requirement 2 specified the language must be able to represent information using a 

combination of graphics and text.  OCL itself is a textual language, but because it was designed 

for UML, OCL contains a tightly coupled graphical level of expressiveness, thus meeting this 

requirement.   

As outlined in Section 2.4.4.1.1, UML offers a variety of options to meet the interaction 

ability addressed in Requirement 3.  Events, signals, and messages represent the most common 

communication techniques available using UML.    

Because the object-oriented paradigm is based on the decomposition of a problem into 

objects, and because UML and OCL are based on this paradigm, the modularity support of 

Requirement 4 is easily satisfied.  

As stated in Chapter 2, a modeler can view just the UML diagram to understand the 

overall relationships represented, or can examine low-level details of the model specified in OCL. 

This allows a specification to be examined at various levels of abstraction and satisfies language 

Requirement 5. 

Requirement 6 states the language must allow for the representation of complex data 

structures and operations.  Through the use of inheritance and aggregation, one or more classes 

can be connected in such a manner as to create the most simple to the most complex data 

structures.  In regards to representing operations, OCL expressions can be used to define the pre 

and postconditions of an operation.  Because of the expressiveness of the language, operations 

can be defined ranging from simple to very complex.   

The same Z argument allowing the representation of alternate designs that satisfied 

requirement 7 in Section 4.2.1, also applies to UML and OCL.  By using UML case tools, 

designers can manipulate and view alternative representations of a design quickly and easily. 
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The final requirement states the language must be able to represent the static and dynamic 

behavior of a system.  Regarding this requirement, UML provides diagrams to capture both the 

static and dynamic aspects of a system.  Class diagrams are used to document and express the 

static structure of a system, while state, sequence, collaboration, and activity diagrams can all be 

used to express the behavior (dynamics) of the system. 

4.2.3  Existing Language Summary 

As seen in Table 1, the combination of UML and OCL clearly seem like the best 

languages for modeling agents.  However, after some preliminary testing, a number of problems 

became apparent.  A significant advantage of using UML and OCL to specify agents is its ability 

to represent information at various levels of abstraction using both graphics and text.  The 

problem was that the graphical level of abstraction was not high enough to allow for the 

manageable construction of agents.  Figure 19 shows a simple reactive agent modeled using 

UML.  The purpose of the agent is to receive messages from other agents and react to them based 

on the content and performative.  When a message is received by the MessageInterface, the 

checkRules method of the ReactiveAgent is called.  The checkRules method iterates through 

all of the rules in the RuleContainer, and executes any that are appropriate.  Because the 

execution of some rules may involve sending reply messages or invoking effectors, the Rule 

class needs associations to both MessageInterface and Effector.  The specifics of the operation 

of the agent are written in OCL and embedded in the operators.  The OCL code for all operators 

can be seen in Appendix B.  The diagram depicts how even the most basic agent quickly becomes 

large and complicated using UML.  The answer to the problem required a higher level of 

graphical descriptions be used.   
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UtilityRule
utilityValue : Integer

{ordered by user}

ParamTypes 
type : OclAny 

Message 
sender : String 
receiver : String 
performative : String 
content : OclAny 

RuleContainer
msgTrigger : Message

executeMsgValid(msg : Message)

MessageInterface 
send(msg : Message) 
receive(msg : Message) 

1..1 

0..* 

+received by 1..1 

+receives 0..* 

Reactive Agent

checkRules()

0..10..10..1 0..1 

Operator 
name : String 
precondition : OclExpression 
postcondition : OclExpression 

0..* 0..* 

Rule
name : String
precondition : OclExpression
postcondition : OclExpression

0..*0..*

Effector 
name : String

executeOp(params:Sequence(OclAny)

0..*0..*

0..* 0..* 

  

 
 

Figure 19 Reactive Architecture 

Following Step 2 of the approach outlined in Section 3.2, the next step was to see if an existing 

language could be modified to meet all requirements.  As described in Section 2.3, software 

architectures separate and represent information at a higher level of abstraction, but don’t provide 

the low-level detail offered by a language such as OCL.  The solution was to use an architectural 

representation for the graphical depiction of internal agent components, and use OCL as the low-

level specification language to represent the explicit details of each component.  Because UML 

and OCL met all language requirements, the goal was to find a way to capture the UML diagrams 

in a more abstract, architecture-based diagram.  The approach followed was to transform the class 

diagram into a software architecture, thus preserving the expressiveness, but doing so at a higher 
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level of abstraction.  The result would be an architectural specification language having the high 

level graphical abstraction of an ADL and the low-level details of OCL.   

4.3  Language Definition 

This section outlines how the UML class diagrams are converted into an architectural 

specification language and defines the syntax and semantics of the language.  The language 

object model is defined in Section 4.4 and the implementation of the language is described in 

Section 4.5.   

As stated earlier, the main elements of software architectures are components and 

connectors while the main elements of a class diagram are classes and relationships.  The overall 

approach was to find a way to represent classes and relationships as components and connectors.  

The first step was to define what would be considered a component.  Using the definitions of 

Section 2.3.1, a component represents an independently deployable repository of computation.  

Therefore, any class or classes with computational ability that can work independently is a 

component candidate.  Using this definition as a guideline, Figure 20 is an example of how the 

classes of Figure 19 were grouped into components.  The grouped classes shown in Figure 20 will 

be referred to as component classes for the remainder of this section.  Because some level of 

computation must take place (per the definition), a component class must contain at least one 

operator.  Once a component identification process was determined, the next step was to 

transform the class relationships.   

Two types of relationships have to be examined, component class relationships and 

component relationships.  Component class relationships exist between the classes making up the 

components and component relationships exist between the selected components.   
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UtilityRule
utilityValue : Integer

{ordered by user}

ParamTypes 
type : OclAny 

Message 
sender : String 
receiver : String 
performative : String 
content : OclAny 

RuleContainer
msgTrigger : Message

executeMsgValid(msg : Message)

MessageInterface 
send(msg : Message) 
receive(msg : Message) 

1..1 

0..* 

+received by 1..1 

+receives 0..* 

Reactive Agent

checkRules()

0..10..10..1 0..1 

Operator 
name : String 
precondition : OclExpression 
postcondition : OclExpression

0..* 0..* 

Rule
name : String
precondition : OclExpression
postcondition : OclExpression

0..*0..*

Effector 
name : String

executeOp(params:Sequence(OclAny)

0..*0..*

0..* 0..* 

  

 
 

Figure 20 Component Grouping 

 

For example, the relationship between Message and MessageInterface is a component class 

relationship while the relationship between the ReactiveAgent and the MessageInterface is a 

component relationship.  It is important to note the order in which associations are transformed.  

Component class relationships must always be transformed first.  Component class associations 

are transformed in a bottom up manner until the user is left with one class per set of component 

classes.  Which set of component classes are done first is not important. Once all component class 

relationships have been transformed, component relationships can then be addressed.  The order 

in which these relationships are transformed is not important.   
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4.3.1  Component Class Relationships 

Numerous types of relationships exist in class diagrams, but the two most encountered 

are associations and generalizations (also known as inheritance).  Section 4.3.1.1 outlines the 

transformation of associations and Section 4.3.1.2 presents the process to transform inheritance 

from a class diagram.     

4.3.1.1  Associations 

The most common associations are normal associations and aggregation.  Aggregation is 

often referred to as the “consists of,” “contains,” or “is part of” association and for those reasons 

is the easiest to eliminate.  For example, in Figure 20, the RuleContainer “consists of” zero or 

more Rule where Rule is the aggregate class.  All aggregate classes are transformed by simply 

moving them into the parent class and representing them as attributes.  An example of this is seen 

in Figure 21.  Note that the aggregate Rule class cannot be transformed until the inheritance class 

UtilityRule is transformed.  This is done in Section 4.3.1.2.   

If the cardinality of the aggregation is greater than one, it is represented as a set, unless 

the aggregation is ordered, in which case it is represented as a sequence.  An example of this is 

the ops attribute of Effector from Figure 21.  Because Effector consisted of an aggregate class, 

which itself consisted of an aggregate class, aggregation was removed in a bottom up fashion.  As 

previously stated, the lowest level of aggregation is transformed first followed by each higher 

level of aggregation.  In Figure 20, ParamTypes was first moved into Operator and represented 

as the attribute params:Sequence(OclAny).  Because of the ordering imposed on the aggregate 

class, the information had to be captured as a sequence.  Operator was then moved into Effector 

and represented as the attribute ops:Set(Operator).  Because the cardinality was greater than one 

and not ordered, the class was captured as a set with type Operator.  Although the aggregation 
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within the components is removed, the collection element types must still be stored somewhere so 

the component may access them.   

UtilityRule
utilityValue : Integer

RuleContainer
msgTrigger : Message

executeMsgValid(msg : Message)

Effector 
name : String 
ops : Set(Operator) 
executeOp(params:Sequence(OclAny)

Message 
sender : String 
receiver : String 
performative : String 
content : OclAny 

Reactive Agent

checkRules()

0..10..1 0..*0..*

Rule
name : String
precondition : OclExpression
postcondition : OclExpression

0..*0..*

MessageInterface 
send(msg : Message) 
receive(msg : Message) 

1..1 

0..* 

+received by 1..1 

+receives 0..* 

0..1 0..1 

 

Figure 21 Aggregation Removal 

In Figure 21, the collection is a set containing elements of type Operator.  Collection element 

types that in and of themselves meet the definition of a component, must be stored as 

substructures.  A substructure represents the internal architecture of a component.  Just as a 

system may be composed of one or more components, so may a given component.  A 

substructure is one or more components that are “inside” a component.  Referred to as 

compositional knowledge [KJ98], this “has-a” relationship allows for the organization of 

information that makes up complex components.  A component can directly access all attributes 

and operators of any components in its substructure.  However, if a component needs access to 
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the substructure of another component, an interface must be defined.  For example, if Operator 

were a component and was stored as a substructure of Effector, any other component needing 

access to attributes of Operator would need to call an operator in Effector, which would then 

access the information.  In order for a user to know if a component has substructures, the asterisk 

symbol (*) is appended to the name of any component containing substructures.  A substructure 

may be used at any time at the designer’s discretion, to embed varying levels of complexity into a 

component.  Any component within a substructure may also contain a substructure (and so on).   

All other collection element types not considered to be substructures are stored as data 

structures.  A data structure is a representation of the logical relationship among individual 

elements of data [PRES97].  Each component may have a set of data structures associated with it.  

All data structures specified are stored in a common library.  Data structures are used in the same 

manner as basic OCL types (integer, real, boolean, etc.), but unlike the standard set of OCL types, 

which are available to all components, data structures are only available to components having 

access to them.  A component only has access to the data structures associated with it.  When the 

OclAny type is used as an attribute type, the attribute value can be of any basic OCL types as well 

as any data structures the component has access to.  The component does not have access to all 

data structures stored in the library.  Data structures are not visible in the component diagram but 

can be accessed by the user. 

Two types of normal associations exist that must be removed: normal associations 

between component classes and normal associations within component classes.  Normal 

associations between component classes will eventually be replaced by connectors.  This issue 

will be addressed in Section 4.3.2.  All other normal associations in a class diagram are used 

simply to give one class access to the attributes of another.  Within component classes, normal 

associations are also treated as data structures since if the associative class had any operators, it 
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would either be a component or be part of a component.  The Message class of Figure 21 is an 

example of an associative class that is converted to a data structure.  The sole purpose of the 

Message class is to allow the component access to the format of Message.  The class does not 

do anything; it simply provides a representation of the logical relationship of the data. 

4.3.1.2  Inheritance 

The last relationship within component classes to be removed is inheritance.  If a subclass 

Y inherits all of the attributes and operations associated with its superclass X, this means that all 

the data structures and algorithms designed and implemented for X are immediately available to 

Y [PRES97].  Therefore, inheritance is removed by copying all inherited class attributes and 

operators into the superclass.  Subclass attributes and operators override any attributes or 

operators in the superclass with the same name as those in the subclass.  Two types of inheritance 

exist that must be removed: component inheritance and data structure inheritance. If the 

superclass or subclass meets the component definition, then the combination of classes results in 

a component.  If the superclass and subclass are data structures, then the combination of classes 

results in a data structure.  For example, in Figure 21, the subclass UtilityRule becomes a data 

structure composed of the attributes of both the UtilityRule and Rule classes.  The resulting class 

is a data structure because both the superclass and subclass are data structures If the superclass 

met the component definition, then the resulting class would have been a component containing 

all of the attributes and operations of the two classes.  If both the superclass and subclass need to 

be accessed individually, the following additional steps must be taken.  When there is component 

inheritance, two components must be created.  One component represents the combination of 

both the superclass and the subclass while the other component contains just the superclass 

information.  The superclass component is then placed in the substructure of the new inheritance 
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component.  Both components now exist individually and can be accessed by other components.  

If there is data structure inheritance, then a data structure must be defined for the combination of 

the superclass and subclass and a data structure must be defined for just the superclass.  For 

example, if both UtilityRule and Rule were accessed individually (i.e., one component uses Rule 

and another component uses UtilityRule), separate data structures would be defined.  One data 

structure would be called UtilityRule and would contain all of the attributes of both Rule and 

UtilityRule.  The other data structure would be called Rule and would contain all the attributes 

associated with the rule class. These data structures can then be associated with any components 

needing access to them.  Figure 22 depicts Figure 21 once all component class relationships are 

removed.  

Effector
name : String
ops  : Set(Operator)

executeOp(param s:Sequence(OclAny)

Reactive Agent

checkRules()

0..*0..*

RuleContainer
msgTrigger : Message
rule : Set(UtilityRule)

executeMsgValid(msg : Message)

0..10..1

MessageInterface

send(msg : Message)
receive(msg : Message)

0..10..1

 

Figure 22 Inheritance and Aggregation Removal 

Each class shown in Figure 22 now represents a component.  As seen from the figure and 

the previous sub-sections, the main elements a component consists of are attributes, operators, 

data structures, and substructures.  Because classes normally have state diagrams associated with 

them to represent the dynamics of the system, each component has a state model to represent the 

behavior of the component. 
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4.3.2  Dynamic Representation 

State diagrams are used to represent the dynamic aspects of a component.  A state 

diagram describes the states a component can be in during its life cycle along with the behavior 

of the component while in those states.  The diagram also describes the events that cause a state 

change.  An event is something that happens and that will cause some action.  How events are 

received by a component is addressed in Section 4.3.3.2.  An example of a state diagram for the 

MessageInterface component of Figure 22 is shown in Figure 23. 

 

 

 

 

Figure 23 MessageInterface StateDiagram 

When the component is instantiated, it automatically goes into the Wait state.  Whenever 

a message event is received the receiveMsg operator is invoked.  Any operator called within the 

state diagram must be defined in the component diagram.  When the receiveMsg operator has 

completed execution, the component will transition back to the Wait state.  Whenever the send 

operator is executed, a send event is generated.  There is no OCL code associated with the send 

operator in the component diagram since everything the operator does is depicted in the state 

diagram.  Any operator declared within a component must either have an OCL definition 

associated with it (as seen in Appendix B) or must be associated with the generation or receipt of 

an event.  If an operator does neither of these things then it does nothing and should be removed 

from the component.  Because both the receive event and send event are implementation 

Wait 

receive a message/receiveMsg(message) 

send(message) ^send a message 



 

 

 81

dependent, they are defined on a case by case basis.  For the purposes of modeling the events, 

they are represented in the diagram as receive a message and send a message respectively.   

4.3.3  Component Relationships (Connectors) 

Once components are defined, the only relationships left are between the components 

themselves.  Because the language is based on software architecture principles, any relationship 

between two components is replaced with a connector.  To represent all component interaction, 

two types of connectors are needed: inner and outer agent connectors.   

4.3.3.1  Inner Agent Connectors 

Inner agent connectors are used to connect two components within an agent.  The 

purpose of the connector is to give components access to the attributes and operations of other 

components.  Access in this context, is the ability to read attributes, add data to collections, and 

invoke operators.  Access does not give other components permission to delete or modify the 

structure of a component.  For example, one component cannot delete the attributes or operators 

of another component.  A component also cannot change the definition of any attributes or 

operators (i.e. cannot change attribute types or operator specification).  All remaining class 

relationships of Figure 22 were replaced with inner agent connectors as shown in Figure 24.   

The inner agent connector is represented as a one-way or two-way thin arrow.  A one-

way arrow indicates that the component at the originating end of the arrow can access the 

component where the arrow points, but the other component has no access to the originating 

component.  An example of this is seen between the RuleContainer and the Effector.  A Rule 

within the RuleContainer may be triggered that has the agent make changes to its environment 

using its effectors.  Because of this, the RuleContainer component must have access to the 

Effectors. 
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Figure 24 Inner-agent Connectors 

There is no reason for an Effector to have access to the attributes and operators of the 

RuleContainer, therefore a one way arrow is used.  A double arrow indicates that each 

component has access to the others attributes and operators.  As mentioned in Section 4.3.1, a 

component will only have access to another components substructure if an interface operator is 

defined. 

UML Class diagrams have two levels of visibility to control access to attributes and 

operators; public and private.  Visibility describes whether the attribute or operator is visible and 

can be accessed from other classes.  A public attribute or operator can be viewed and used 

outsides of the class while a private attribute or operator cannot be accessed by any other classes.  

Components also require this level of protection.  Therefore, each attribute and operator of every 

component can be declared as visible or invisible.  Invisibility makes an attribute or operator 

inaccessible to all other components.  Invisible attributes and operators are still depicted in the 

component diagram but are preceded by the ‘#’ symbol.  An example of when this would be 

necessary is seen in the receiveMsg operator of the MessageInterface component.  The 

MessageInterface 
 
   send(msg:Message) 
# receiveMsg(msg:Message) 

Controller
 

msgCheckRules(msg:Message) 

RuleContainer 
rule: Set(Rule) 
msgTrigger: Message 
executeMsgValid(msg:Message) 

Effector  
name:String 
ops: Set(Operator) 
executeOp(params: 

Sequence(OclAny)
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operator is only triggered by an external message event (discussed in detail in Section 4.3.2.2).  

Therefore, no other component should ever be able to invoke this operator.  To ensure this does 

not happen, the operator is made invisible.  Visible attributes and operators are depicted normally.   

4.3.3.2  Outer Agent Connectors 

Outer agent connectors allow agents to interact with other agents as well as their environment.  

Like the inner agent connector, outer agent connectors are also represented as one-way or two-

way arrows.  In regards to appearance, two differences exist; outer agent connectors are 

represented as much thicker, dashed arrows and only one end of the outer agent connector is 

connected to a component as seen in Figure 25.   

Figure 25 Outer-agent Connectors 

The other end of the connector represents the external entity the component is interfacing with.  

Outer agent connectors are used for sending and receiving external events.  Component 

interaction will only begin taking place in an agent after one of two things occurs: an external 

event causes an operator to be executed (discussed in Section 4.3.2) thus triggering a sequence of 

events or the initialization operator is invoked.  The initialization operator is an optional method 

MessageInterface 
 
  send(msg:Message) 
#receiveMsg(msg:Message) 

Controller
 

msgCheckRules(msg:Message) 

Effector  
name:String 
ops: Set(Operator) 
executeOp(params: 

Sequence(OclAny)

RuleContainer 
rule: Set(Rule) 
msgTrigger: Message 
executeMsgValid(msg:Message) 



 

 

 84

that can be placed anywhere within a component diagram.  Only one operator is allowed per 

agent and it is executed immediately upon agent instantiation.  The operator may be used to start 

a continuous chain of events or may be used to simply send a message stating the agent is active. 

If a one-way outer agent connector points away from a component, the component can 

only generate events, and cannot be affected by events generated by the entity it is connected to.  

An example of when this would be useful is an effector component.  An effector is going to 

impose changes on the environment by generating events, it is never going to receive.  The 

opposite of this would be a one way outer agent connector pointing towards a component.  This 

type of connector can only receive events from external entities.  An example of this would be a 

basic sensor component.  The sensor component will receive information from the sensing device 

whenever changes occur.  The final connector type is the two-way outer agent connector, which 

can send and receive events.  Examples of this would be a message interface or a sensor that can 

be periodically queried for changes in the environment.  Figure 25 adds outer agent connectors to 

Figure 23.   

4.3.4  Language Definition Summary 

This section defined the architectural specification language used in this thesis.  It has 

also shown that the representation captures all information in a UML class diagram.  The process 

outlined simply collapses a class diagram into a higher level of abstraction while maintaining the 

attributes of a class diagram.  Although the language is based on object-oriented principles, this 

does not imply that an object-oriented design methodology has to be used.  The language defined 

can be used in conjunction with any established design methodology for the creation of software 

systems.   
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4.4  Object Model Definition 

Once the language has been completely defined, it is then possible to create a generic 

template defining the syntax and semantics of the language.  This is accomplished by creating an 

object model for the language.  Following the approach of Section 3.4, the first step in defining an 

object model was to determine the basic classes required.  Because the overall solution is based 

on using a software architecture approach, Figure 15 of Section 3.3 depicts an initial 

decomposition.  A flaw in the figure is that it does not take into account the two different kinds of 

component connectors defined in Section 4.3.2.  The diagram specifies that every connector 

connects two components, however, outer agent connectors only connect one component.  A 

corrected version of the diagram is shown in Figure 26.   

 

 

 

 

 

 

Figure 26 Basic Object Model 

The remainder of this section builds on this figure by further refining and defining each class 

based on the language description outlined in Section 4.3.   

4.4.1  Component Class 

As stated in Section 4.3.3.1, each component consists of attributes, operators, data 

structures, and substructures.  A refinement of Figure 26 capturing this information is shown in 

Figure 27.   

1..*

Agent Architecture

0..*
ConnectedBy

0..*
Connector

0..*
ConnectsComponent

1..*

0..*1..2
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1..2 ConnectorDataStructure 

Architecture

0..* 0..* 

Operator

Component 0..* 
+connected by 

0..* 
+connects

0..* 0..* 
+utilizedBy 

0..* 
+utilizes 
0..* 0..*0..*

0..10..1

0..*0..*
Attribute 

0..* 0..* 

 

Figure 27 Object Model Refinement 

The aggregation from Component to Architecture states a component may be composed of zero 

or one architecture.  This captures the fact that every component may contain at most one 

substructure and that substructure may contain zero or more connected components (which may 

each consist of one substructure, and so on).  The association from Component to 

DataStructure captures the fact that a component may have data structures associated with it. 

Once the basic classes were identified, attributes were determined for each class.  The 

first attribute identified in the component class was the name attribute.  Like a class in a class 

diagram, every component must have a unique name to distinguish it from other components.  To 

adequately capture the aggregation between Component and Architecture, three additional 

attributes were added to the component class; hasSub, sub, and parent.  The hasSub attribute 

is of type boolean, and specifies if the component contains any substructures.  The sub attribute 

is also boolean, and defines if the component is part of a substructure itself.  If the sub attribute is 

true, the parent attribute is used to hold the name of the parent component.  As stated earlier, in 

order to capture the dynamics of a component, each component contains a state diagram.  This 

information is captured in the stateDiag attribute.  The stateDiag type ATstatetable represents 
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the object model for state diagrams used in the component.  A more thorough examination of this 

data type is presented in [WOOD00].  The constraints attribute represents any invariant 

constraints imposed on the component.  One or more conjuncted predicates may be used to define 

all component constraints.  For example, a designer may specify a RuleContainer component 

that has max and min attributes used to represent the maximum and minimum number of rules 

needed for the agent to function properly.  To specify that the minimum number of rules needed 

is 5 and the maximum number of rules allowed is 50, the designer could specify the constraint 

min>=5 and max <=50.  The object model with all component attributes added is shown in 

Figure 28.   

 

1..2

MethodAttribute 

Connector

Component 
name : String 
basic : Boolean 
hasSub : Boolean 
sub : Boolean 
parent : String 
stateDiag : ATstatetable 
constraints : OclExpression

0..*0..*

0..* 
+ConnectedBy 

0..* 
+Connects

0..* 0..* 

Architecture

0..*0..*

0..*0..*

0..10..1

 
Figure 28 Component Attributes 

4.4.1.1  Attribute Class 

In a class diagram, attributes capture information needed to describe and identify an 

instance of a class.  Attributes also have an associated type that tells what kind of attribute it is.  

In general, agent attributes are used to hold information specifying the agent’s state.  Given these 
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descriptions, two basic attributes needing to be represented in the Attribute class were name and 

type.  In order for an attribute to be represented as any of the predefined OCL types as well as 

any new user defined types, the type attribute was made of type OclAny.   

To limit access to an attribute, the visible attribute was added.  If visible is true, then 

other components have access to the given attribute, but if visible is false, no access is given.   

To capture the fact that an attribute may represent a collection of objects, the boolean 

attributes set, sequence, and bag were added.  Only one of these attributes may be true at any 

time.  If one of the three attributes is set to true, then type represents the type of the elements in 

the collection.  If all three are false, then type represents the type of name.   

Because the component diagrams act as a template from which executable code may be 

generated, it must be possible to instantiate the component attributes with specific values.  Since 

an attribute can be user instantiated, system instantiated, or both user and system instantiated, the 

boolean attributes userDefined and runTimeDefined were added.  If both userDefined and 

runTimeDefined are set to true, then the attribute could be instantiated by a user and by the 

system.  An example of this could be a data attribute in a knowledge base component.  Some 

information in the knowledge base will need to be predefined by the designer of the system, while 

other information will be added by the system once it is running.   

In order to store an instantiated attribute value, a generic Value class was defined.  This 

generic class inherits from classes SingleValue, SetValue, SequenceValue, and BagValue 

depending on the values of set, sequence, and bag.  SingleValue has a value attribute of type 

OclAny, SetValue has a value attribute of type Set(OclAny), SequenceValue has a value 

attribute of type Sequence(OclAny), and BagValue has a value attribute of type 

Bag(OclAny).  An example of this would be, if the values set, sequence, and bag were all 
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false, then the value attribute of SingleValue would contain a specific instance of the attribute.  

For example, if name were equal to ‘Car’ then value could equal ‘Mustang’.    The object model 

showing all attributes of the Attribute class is shown in Figure 29. 

1..2 Connector

DataStructure 

Architecture

0..*0..*

Operator

Component
name : String
hasSub : Boolean
sub : Boolean
parent : String
stateDiag : ATstatetable
constraints : OclExpression

0..* 
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0..* +connects

0..* 0..* 
+utilizedBy 

0..* 
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0..* 0..*0..*

0..10..1

0..*0..*

Attribute 
name : String 
type : OclAny 
initValue : OclAny 
visible : Boolean 
userDefined : Boolean 
runTimeDefined : Boolean
set : Boolean 
sequence : Boolean 
bag : Boolean 

0..* 0..* 

Value 
1 1 

SingleValue 
value : OclAny 

SetValue 
value : Set(OclAny) 

SequenceValue
value : Sequence(OclAny)

BagValue
value : Bag(OclAny)

 
Figure 29 Attribute Class Attributes 

4.4.1.2  Operator Class 

Operators provide a representation of the behaviors of objects, normally done through 

the manipulation of attributes.  Resembling a function in most programming languages, operators 

are described with a name, return-type, and zero or more parameters.  To capture this 

information, name and returnType attributes and a Parameter class was added.  Operators may 
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consist of zero or more parameters each having a unique name and type.  Because parameters 

can be of differing types, the order in which they are evaluated is important.  Representing the 

Parameter class using an ordered aggregation was done to take this into account.  The attributes 

mentioned thus far describe everything needed to use the operator, but to capture what the 

operator does, precondition and postcondition information must be specified.  This information is 

stored in the pre and post attributes.  The pre attribute stores the information that must be true in 

order for the operator to be executed while the post attribute stores what must be true after the 

execution of the operator is complete.  Because pre and post are specified using OCL, both are 

of type OclExpression.   

As with the Attribute class, a visible attribute was added to limit accessibility to each 

operator.  An updated object model is shown in Figure 30. 

4.4.1.3  Data Structure Class 

Like Component, Attribute, and Operator, DataStructure required a unique name for 

identification purposes.  To capture both simple and complex data structures, an aggregate class 

DataField was added.  DataField consists of name and type attributes to allow data structure 

fields to be of varying types.  An example of using this would be if the user needed to define an 

automobile data structure.  The data structure would need several fields that could hold 

information regarding a particular automobile such as make, model, price, year, etc.  To model 

this, a data structure would be defined with name set to ‘Automobile’.  Each piece of information 

relating to an automobile would be defined as a data field.  One data field would have name set 

to ‘make’ and type set to ‘String’.  Another would have name set to ‘year’ and type set to 

‘Integer’.  Once completed, this data structure could be associated with a component and 

referenced just as any other basic OCL type. 
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SingleValue 
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SetValue 
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SequenceValue
value : Sequence(OclAny)

BagValue
value : Bag(OclAny)

 
Figure 30 Operator Class Attributes 

For instance, if the user needed a variable to store multiple automobiles, they could define an 

Automobiles variable of type Sequence(Automobile).   

Because OclAny is the supertype of all predefined OCL types as well as any user defined 

types, in order for a DataStructure to be used in an OCL diagram, it must be stored as an OCL 

type.  This would allow any attribute having type OclAny to have access to the data structure.  

The object model including data structure information is shown in Figure 31. 



 

 

 92

4.4.2  Connector Class 

As depicted in Figure 31, an architecture consists of zero or more connectors, each of 

which is connected to one or two components.  To more adequately represent the fact that there 

are two types of connectors, two additional classes were created: InnerConnector and 

OuterConnector.   
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Figure 31 Data Structure 

Both classes inherit from the Connector class.  Each class has a name and type 

attribute, were name is used to identify a connector and type is hard coded.  For 

InnerConnector, type is set to ‘innerAgent’ while for OuterConnector, type is set to 
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‘outerAgent’.  The reason behind separating these into two classes was to represent that an 

InnerConnector must connect two components and an OuterConnector connects one 

component.  This fact was enforced using associations between each class and Component.  

Figure 32 shows the complete architectural object model. 
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Figure 32 Complete Object Model 

4.5  Language Implementation 

The language described in the previous sections was implemented in the multi-agent 

design environment agentTool.  The purpose of this section is to give an overview of how the 
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language described in the previous sections was implemented in this environment.  A complete 

description of the implementation is given in Appendix C.   

Based on the Multiagent Systems Engineering (MaSE) [MASE99] methodology, the 

purpose of agentTool is to allow multiagent systems to be quickly and easily designed and 

implemented.  Within the system, once an agent has been defined, internal agent components may 

be added, deleted, modified, and connected to other components or to the environment.  Both the 

static and dynamic representation of components is currently implemented.  A static 

representation of the internal components of a reactive agent is shown in Figure 33.     

 

Figure 33 Component & Connectors 

Once a component is specified, attributes and methods may be added, deleted and 

modified for that component.  Figure 34 shows the interface used to specify a component 

attribute, while Figure 35 shows the interface used to specify a component method.  Both 

interfaces coincide with the language object model specified in Figure 32. 
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Figure 34 Attribute Interface 

 

Figure 35 Method Interface 

As shown in Figure 34, the user can choose whether the attribute is user defined, run time 

defined, or both.  These selections will be used for the code generation portion of agentTool (not 

yet implemented).  As seen in Figure 33, the ‘+’ symbol indicates an attribute is user defined, 

while the ‘−‘ symbol indicates an attribute is run time defined.  Although not shown in the figure, 

the ‘±’ indicates an attribute that is both run time and user defined.  Figure 35 shows how the 

OCL code is specified in the postcondition for a given method.  Although not shown in the 
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component diagram, this information is stored in the language object model to be used for code 

generation purposes.  

To define the dynamic representation of the software, every component defined has an 

associated state diagram.  The representation of the information within these diagrams is the same 

as that used in UML.  The dynamic representation for the Message_Interface component is 

shown in Figure 36. 

 

Figure 36 Completed Dynamic Model 

Using methods described in [LACEY00], it is possible to automatically verify that a component 

dynamic model is free of dead locks and infinite loops. 

4.6  Chapter Summary 

The first section of this chapter defined the requirements that must be met by a language 

in order to be used to specify agents in a multi-agent environment.  These requirements were 
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based on analysis of the problem as well as a review of literature of existing languages used for 

similar purposes.  Section 4.2 compared two existing languages against these requirements to find 

out which was better suited.  Because neither language adequately met all language requirements, 

an existing language was modified to satisfy the problem.  Section 4.3 defines this modification 

and completely outlines the language.  Section 4.4 uses the description from Section 4.3 to 

completely define an object model for the problem.  Section 4.5 is an overview of the 

implementation of the object model in the multi-agent definition environment agentTool. 
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V.  Architectural Styles 

This chapter tests the validity of the language defined in Chapter 4 by using the language 

to define some of the most common architectural styles used in artificial intelligence.  Sections 

5.1 through 5.4 describe the architectural styles selected and the process followed in selecting 

them.  The section closes by describing the generic set of components obtained from the selected 

architectural styles.   

A number of existing agent architectures were reviewed, decomposed using object-

oriented techniques and then categorized based on their components, connectors, and overall 

structural pattern.  Four architectural styles were found using this approach: reactive, knowledge-

based, planning, and Belief Desire Intention (BDI).  The remainder of this section follows a four-

step process for each architectural style.  First, the requirements of each style are described.  

Second, a generic component model is constructed defining the basic components and outlining 

the overall structure.  Third, based on the information presented in steps one and two, an object 

model is created.  Fourth, the object model is then transformed into a component diagram using 

the techniques defined in Section 4.3.   

5.1  Reactive Agent Architectural Style 

As stated in Section 2.3.3, reactive agents come in a number of different forms based on 

the attributes that the agent may possess.  However, all agent architectures that are reactive in 

nature share a common set of characteristics.   

Because of the stimulus-response nature of reactive agents, all architectures in this 

category are based on a set of rules.  The rules are used to interpret the stimulus and generate a 

response if appropriate.  Although various styles are used to represent rules, the same IF-THEN 
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structure is predominate.  To receive signals and generate responses, each architecture also 

contained an interface to the environment.  These interfaces included a message interface, 

resource interface, sensors, and effectors.  Message interfaces are used to send and receive 

messages between agents.  Effectors are used to send changes to the environment and sensors are 

used to receive changes from the environment.  Resource interfaces are used to interact with 

external data sources ranging from HTML files to databases.  Architectures in this category also 

contain a control mechanism to interpret inputs from the interfaces and select the appropriate rule 

based on the input.  Therefore, using the notation defined in Chapter 4, the architectural style can 

be represented as shown in Figure 37.   

 

 

 

 

 

Figure 37 Reactive Architectural Style 

In the figure, all interfaces (message interface, sensors, effectors, and resource interfaces) 

have been combined and represented as an IO_Interface component.  This captures the fact that 

only one of these interfaces need be present.  This also shows that no matter which interface is 

present, the same inner agent connectors connect it to the other components.  Although not all 

interfaces have a two-way connector to the environment, the main point of the figure is to stress 

the structure of the architecture.  All interfaces will interact with the environment and the 

Controller component.  The Controller may take information received from the IO_Interface, 

IO_Interface
 
 

RuleContainer 
 
 

Controller 
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and query the rules of the RuleContainer to determine what action needs to be taken.  The 

RuleContainer contains all rules for the agent as well as the operations needed to manipulate the 

rules.  Because a given rule may in turn cause a change to the environment, or cause a message to 

be sent, there is a one-way inner connector from RuleContainer to IO_Interface.  Using Figure 

37 along with the initial description, it was possible to determine the basic classes as well as 

generic attributes and methods.  The object model depicting this is shown in Figure 38. 

 
Figure 38 Reactive Architectural Object Model 

Each Rule has a name attribute to identify it from any other rule currently defined.  

Since rules are generally of the IF-THEN format, precondition and postcondition attributes 

were defined to capture the rule structure.  An example of how a rule may be used is shown 

below. 

name: “FoodGratuityRule:” 
precondition: msgTrigger.performative= “CalculateFoodTip” 
postcondition: RuleContainer.ReactiveAgent.replyMsg.content=msgTrigger.content*.15  

and RuleContainer.ReactiveAgent.replyMsg.receiver=msgTrigger.sender 
and RuleContainer.ReactiveAgent.replyMsg.sender= “RestaurantAgent” 
and RuleContainer.ReactiveAgent.replyMsg.performative= “FoodTip” 
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An agent could send a message to the “RestaurantAgent” containing the amount of the bill as 

the content and the performative “CalculateFoodTip”.  The agent would then iterate through all 

of its rules and see that the precondition of the “FoodGratuityRule” is true.  Upon finding a valid 

rule, the postcondition would then be evaluated.  As stated in Appendix B, each conjuncted OCL 

postcondition expression is evaluated in a top to bottom, left to right fashion.  Therefore, in the 

above example, replyMsg.content=msgTrigger.content*.15 is made true before 

replyMsg.receiver=msgTrigger.sender.  How these expressions are made true is dependent on 

the language that will be used to implement the specification.  In the above example, the easiest 

way to make replyMsg.content=msgTrigger.content*.15 true is to take replyMsg.content and 

set it equal to the value of msgTrigger.content*.15.  The specification is not concerned with 

how the value is made true, only that it is made true.      

Because two or more rules may be applicable to a given situation, a utilityValue attribute 

was also defined.  This value can be used to determine the overall applicability of a given rule.  

The RuleContainer class acts as a central repository from which all rules may be accessed.  The 

msgTrigger and perceptTrigger attributes contain the most recent message or percept received 

by the agent.  The executeRule operator is used to evaluate rules (i.e. if the precondition is true, 

then the postcondition is made true).     

The control structure of the agent is primarily seen in the ReactiveAgent class.  When a 

message is received, the receiveMsg operator in MessageInterface calls msgCheckRules, 

and if a percept is received, the receivePercept operator in Sensor calls perceptCheckRules.  

These two operators then use the executeRule operator to iterate through all the rules searching 

for valid preconditions.  These operators can be specified in a number of ways depending on the 

goal of the agent.  They can be used to find and execute all valid rules, they can be used to find 
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and execute the first valid rule, or they can be used to find and execute the rule with the highest or 

lowest utility value.  The operator definition is dependent primarily on the desired result.    

The MessageInterface class simply contains the send and receiveMsg operators.  

These generic operators represent the sending and receiving of messages to other agents.  The 

actual implementation of these operators is based on the type of agent communication protocol 

selected by the designer.  When implemented, these generic operators will be mapped to the 

particular protocol selected.  The receiveMsg operator reacts to external message events (as 

described in Section 4.3) from the environment.  As stated previously, the receiveMsg operator 

invokes the msgCheckRules operator of the ReactiveAgent class whenever a message is 

received.  Just as receiveMsg reacts to external events, send is used to create external message 

events.  When the send operator is invoked, an external message event is created that may be 

received by other agents with a receiveMsg operator.  The associative Message class contains 

the general template used to pass messages between agents.  This template can be modified at the 

designer’s discretion. 

The two attributes comprising the Sensor class are name and percept.  As stated in 

Section 2.3.7.2, sensors can come in two forms: persistent and functional.  A persistent sensor is 

one that is initiated by a change of environmental state.  The receivePercept operator was 

defined to model this characteristic.  The operator is invoked whenever an external environmental 

event occurs that the Sensor is able to detect.  Once invoked, the operator can call the 

perceptCheckRules operator of the ReactiveAgent class to determine if any rules have 

become valid based on the change.  The functional sensor was modeled using the getPercept 

operator.  Invoking this operator queries the sensor for current information, which is returned and 

stored in the percept attribute.  
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The Effector class contains a name attribute to specify the category of effector that the 

agent will access.  For instance, an agent may have five effectors that control a robot arm and 

another five effectors with the exact same names controlling a robot leg (i.e. move up, move 

down, etc.).  Each set of effectors could be grouped under the type Arm and Leg respectively 

without having to rename all operators.  The user could then call Arm.up or Leg.up as 

appropriate.  Each effector class consists of one or more operations that it can perform.  In the 

above example, the Arm effector contained five operators to control arm movement.  In the 

majority of the architectures examined, effectors were modeled as agent operators.  Keeping with 

this naming convention, the Operator class contains the actual information needed to effect the 

change to the environment.  As described in Section 4.4.1.2, the precondition and postcondition 

attributes contain the information that must be true for the operator to be evaluated along with the 

information that will be true upon completion.  These operators may be instantiated by calling the 

executeOp operator of the Effector class.  This operator takes the name of the operator to be 

executed as well as a possible list of parameters and evaluates the precondition attribute of that 

operator.  If precondition evaluates to true, then the postcondition attribute is then made true. 

The ResourceInterface class contains a name attribute to delineate between different 

resources that may be accessed.  The main functionality seen in the class is in the execute 

operator.  Any type of external data source residing on a computer will always be accessed 

through some type of application.  This application could be an operating system, database, or 

web browser just to name a few.  To interface with the data source, the agent must interface with 

the application.  In order to effectively interact with the application, three pieces of data are 

required; the name of the file needed, the location of the file, and the command to be executed.  

To capture this information, the execute operator contains the parameters name, loc, and 
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command (representing filename, file location, and command).  Any return information or 

feedback from the application is stored in the returnValue attribute.     

Using the methods described in Section 4.3 for transforming a class diagram into a 

component diagram, Figure 39 was created.   

Figure 39 Reactive Architecture Component Model 

The components comprising the architecture are a RuleContainer, IO_Interface, and a 

Controller.  The Controller component essentially replaces the ReactiveAgent class and acts as 

the control center of the agent.  The most interesting component is the IO_Interface.  The 

substructure of the IO_Interface contains all interfaces the system may have with other agents 

and the environment.  The representation of the substructure is shown in Figure 40.  It is 

important to note that all outer agent connectors are represented in the substructure, hence the 

reason none appear in Figure 39.  Each component of the IO_Interface substructure could be 

represented in the Figure 39 representation.  They were moved into the substructure for 

readability and understandability purposes only.  The Controller and RuleContainer component 

can still access the components by calling the appropriate interface operator in the IO_Interface 

component.  These operators in turn call the operator of the appropriate component.  

Controller
 
  msgCheckRules(msg: Message) 
  perceptCheckRules(per: OclAny) 

RuleContainer  
+rules: Set(Rule) 
−msgTrigger:Message 
−perceptTrigger:OclAny 
 executeRule(rule: Rule) 

IO_Interface* 
 
  send(msg:Message) 
  getPercept(per:OclAny) 
  executeOp(name:String,  

params:String) 
  execute(name:String,  

loc:String, 
command:String) 
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Figure 40 IO_Interface Substructure 

Substructure components can access higher-level components by first accessing the 

parent component.  For example, when invoked, the receiveMsg operator in turn calls the 

msgCheckRules operator in the Controller component.  The MessageInterface accesses this 

operator by calling IO_Interface.Controller.msgCheckRules.  Any return values associated 

with an operator are returned to the calling component.  The Operator, Rule, and Message 

classes are all implemented as data structures and are associated with the components that use 

them.  The OCL representation of the component operators is defined in Appendix D.  

5.2  Knowledge Based Architectural Style 

Knowledge based agents have been around for a number of years and although not as 

popular as they once were, they still represent a fundamental agent style.  As the name implies, 

the central element in knowledge-based architectures is the knowledge base.  The knowledge base 

MessageInterface
 
  send(msg:Message) 
#receiveMsg(msg: Message) 

Sensor
+name:String 
−percept:OclAny    
  getPercept():OclAny 
#receivePercept(per:OclAny)

Effector 
+name:String 
+ops:Set(Operator) 
 executeOp(name:String, params:String) 

ResourceInterface
+name:String 
−returnValue: OclAny 
 execute(name:String, loc:String, 

command:String)
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contains any predefined information the agent may need as well as any new information derived 

by the agent.  As with reactive architectures, knowledge based architectures also use a set of rules 

to make decisions.  Like the reactive architecture, these rules are also of an IF-THEN structure.  

Although the knowledge base is considered the key element in a knowledge-based system, the 

second most important component is the inference engine.  The inference engine provides the 

facilities for navigating through and manipulating the knowledge in order to deduce something 

from it.  The inference engine will use the rules and the knowledge base to reason over 

information and deduce results in an organized manner.  Because the knowledge-based system 

normally has the ability to accept external queries and updates from other sources as well as react 

to changes in the environment, an input/output interface is also required.  After analyzing the 

structure of a number of knowledge-based architectures, the architectural style of Figure 41 was 

defined.  The main components comprising this style are IO_Interface, RuleContainer, 

Controller, KnowledgeBase, and InferenceEngine.  Like the reactive style, the IO_Interface 

component encompasses all components that allow the agent to interact with other agents and the 

environment.  Again, the definition of the component is to show how the interfaces are connected 

to the other components in the diagram.  Similar to the reactive style, incoming information is 

forwarded to the Controller component so that it may be properly directed.  The Controller is 

then able to direct the information to the RuleContainer (for updates) or the InferenceEngine 

(for queries) as appropriate.  Because a query will normally need to be responded to, two-way 

inner connector is needed between the Controller component and the IO_Interface component.  

Once the Controller has accessed the InferenceEngine to solve the requested problem, it can 

take the solution and send it to the requestor of the message using the MessageInterface.   
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Figure 41 Knowledge Based Architectural Style  

Because the InferenceEngine may need access to both the rules and the knowledge base to solve 

a problem, one way inner connectors go from InferenceEngine to both RuleContainer and 

KnowledgeBase.  Since rules may be defined that update the KnowledgeBase, a one way 

inner connector connects the RuleContainer to the KnowledgeBase.  Because the user may 

want a message sent back if the update succeeded or failed, the RuleContainer also has a one-

way connector to the IO_Interface.  Using Figure 41 along with the initial requirements allowed 

for the construction of the object model seen in Figure 42.   

Because all of the interfaces of the knowledge base architecture are modeled in the exact 

same manner as those of the reactive architecture of Figure 38, for simplicity they are collectively 

represented as the IO_Interface class.  The RuleContainer and Rule classes are essentially the 

same as those described in Section 5.1.   
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Figure 42 Knowledge Base Object Model 

The interpretMsg operator of the KB Agent class directs the message based on the 

content and performative.  For example, if the performative was solve and the content was 

America has a king, the message would be directed to the InferenceEngine.  However, if the 

performative was add and the content was sky=blue, then the message would be directed to the 

RuleContainer.  This is done because certain preconditions may need to be met before the 

knowledge base can be manipulated.  The agent may only allow certain agents to modify its 

knowledge base, and may therefore have a rule that first checks the sender of any update message 

before it makes any changes.  The KnowledgeBase class contains the knowledgeType attribute 

to delineate between multiple knowledge bases.  This allows the user the ability to categorize 

knowledge in different repositories instead of using one centralized container for all information.  

The add method inserts a piece of data into the knowledge base while the delete method 

removes information from the knowledge base.  The query method checks if a certain piece of 
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information is in the knowledge base and returns a true or false response as appropriate.  The 

aggregate Condition class represents the actual data stored in the knowledge base.  Because this 

data may be of varying types, OclAny is used to define the value attribute.  The value attribute 

contains the actual data and can be identified by the name attribute.  The InferenceEngine class 

provides the computational power needed to move through and manipulate the knowledge in 

order to effectively reason over new or existing data.  Although many techniques exist for doing 

this, forward chaining and backward chaining are two of the most common, hence the definition 

of the forward and backward operators.  The forward operator is passed the piece of information 

needing to be proven and then iterates through the rules and the knowledge base until it is proven 

or disproved.  The backward operator is passed a goal and then attempts to find evidence for 

proving or disproving it.  As previously stated, these two operators do not represent the only 

inference mechanisms in existence, therefore other inference classes may be added at the 

designers discretion.  The transformation of the object diagram of Figure 42 into a component 

diagram is seen in Figure 43.      

Like the reactive architectural style, a Controller, IO_Interface, and RuleContainer 

component are all defined.  The IO_Interface is implemented in the same manner as Figure 39, 

while the substructure of the component is the same as that shown in Figure 40.  The two new 

components are KnowledgeBase and InferenceEngine.  An important aspect of the 

KnowledgeBase component is the data attribute.  Because the data attribute of the knowledge 

base can be initialized by the user as well as modified by the agent, the attribute must be able to 

be both user defined and run time defined.  This fact is captured by attaching ‘±’ to the beginning 

of data.  As with the reactive architecture, Rule, Message, and Condition data structures must 

be defined and associated with the appropriate components.   
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Figure 43 Knowledge-based Component Diagram 

5.3  Planning Architectural Styles 

As described in Section 2.3.6, there are two general types of planners used in most 

Artificial Intelligence systems today: dynamic planners and static planners.  Dynamic planners 

take as input a goal, a set of operators, and the state of the agent and dynamically produce a plan 

to satisfy the goal.  Static planners take as input a goal and the state of the agent, and use this 

information to choose an existing plan that best satisfies the goal.  Although significantly 

different in how they execute, the overall architectural style is essentially the same.  Both 

architectures contain a message interface used to receive messages from other agents.  Messages 

contain the required information needed for the generation or selection of a plan.  Because all 

required information is passed to the planner and because the only thing the planner is capable of 

doing is selecting or generating a plan, no other interfaces are required.  In general, a plan 

consists of one or more steps, each of which contains a number of attributes.  Each step contains 
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the name of the operator that must be executed, an ordering constraint, and a binding.  The 

ordering constraint specifies which step or steps must be first executed before this step can 

execute.  The binding is simply a list of parameters each operator will be passed.  Plans generated 

by dynamic planners normally conform to this generic definition.  Plans used by static planners 

are based on this plan definition, but add a number of attributes.  Because the plans are already 

defined and must be chosen, a list of ‘goals satisfied’ is often associated with each plan.  This list 

defines any goals that this plan may satisfy.  Because multiple plans may satisfy the same goal, a 

utility value is also normally attached to each goal.   

Based on this information the general architectural style for both types of planners is seen 

in Figure 44.  The MessageInterface along with the two-way outer connector allows plan 

requests to be received, and plans to be sent back to requesting agents.  Because the Planner is 

simply generating or selecting a plan, no access is needed to the MessageInterface. 

 

 

Figure 44 Planner Architectural Style 

Therefore, a one-way inner connector connects the MessageInterface component to the 

Planner component.  When the MessageInterface receives a request, the Planner will be 

called which will compute and return the plan to the MessageInterface, where it can then be 

sent to the requestor.  The Planner contains some planning operator that will generate or select a 

plan based on the information passed to it.  Each operator will have a return value that will be set 

equal to the plan generated or selected.  Therefore, the MessageInterface is returned a plan once 

MessageInterface
 
 

Planner 
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the operator has completed execution, and is the reason a two-way inner connector is not 

required.     

Although both planner types fall under one style, the object and component models differ 

significantly.  For this reason, each planner type will be examined independently.   

5.3.1  Dynamic Planner 

Based on the information of Section 5.3 and Figure 44, the dynamic planner object model 

of Figure 45 was generated.  The DynamicPlanner class acts as an interface to the planner being 

used.  The generatePlan operator takes as parameters a goal, a list of available operators, and 

the current state of the agent.  When implemented, the actual planner being used to generate plans 

will replace this component.  The purpose of the operator is to capture the data the planner will 

require.  This is not to say that a dynamic planner could not be specified from scratch using OCL, 

but for the purposes of this research, it is assumed a dynamic planner exists.  The requests come 

in through the MessageInterface, which interprets the data and calls the generatePlan 

operator.  The generated plan is returned to the MessageInterface, which in turn sends it to the 

requesting party.  The Plan class represents the form the generated plan will be in.  Each plan 

consists of one or more PlanSteps, which upon execution will satisfy the requested goal.  The 

op attribute represents the operator that must be executed to complete the particular step. 

The Operator type of this attribute is the same as that defined in Figure 38.  The 

ordering attribute contains one or more operators that must have been evaluated before the 

current step can execute.  If the ordering attribute is set to NULL, then that step represents the 

first step of the plan and can therefore be evaluated immediatley.  A key attribute to making this 

whole process work is stepExecuted.  This boolean attribute keeps track of which steps have 

been executed.   
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PlanStep
op : Operator
ordering : Operator
binding : String
stepExecuted : Boolean

Message
sender : String
receiver : String
performative : String
content : OclAny

Plan

1..*1..*

Dynamic Planner

generatePlan(goal:OclExpression, operators:Set(Operator), state:Set(Condition) : Plan

1..1

1..1

+generates
1..1

+generated by1..1

MessageInterface

send(msg : Message)
receive(msg : Message)

1..1

0..*

+received by 1..1

+receives 0..*
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Figure 45 Dynamic Planner Object Model 

For example, if a certain step is being examined for execution, and two operators are present in 

the ordering attribute, stepExecuted can be used to see if those operators executed.  By taking 

the operator name, matching it to the op attribute in another plan step, the stepExecuted 

attribute will determine if the operator has been executed yet or not.  This is not at all meant to 

imply that the planner controls the execution of a plan.  This attribute is needed by the execution 

component that must exist in the agent that called the planner.  Figure 46 depicts the component-

based version of the object model.  As seen from the figure, the only two components required 

are MessageInterface and DynamicPlanner.  The conversion to the component diagram is 

rather straightforward with the only issue of importance being the definition of the data 

structures.   
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Figure 46 Dynamic Planner Component Diagram 

Message, Operator, Condition, and Plan must all be defined and associated with the 

appropriate components.   

5.3.2  Static Style 

The major difference between the static planner and the dynamic planner is the fact that 

instead of generating a plan based on a set of conditions as in the dynamic planner, the static 

planner must choose from an existing set of plans based on a set of conditions.  Figure 47 depicts 

the object model of the static planner.  The StaticPlanner class contains the single operator 

choosePlan.  This operator is passed as parameters a goal that must be achieved as well as the 

state of the environment.  Based on this information, choosePlan will iterate through all plans it 

has access to and choose the most appropriate.  As seen from the diagram, the plans used by this 

planning mechanism are an extension of those defined for the dynamic planner.  The inherited 

class StaticPlan contains the additional attributes needed by the static planner.  The goals 

attribute contains all information pertaining to what goals may be satisfied by the instantiation of 

the plan.  The utilityValue attribute defines the applicability of the plan to the given situation.  

This attribute is used when more than one plan is found satisfying a particular goal.   
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PlanStep 
op : Operator 
ordering : Operator 
binding : String 
stepExecuted : Boolean 

Precondition 
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1..*1..*

MessageInterface

send(msg : Message)
receiveMsg(msg : Message)

1..1

0..* 

+received by 1..1

+receives 0..* 

1 1 

 

Figure 47 Static Planner Object Model 

Because other conditions besides the overall goal must be taken into account when choosing a 

plan, the Precondition, Trigger, and Postcondition classes were required.  The Trigger class is 

used to capture the fact that certain conditions may automatically trigger the selection of a 

particular plan.  If certain conditions hold, the user may want a certain plan selected regardless of 

the overall goal.  Precondition and Postcondition allow the user to add constraints to a 

particular plan.  If certain conditions must be true before a plan can be selected, the Precondition 

class can store this information.  If certain conditions must be made true once a plan has been 

executed, this information can be specified in the Postcondition class.  Using the language 

defined in Chapter 4, Figure 48 depicts the component diagram. 

5.4  BDI Architectural Style 

As described in Section 2.3.2, the major attributes comprising a BDI architecture are beliefs, 

desires, intentions, and plans.     
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Figure 48 Static Planner Component Diagram 

An agent may have multiple types of beliefs, such as beliefs about the environment or beliefs 

about other agents, but all this information is normally represented using declarative, logic-based 

statements.  Desires correspond to the goals the agent must satisfy.  The majority of architectures 

represent goals as a declarative statement or statements specifying the agent’s state once the goal 

is achieved.  The user may define goals or the agent may adopt them.  The intentions of the agent 

are simple to represent since they are just a list of plans that the agent will attempt to achieve.  In 

order for an agent to achieve any of its desires, an existing plan must be chosen or a new plan 

generated that will satisfy the goal.  Therefore, BDI agents can use static planners, dynamic 

planners, or both.  The interfaces used in this type of architecture varied depending on the overall 

goal being achieved, but include sensors, effectors, message interfaces, and resource interfaces.  

A centralized controller is used to direct information as well as to control the execution of the 

agent’s intentions.  A representation of this architectural style is seen in Figure 49.   

As with the reactive architectural style, all interfaces are represented as a single 

IO_Interface component.  Doing this shows how all interactions with other agents as well as 

with the environment are directed to the Controller component.   

 

StaticPlanner 
+plans: Set(StaticPlan) 
  choosePlan(goal:Goal, 
 state:Set(Condition)):StaticPlan

MessageInterface 
 
  send(msg:Message) 
#receiveMsg(msg: Message) 
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Figure 49 BDI Architectural Style 

Because the overall execution is based in this centralized component, the Controller needs access 

to the resources of all components in system.  Because the Beliefs, GoalContainer, and Planner 

are simply acting as resources, these components do not need access to any other components.  It 

is for this reason that one way inner connectors connect the Controller to these components.  

Because intentions can be represented as a sequence of plans, they are stored within the 

Controller component and is the reason they do not show up in the diagram.  The object model 

for this architectural style is seen in Figure 50.  Because all of the interfaces of the BDI 

architecture are modeled in the exact same manner as those of the reactive architecture of Figure 

38, they are omitted.  The beliefs of the agent are captured in the Beliefs class of the figure.  

Because the type of information that may stored in an agents beliefs is the same type of 

information stored in a knowledge base, the Belief class is modeled in the exact same manner as 

the KnowledgeBase class of Figure 42.   

IO_Interface 
 
 

Controller
 
 

Beliefs 
 
 

GoalContainer
 
 

Planner 
 
 



 

 

 118

 

Figure 50 BDI Object Model 

Also, because the planners used for this architecture are the same as those described in Section 

5.3, the StaticPlanner and DynamicPlanner are modeled in the same manner as in Figures 46 

and 48 (the operator signature is deleted from Figure 50 to save space).  The only new classes not 

previously described are GoalContainer and Goal.  The GoalContainer is a central repository 

for all goals defined for and generated by the agent.  The addGoal and removeGoal operators 

are used for the addition and removal of goals from the repository.  The Goal class consists of a 

name attribute for identification purposes and a value attribute to store the goal value.  Figure 51 

depicts the BDI component diagram.    The IO_Interface component and its substructure is the 

same as that shown in Figures 39 and 40.  Because either a static or dynamic planner can be used 

within this architecture, a generic Planner component was defined.  This component contains the 

dynamic and static planner components of Figures 45 and 47 within its substructure.  The 

substructure is shown in Figure 52.  The operators generatePlan and choosePlan can then be 

used to call the operators of the respective components for the generation of or selection of a plan. 
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Figure 51 BDI Component Diagram 

   

 

 

Figure 52 Planner Component Substructure 

5.5  Generic Components 

As a product of defining a set of architectural styles, a generic set of components was 

extracted that can be used to define many different agent types.  Although each style represents 

Controller
−intentions:Sequence(Plan) 
  interpretMsg(msg:Message)
  interpretPercept(per:OclAny)
  selectGoal(goal:Goal) 
  executePlan(plan:Plan)

GoalContainer 
±goals:Sequence(Goal) 
  addGoal(goal:Goal) 
  removeGoal(goal:Goal) 

Planner* 
 
  choosePlan(goal:Goal, 
 state:Set(Condition)):StaticPlan
  generatePlan(goal:OclExpression, 
 operators:Set(Operator) 
 state:Set(Condition)):Plan 

Beliefs  
+knowledgeType: String 
±data: Set(Condition) 
  add(data: Condition) 
  delete(data: String) 
  query(data:String):Boolean 

IO_Interface* 
 
  send(msg:Message) 
  getPercept(per:OclAny) 
  executeOp(name:String,  

params:String) 
  execute(name:String,  

loc:String, 
command:String) 

StaticPlanner 
+plans: Set(StaticPlan) 
  choosePlan(goal:Goal, 
 state:Set(Condition)):StaticPlan

Dynamic Planner
 
  generatePlan(goal:OclExpression,
 operators:Set(Operator) 
 state:Set(Condition)):Plan 
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the ability to do drastically different things, it is readily apparent from the previous sections that 

there exist common components of which the majority of agents are a subset.  Figure 53 

represents the components extracted from the styles presented in Section 5.1 through 5.4.  Note 

that because the Beliefs component of Section 5.4 was based on the same object model as the 

KnowledgeBase component of Section 5.2, both components are simply referenced as 

KnowledgeBase in the figure.  The IO_Interface seen in many of the styles is represented in 

Figure 51 as the individual components that compose it. 

 

Figure 53 Component Baseline 

The figure is not meant to imply that a working agent can be defined by simply connecting 

together a set of these components in an ad-hoc manner.  Operators will need to be completely 

defined and additional attributes added to customize the components to the designers needs.  The 

components selected are meant to act as templates from which large complex systems can be 

constructed.   

5.6  Summary 

This chapter defined a basic set of architectural styles that the majority of agent-based 

systems fall under.  Each style was then modeled using the component language defined in 

Chapter 4.  Doing this accomplished two things: it demonstrated the language was expressive 

enough to represent the most commonly used agent architectural styles, and it also built a set of 

templates a designer may use to more quickly and easily define an agent based-system.  From 
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these templates, a basic set of components was extracted.  These component templates provide 

the designer with building blocks that can be used to add to an existing style or to create a new 

style.  As stated in Section 5.5, these templates are not all encompassing and should not limit the 

designer in any way.  It may be necessary to define other styles and components in order to define 

a given system. 
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VI.  Conclusions and Future Work 

This thesis has presented the definition and implementation of a knowledge 

representation language that can be used to specify software systems.  This chapter summarizes 

the conclusions of the previous chapters and presents ideas for future work that may be done with 

this research.  Section 6.1 defines the conclusions of this thesis and Section 6.2 outlines possible 

future work.   

6.1  Conclusions 

The majority of this thesis has been concerned with the definition of a representation 

language to allow for the specification of software systems, specifically multi-agent software 

systems.  The end result was a graphical and textual component-based language.  This section 

outlines the key characteristics of the language and reviews the reasoning behind the approach 

used.  

6.1.1  Use of Graphics and Text 

Many software specification languages are strictly textual because of the ambiguity 

introduced by using graphics.  The use of graphics within a specification does not allow any new 

information to be represented, but it does allow information to be presented in a way that is easier 

to comprehend.  Using both graphics and text in a specification allow a problem to be viewed at 

two distinct levels of abstraction.  The graphical view allows the overall structure of the system to 

be examined without being overwhelmed by specific details.  The textual representation allows 

explicit details of every aspect of the system to be represented in a concise and unambiguous 

manner.     
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Object-oriented representation initially seemed like a logical choice for the required 

language.  However although object-oriented techniques allowed for the correct level of detail, 

they provided the wrong level of abstraction.  The premise of this research was that graphics 

would aid in understanding the specification by allowing the user to view the problem at a more 

manageable level of abstraction.  Using object-oriented techniques was equivalent to taking a ten 

word sentence, putting an icon around each word, connecting the icons together and then saying 

the sentence is now easier to understand.  The graphical representation was too detailed to allow 

for the desired level of abstraction.  Component-based approaches allow for the desired graphical 

level of abstraction, but lacked text to provide the appropriate level of detail.  To complement the 

component approach and to unambiguously specify and design software systems in a verifiable, 

efficient, and understandable manner, OCL was chosen.   

6.1.2  Software Composition 

It is important not to confuse the language defined in this thesis with a methodology for 

specifying software.  This thesis does not propose an approach to specifying software systems, 

but does provide a means for doing so.  Although the language was defined using many object-

oriented techniques, this does not imply that these techniques must be used in defining the 

components used in this system.  Any well-defined methodology for the specification of software 

can be followed when using the language.   

6.2  Language Usage 

The purpose of the language defined in this thesis is not to replace object-oriented 

techniques or ADLs, but rather to extend and enhance them. Object-oriented diagrams cannot 

capture architectural styles; however, using the approach described in Section 4.3, these diagrams 

can be transformed into component diagrams that may then be abstracted to an architectural style.  
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Traditional ADLs are not suited for specifying the internal behavior of components.  However, 

using the language defined in this thesis, the internal behavior of components can be completely 

specified.   

The overall approach to using the language is to examine the general characteristics of a 

problem and see if there is an existing architectural style to which the problem best conforms.  If 

the problem can be described by an existing style, use that architectural style as a template for 

specifying and designing the system.  The idea is to use the style to define a specific architecture 

by instantiating the style with particular values.  Although components may need information 

added, deleted, or modified, the general structure of the style should aid in developing the system 

quickly and easily.  Multiple styles can be combined, however, connectors may need to be added, 

deleted, and modified to allow for the two styles to be represented as one.  Redundant and unused 

components may also have to be deleted.  If multiple styles are used, styles can also be embedded 

in the substructure layer of components and connected together with inner-agent connectors.     

If the problem cannot be categorized by an existing style, a new architecture may have to 

be defined.  Using an object-oriented or other component based design methodology, the problem 

should first be broken down into basic components.  Once these components have been identified, 

the designer should see if any predefined components exist matching the characteristics of the 

identified components.  Components designed using the language should be stored in a common 

library that may be accessed by other designers to promote maximum reuse.  In the agentTool 

environment, both architectural styles and components are stored in a central repository.  Even if 

an existing component is not an exact match, the component can be modified to meet the 

requirement.  If no existing component can be found, new components can be defined using the 

technique described in Section 4.3.     
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6.3  Possible Future Work 

A number of areas in the research and implementation of this thesis still need more work.  

The purpose of this section is to identify and describe these areas.   

6.3.1  Static Verification 

The static representation of the system is the basic component diagram as shown in 

Figures 43.  Verification of this portion of the system involves ensuring all information entered is 

of the appropriate type and is in the correct format.  As mentioned throughout Section 4.5, the 

current implementation of the language lacks type and format checking in most areas.  If an 

attribute is defined having a specific type, nothing is currently done to ensure any initial value 

assigned to that attribute is of that type.  Besides type checking, the current implementation also 

does not do any format checking on most inputs.  For example, when a user specifies an operator, 

one or more parameters may be defined that the operator can accept.  These parameters should be 

entered in a certain format as described in Section 4.3.  This format is not checked at this time.  

The final area needing work is the verification of OCL expressions.  Like any language, OCL has 

a syntax and semantics that must be followed if the language is to be interpreted correctly.  

Currently no checking is done of any OCL expressions specified in the language.  All of these 

issues become of critical concern if automatic code generation is ever to be achieved from the 

specification.   

6.3.2  Variable Instantiation   

Another area requiring work is component variable instantiation.  The language is 

defined in such a way as to be used in two modes: specification and instantiation.  The current 

implementation of the language only allows for specification.  In the instantiation mode, the user 
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would be able to take the specification and instantiate the variables with specific values.  For 

example, if the user specified a variable instructors that was of type set(Instructor), in the 

instantiation mode the user could specify all the instructors belonging in this set.  The object 

model defined in Figure 32 allows for the storage of any values associated with a variable, but 

currently the implementation does not.  Type checking would also be required here to ensure the 

value associated with a given variable was of the same type as that specified.   

6.3.3  Dynamic Verification 

The overall dynamic representation of any system specified using the language defined in 

Chapter 4 is realized through the dynamic representation of each of its components.  Because of 

this, verification must be done on the finite state machine of each component as well as the 

relationships between each component.  Checking must be done to ensure there are no deadlocks 

or infinite loops within the system.  Verification also needs to be done to ensure that all operators 

called from the state diagrams are currently implemented within the component diagram.   

6.3.4  Code Generation 

Before work in this area may begin, it is critical that the work of Section 6.2.1 through 

6.2.3 be accomplished first.  Until specific data values can be entered and until complete 

verification of the system can be done, automatic code generation should not be considered.  This 

thesis provides the tools to allow for the automatic generation of code from specification, but 

currently does not provide the means.   

6.4  Thesis Summary 

The goal of this thesis, as outlined in Chapter 1, was to develop a knowledge 

representation language that can be used to unambiguously specify and design software systems 
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in a verifiable, efficient, and understandable manner.  To ensure maximum understandability and 

ease of use, it was stated that the language should make use of both graphics and text to represent 

information.  The language defined is a component-based specification language capable of 

representing all aspects of a software system in a formal and easy to understand manner.  The 

graphical representation presents both the static and dynamic aspects of the system at an 

understandable level of abstraction, while the textual representation allows system details to be 

added in a precise and unambiguous manner.  Completely defining the language object model 

allows for both extensibility and possible verification of a system specified using the language.  

Any specification composed according to the object model is now compatible with any past, 

present, or future specification defined according to the model.  Because the object model 

formally defines the syntax and semantics of the overall language, the structure of the system 

specified can be verified for correctness.  Because the dynamic representation is defined using 

finite state machines, verification of the behavior of the system can be done using techniques 

proposed by Lacey [LACEY00].   

Although automatic code generation is not yet possible, the language contains the 

constructs that allow for this.  The language can be used strictly for the specification of software 

systems or can be used to instantiate a specification with specific values.  Although this portion of 

the language has not yet been implemented, the object model was defined in such a manner as to 

allow for this.  Code generation issues such as variable and operator visibility and run time versus 

user-defined variable instantiation are embedded within the language.   

The definition of architectural style and component templates do not make the language 

itself better, but do provide a designer with valuable examples of how to define specific 

components and styles.  Designers may use the existing templates or may define their own 

templates to aid in the rapid development of system specifications. 
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Unlike many concept papers written on software specification languages, the vast 

majority of the language defined in this thesis has been implemented and integrated into the 

agentTool multi-agent development environment.   

A number of languages have been defined for the specification of software systems.  The 

language defined in this thesis has combined the best aspects of a number these specification 

languages to create a formal yet understandable language capable of specifying large software 

systems in an easy and precise manner.   
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APPENDIX A OCL GRAMMAR [WK99] 

This appendix describes the grammar for OCL expressions.  The grammar description 

uses the EBNF syntax, where "|" means a choice, "?" optionality and "*" means zero or more 

times [OCLW99].  

expression :=  
logicalExpression  

 
ifExpression :=  

"if" expression  
"then" expression  
"else" expression  
"endif"  

 
logicalExpression :=  

relationalExpression  
( logicalOperator relationalExpression )*  

 
relationalExpression :=  

additiveExpression  
( relationalOperator additiveExpression )?  

 
additiveExpression :=  

multiplicativeExpression  
( addOperator multiplicativeExpression )*  

 
multiplicativeExpression :=  

unaryExpression  
( multiplyOperator unaryExpression )*  

 
unaryExpression :=  

( unaryOperator postfixExpression )  
| postfixExpression  

 
postfixExpression :=  

primaryExpression  
( ("." | "->") featureCall )*  
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primaryExpression :=  
literalCollection  
| literal  
| pathName timeExpression? qualifier?  
   featureCallParameters?  
| "(" expression ")"  
| ifExpression  

 
featureCallParameters :=  

"(" ( declarator )? ( actualParameterList )? ")"  
 
literal :=  

<STRING> | <number> | "#" <name>  
 
enumerationType :=  

"enum" "{" "#" <name> ( "," "#" <name> )* "}"  
 
simpleTypeSpecifier :=  

pathTypeName  
| enumerationType  

 
literalCollection :=  

collectionKind "{" expressionListOrRange? "}"  
 
expressionListOrRange :=  

expression  
( ( "," expression )+  
| ( ".." expression ) )? 
  

featureCall :=  
pathName timeExpression? qualifiers?  
featureCallParameters?  

 
qualifiers :=  

"[" actualParameterList "]"  
 
declarator :=  

<name> ( "," <name> )* ( ":" simpleTypeSpecifier )? "|"  
 
pathTypeName :=  

<typeName> ( "::" <typeName> )*  
pathName :=  

( <typeName> | <name> )  
( "::" ( <typeName> | <name> ) )*  

 
timeExpression :=  

"@" <name>  
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actualParameterList :=  
expression ( "," expression )*  

 
logicalOperator :=  

"and" | "or" | "xor" | "implies"  
 
collectionKind :=  

"Set" | "Bag" | "Sequence" | "Collection"  
 
relationalOperator :=  

"=" | ">" | "<" | ">=" | "<=" | "<>"  
 
addOperator :=  

"+" | "-"  
 
multiplyOperator :=  

"*" | "/"  
 
unaryOperator :=  

"-" | "not"  
 
typeName :=  

"A"-"Z" ( "a"-"z" | "0"-"9" | "A"-"Z" | "_")*  
 
name :=  

"a"-"z" ( "a"-"z" | "0"-"9" | "A"-"Z" | "_")*  
 
number :=  

"0"-"9" ("0"-"9")*  
 
string :=  

"'" ( (~["'","\\","\n","\r"])  
       | ("\\" ( ["n","t","b","r","f","\\","'","\""]  

    | ["0"-"7"] ( ["0"-"7"] )?  
          | ["0"-"3"] ["0"-"7"] ["0"-"7"]  
         )  
      )  
    )*  

"'" 
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APPENDIX B FIGURE 19 OPERATOR DEFINITION 

The general definition of an OCL operator is as follows: 
 
Type1::operation(arg : Type2) : ReturnType 
pre: --precondition expression goes here 
post: --postcondition expression goes here with optional result variable 
 
The expression specified after post is only evaluated if the expression specified after pre 

evaluates to true.  Postconditions may contain two optional keywords to represent time: result 

and @pre.  The @pre keyword is used to indicate the value of an attribute or association at the 

beginning of the execution of the operation.  The keyword is postfixed to the name of the item it 

is associated with.  The result keyword is used to indicate the return value for the operation  

[WK99].  Because a user may want to have a number of things to happen when the postcondition 

is evaluated, OCL expressions can be conjuncted together.  Although OCL does not specify any 

order for the evaluation of conjuncted expressions, for the purposes of this thesis, it is assumed 

that expressions are evaluated in a top to bottom, left to right fashion.  For example, the 

postcondition of the executeMsgValid operator of RuleContainer (specified below) contains 

two OCL expressions conjuncted together. The msgTrigger=msg expression will be evaluated 

first, followed by the rule->forAll(x:Rule | x.execute) expression. Listed below are the operator 

signatures for Figure 19. 

MessageInterface::receiveMsg(msg: message) 
pre: --none 
post: ReactiveAgent.CheckRules(msg) 

 
ReactiveAgent::CheckRules(msg: message) 
pre: --none 
post: RuleContainer.executeMsgValid(msg) 
  
RuleContainer::executeMsgValid(msg: message) 
pre: --none 
post: msgTrigger=msg  

and rule->forAll(x:Rule | x.precondition=>x.postcondition) 
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APPENDIX C LANGUAGE IMPLEMENTATION 

This appendix shows how the language described in this thesis was implemented in the 

multi-agent system agentTool.  What follows is a step by step description of how components 

needed for the reactive architecture described in Section 4.3 are created and saved in the 

agentTool multi-agent development environment. 

It should be noted that I designed the language and coded the basic components (Figures 

56 through 62).  The coding of the connectors and component state diagrams (Figures 63 through 

70) was accomplished by Jennifer Mifflin, an undergraduate research assistant.   

Before any components can be specified, an agent must first be created.  From the main 

agentTool dialog, the user must select the Add Agent button to add an agent to the screen.  Once 

done, an additional tab will be created containing the agent name.  Figure 54 shows how this is 

represented in agentTool.  To change the agent name, the user must use the mouse to select 

within the Currently Selected text box.  Once there, the user can change the name of the agent 

by replacing Agent1 with the desired name.  For the purposes of this example, the name 

Reactive will be used.  Although multiple agents can be created and connected, only one agent 

will be examined for this example.  Once the agent is created, the user can then select the tab 

containing the agents name (in this case Reactive).  Once this tab is selected, the user will be 

presented with the inner agent screen seen in Figure 34.  The internal representation of the agent 

is defined within this tab.  The user can now begin specifiying the components making up the 

particular agent type. Adding a component is done by selecting the Add Component button.  A 

generic component will automatically be added to the window.  By selecting a component and 

pushing the right mouse button, the component menu of Figure 56 is presented to the user. 
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Figure 54 Creating an Agent 

This menu allows the user to define all the static characteristics of the given component to include 

name, attributes, and operators.  Selecting Properties will bring up the dialog seen in Figure 57 

thus allowing the user to change the component name and designate whether it contains a 

substructure. Selecting the Substructure check box indicates that the component will contain a 

substructure.  The default is not selected.  Defining substructures within agentTool is not 

available in the current version of the software.  An asterisk is appended to the name of any 

component designated as containing a substructure.   

Selecting Add Attribute from the component menu allows the user to define component 

attributes one at a time.  When the option is selected, the user is presented with the dialog box 

shown in Figure 58. The Attribute Name field is used to specify the name of the attribute being 

defined.   
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Figure 55 Internal Agent Panel 

The Attribute Type field can contain any of the predefined OCL types as well as any 

user-defined types. The current version of agentTool does not allow the specification of user-

defined types.  The Initial Value field is optional, but can be used to set the attribute to a default 

value.  Currently, no type checking is done within agentTool to ensure the type of Initial Value 

matches Attribute Type or to ensure Attribute Type is valid.  If the attribute is a collection of 

objects, the user can specify it as a Set, Sequence, or Bag by selecting the appropriate radio 

button. The software enforces the constraint that only one of these types be selected at any given 

time.  The attribute of Figure 58 will be represented as rule:Set(Rule).  The user can then choose 

whether the attribute is user defined, run time defined, or both.  These selections will be used for 

the code generation portion of agentTool (not yet implemented).  Once completed, the user 

selects the Add button. Figure 59 displays the RuleContainer once all attributes have been 

added.   
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Figure 56 Component Menu 

 

Figure 57 Component Properties 

The ‘+’ symbol indicates an attribute is user defined, while the ‘-‘ symbol indicates an attribute is 

run time defined. Although not shown in the figure, the ‘±’ indicates an attribute that is both run 

time and user defined.  If the user later wants to edit any of the attributes previously defined, they 

can go to the Edit Attribute option of the component menu.  Once there, the user will be 

presented with a drop down menu containing the names of all attributes defined at that time. 
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Figure 58 Component Attribute 

 

Figure 59 RuleContainer Attributes 

The user can then select the attribute they wish to edit and will be presented with a dialog box 

similar to that of Figure 58 except with all values filled in and the Add and Cancel buttons 

replaced by Delete, Change, and Cancel buttons.  The user can then make any desired changes 

to the attribute or delete the attribute.   
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 Once all attributes have been defined, the user can then specify any operators needed for 

the component.  Selecting Add Method from the component menu brings up the dialog seen in 

Figure 60.  The Method Name is used to designate the particular operator being defined.  

Although not currently checked for, methods within the same component should not have the 

same name.  The Return Type field is used to specify the type of data (if any) being returned by 

the method.  Like Attribute Type, this field should contain a valid OCL or user defined type.  

The Parameters field is used to specify data to be passed to the method.   

 

Figure 60 Rule Container Method 

The format for entering data in this field is parameter name:parameter type.  Commas should 

separate multiple parameters.  No type checking is currently done on the format of this field or on 

whether the parameter types are valid.  The Precondition and Postcondition fields are for 

entering OCL expressions describing the pre- and postconditions of the method.  The Visible 

checkbox is used to specify the operator’s visibility to other components.  If the box is checked 

then the operator may be accessed by other components.  Operators not visible are preceded by 
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the ‘#’ symbol.  Figure 61 depicts the RuleContainer once all attributes and methods have been 

defined.   

 

Figure 61 RuleContainer Component 

The Edit Method option of the component menu works in a similar manner to that of the 

attribute, allowing the user the ability to change or delete any methods.  All remaining 

components can then be defined following the same procedure.  Figure 62 shows the Reactive 

agent panel once all components have been defined.  Once one or more components have been 

defined, the user may wish to link a component to the agents environment or to another 

component.  To do this the user simply selects the Add Connection button.  To define an outer 

agent connector, the user must then simply use the left mouse button and double click on the 

desired component.  Doing so will automatically add a one way outer agent connector to the 

component.   
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Figure 62 Reactive Agent Components 

By right clicking on the connector, a drop down box will appear with four options (as seen in 

Figure 63).  Selecting the first option, Message_Interface, would reverse the direction of the 

connector so that it was pointing at the Message_Interface component.  Choosing the second 

option, Framework, points the connector away from the component, towards the environment 

framework.  Selecting the BothArrows option defines a two-way outer agent connector.  The 

Delete option simply removes the selected connector.   

The process for adding an inner agent connector is very similar, except that once the Add 

Connection button is selected, the user must choose the two components that are to be 

connected.  Once the second component is chosen, a one way inner agent connector will be drawn 

from the component selected first to the component selected second.   
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Figure 63 Outer Agent Connector 

To change the orientation of the connector, the user right clicks on the connector and is presented 

with a set of options similar to those of the outer agent connector. The options will include the 

first components name, the second components name, BothArrows, and Delete.  Selecting either 

component name will make the connector point to that particular component.  BothArrows and 

Delete work in the same manner as outer agent connectors.  Figure 64 depicts the reactive agent 

components completely connected.  The thicker, dashed arrows represent the outer agent 

connectors, while the thin, solid arrows represent the inner agent connectors.  The static 

representation of the agent is now complete. 

To define the dynamic representation of the agent, state diagrams must be specified for 

each component.  To specify the state diagram for a specific component, the user must select a 

component by left clicking on it.  Once accomplished, another tab will appear with the name 

component Stat Diag.  This tab will represent the state diagram for the selected component.   
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Figure 64 Component & Connectors 

Selecting the tab will display the state diagram panel as seen in Figure 65, where the solid circle 

represents the start state, and the circle within a circle represents the end state. Adding a state is 

simply done by selecting the Add State button.  Once defined, a state can be customized by right 

clicking on the state and selecting Properties from the pull down menu.  The user can then 

change the name of the state as well as specify the action associated with the state. Figure 66 

shows Figure 65 with a Wait state added.  Once a state has been created, transitions can be 

created in one of two ways.  If the transition goes between two states then the user must select the 

Add Trans button and then select the two states that the transition will go between.  If the 

transition loops back on itself, the user must select the Add Trans button and then double click 

on the state having the loop back.  For example, to add a transition from the start state to the Wait 

state, the user must select Add Trans and then select the start state followed by selecting the 

Wait state.  To add a transition from the Wait state back to the Wait state, the user selects Add 

Trans and then double clicks on the Wait state.   
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Figure 65 Component State Diagram 

 

Figure 66 Wait State Added 
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Figure 67 depicts the diagram after this has been accomplished. To correctly model the 

Message_Interface components state diagram depicted in Figure 24 of Section 4.3.2.2, two 

transitions are needed from the Wait state to the Wait state.  Currently agentTool does not offer a 

robust way to handle this situation.  To model this second transition, a “dummy” state must be 

added for the state to transition to.  A depiction of this workaround is shown in Figure 68. 

 

Figure 67 Wait State with Transitions  

Once all states and transitions have been defined, the last thing that must be done is to 

define the transition characteristics.  By selecting the transition and right clicking on it, the user is 

presented with the transition menu seen in Figure 69. 

Selecting the Properties option allows the user to specify the received message, guard 

conditions, send message, and action for each transition.  The Reverse selection simply reverses 

the direction of the transition and the Delete option removes the transition.  Remaining options 

are not used in this research.   



 

 

 150

 

Figure 68 Dummy State 

 

Figure 69 Transition Menu 
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Figure 70 depicts the completed state diagram.  It should be noted that the send(message) event 

triggers the transition form the Wait state to State2.  It is an automatic transition from State2 to 

the Wait state. 

 

Figure 70 Completed Dynamic Model 
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APPENDIX D REACTIVE STYLE OPERATOR DEFINITION 

The operator definition defined in Appendix B is followed throughout this appendix. 

IO_Interface::send(msg: message) 
pre: --none 
post: MessageInterface.send(msg) 
 
IO_Interface::getPercept() 
pre: --none 
post: Sensor.getPercept() 
 
IO_Interface::executeOp(name:String, params:String) 
pre: --none 
post: Effector.executeOp(name, params) 
 
IO_Interface::execute(name:String, loc:String, command:String) 
pre: --none 
post: ResourceInterface.execute(name:String, loc:String, command:String) 
 
MessageInterface::receiveMsg(msg: message) 
pre: --none 
post: IO_Interface.Controller.msgCheckRules(msg) 

 
Sensor::receivePercept(per: OclAny) 
pre: --none 
post: IO_Interface.Controller.perceptCheckRules(per) 
 
Effector::executeOp(opname:String, params:String) 
--verifies the precondition of the operator is true 
pre: (ops.name).precondition  
post: (ops.name).postcondition 
 
Controller::msgCheckRules(msg: message) 
pre: rules->exists(x:Rule | x.precondition=true) 
post: RuleContainer.executeRule(rules->select(x:Rule | x.precondition=true)) 
  
RuleContainer::executeRule(rule: Rule) 
pre: --none 
post: rule.postcondition 
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