
AFIT/GCS/ENG/00M-22

A COMPONENT BASED APPROACH TO AGENT

SPECIFICATION

THESIS

David J. Robinson, 1st Lieutenant, USAF

AFIT/GCS/ENG/00M-22

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

Approved for public release, distribution unlimited.

AFIT/GCS/ENG/00M-22

A COMPONENT BASED APPROACH TO AGENT

SPECIFICATION

THESIS

Presented to the faculty of the Graduate School of Engineering & Management

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science (Computer Science)

David J. Robinson, B. S.

1st Lieutenant, USAF

March 2000

Approved for public release, distribution unlimited.

AFIT/GCS/ENG/00M-22

The views expressed in this thesis are those of the author and do not reflect the official policy or

position of the Department of Defense or the U. S. Government.

AFIT/GCS/ENG/00M-22

ii

ACKNOWLEDGMENTS

I would like to sincerely thank my faculty advisor, Maj Scott DeLoach. His guidance,

support, relentless badgering, and the fact that he outranked me by quite a bit allowed for the

authoring of this quality thesis. In all seriousness, it was truly an honor and a privilege to be his

student. His incredible focus and energy was often contagious and made me a better student in

spite of myself. Thank you. I would also like to thank Dr. Thomas Hartrum for his advice and

guidance throughout the thesis process and Maj Robert Graham for serving on my Thesis

committee. I would like to thank my fellow classmates for making this journey to all

encompassing knowledge bearable and often quite fun.

Most importantly, I would like to thank my wife Andrea, whom without, this thesis

would have not been written. Her love, support, and willingness to go shopping when I needed to

study allowed me to focus on the task at hand. Thank you and I love you.

David J. Robinson

iii

TABLE OF CONTENTS

ACKNOWLEDGMENTS... II

TABLE OF FIGURES .. V

I. INTRODUCTION .. 1

1.1 Background.. 2

1.2 Problem Statement... 4

1.3 Thesis Overview... 5

II. BACKGROUND .. 6

2.1 Overview .. 6

2.2 Knowledge Representation .. 6

2.3 Architectural Representation ... 12

2.4 Internal Agent Representation ... 36

2.5 Summary .. 52

III. APPROACH .. 53

3.1 Language Requirements... 54

3.2 Selecting a Language... 55

3.3 Object Model Definition .. 57

3.4 Language Validation.. 59

3.5 Chapter Summary .. 63

IV. DESIGN AND IMPLEMENTATION .. 64

4.1 Defining the Requirements... 64

4.2 Review of Existing Languages ... 66

4.3 Language Definition .. 73

4.4 Object Model Definition .. 85

 iv

4.5 Language Implementation ... 93

4.6 Chapter Summary .. 96

V. ARCHITECTURAL STYLES... 98

5.1 Reactive Agent Architectural Style .. 98

5.2 Knowledge Based Architectural Style.. 105

5.3 Planning Architectural Styles .. 110

5.4 BDI Architectural Style.. 115

5.5 Generic Components.. 119

5.6 Summary .. 120

VI. CONCLUSIONS AND FUTURE WORK .. 122

6.1 Conclusions.. 122

6.2 Language Usage .. 123

6.3 Possible Future Work .. 125

6.4 Thesis Summary ... 126

REFERENCES ... 129

APPENDIX A OCL GRAMMAR [WK99] ... 134

APPENDIX B FIGURE 19 OPERATOR DEFINITION .. 137

APPENDIX C LANGUAGE IMPLEMENTATION.. 138

APPENDIX D REACTIVE STYLE OPERATOR DEFINITION 152

VITA .. 153

 v

TABLE OF FIGURES

FIGURE 1 GENERIC ELEMENTS OF ADL [AES95] ... 14

FIGURE 2 PRS-CL ARCHITECTURE [PRS99]... 17

FIGURE 3 ARCHITECTURE OF A TYPICAL EXPERT SYSTEM [LS98].. 22

FIGURE 4 RETSINA ARCHITECTURE [SYC96]... 25

FIGURE 5 PRODIGY EXAMPLE [PROD92].. 29

FIGURE 6 ACT DIAGRAM EXAMPLE [WM97] ... 32

FIGURE 7 OCL OBJECT MODEL... 43

FIGURE 8 Z REPRESENTATION... 46

FIGURE 9 SEMANTIC NETWORK EXAMPLE .. 48

FIGURE 10 FRAME EXAMPLE... 51

FIGURE 11 APPROACH ... 53

FIGURE 12 STEP ONE... 54

FIGURE 13 STEP TWO .. 55

FIGURE 14 STEP THREE ... 57

FIGURE 15 A GENERIC AGENT ARCHITECTURE... 58

FIGURE 16 STEP FOUR ... 59

FIGURE 17 GENERIC BDI ARCHITECTURE... 61

FIGURE 18 REFINED BDI ARCHITECTURE ... 62

TABLE 1 LANGUAGE REPORT CARD.. 67

FIGURE 19 REACTIVE ARCHITECTURE... 72

FIGURE 20 COMPONENT GROUPING .. 74

FIGURE 21 AGGREGATION REMOVAL.. 76

FIGURE 22 INHERITANCE AND AGGREGATION REMOVAL.. 79

FIGURE 23 MESSAGEINTERFACE STATEDIAGRAM .. 80

 vi

FIGURE 24 INNER-AGENT CONNECTORS .. 82

FIGURE 25 OUTER-AGENT CONNECTORS... 83

FIGURE 26 BASIC OBJECT MODEL... 85

FIGURE 27 OBJECT MODEL REFINEMENT .. 86

FIGURE 28 COMPONENT ATTRIBUTES ... 87

FIGURE 29 ATTRIBUTE CLASS ATTRIBUTES .. 89

FIGURE 30 OPERATOR CLASS ATTRIBUTES ... 91

FIGURE 31 DATA STRUCTURE ... 92

FIGURE 32 COMPLETE OBJECT MODEL ... 93

FIGURE 33 COMPONENT & CONNECTORS.. 94

FIGURE 34 ATTRIBUTE INTERFACE.. 95

FIGURE 35 METHOD INTERFACE.. 95

FIGURE 36 COMPLETED DYNAMIC MODEL.. 96

FIGURE 37 REACTIVE ARCHITECTURAL STYLE ... 99

FIGURE 38 REACTIVE ARCHITECTURAL OBJECT MODEL... 100

FIGURE 39 REACTIVE ARCHITECTURE COMPONENT MODEL... 104

FIGURE 40 IO_INTERFACE SUBSTRUCTURE... 105

FIGURE 41 KNOWLEDGE BASED ARCHITECTURAL STYLE ... 107

FIGURE 42 KNOWLEDGE BASE OBJECT MODEL .. 108

FIGURE 43 KNOWLEDGE-BASED COMPONENT DIAGRAM .. 110

FIGURE 44 PLANNER ARCHITECTURAL STYLE... 111

FIGURE 45 DYNAMIC PLANNER OBJECT MODEL ... 113

FIGURE 46 DYNAMIC PLANNER COMPONENT DIAGRAM ... 114

FIGURE 47 STATIC PLANNER OBJECT MODEL ... 115

FIGURE 48 STATIC PLANNER COMPONENT DIAGRAM ... 116

FIGURE 49 BDI ARCHITECTURAL STYLE... 117

FIGURE 50 BDI OBJECT MODEL.. 118

 vii

FIGURE 51 BDI COMPONENT DIAGRAM.. 119

FIGURE 52 PLANNER COMPONENT SUBSTRUCTURE .. 119

FIGURE 53 COMPONENT BASELINE.. 120

FIGURE 54 CREATING AN AGENT .. 139

FIGURE 55 INTERNAL AGENT PANEL... 140

FIGURE 56 COMPONENT MENU ... 141

FIGURE 57 COMPONENT PROPERTIES .. 141

FIGURE 58 COMPONENT ATTRIBUTE ... 142

FIGURE 59 RULECONTAINER ATTRIBUTES .. 142

FIGURE 60 RULE CONTAINER METHOD ... 143

FIGURE 61 RULECONTAINER COMPONENT.. 144

FIGURE 62 REACTIVE AGENT COMPONENTS ... 145

FIGURE 63 OUTER AGENT CONNECTOR... 146

FIGURE 64 COMPONENT & CONNECTORS.. 147

FIGURE 65 COMPONENT STATE DIAGRAM... 148

FIGURE 66 WAIT STATE ADDED.. 148

FIGURE 67 WAIT STATE WITH TRANSITIONS ... 149

FIGURE 68 DUMMY STATE .. 150

FIGURE 69 TRANSITION MENU .. 150

FIGURE 70 COMPLETED DYNAMIC MODEL.. 151

viii

ABSTRACT

The Air Force, as well as all of industry, is currently faced with the problem of having to

produce larger and more complex software systems that run efficiently and reliably as well as

being extensible and maintainable. This research addresses this problem by developing a

knowledge representation language that can be used to unambiguously specify and design

software systems in a verifiable, efficient, and understandable manner. The language is a

combination of object-oriented and component-based methodologies and makes use of both

graphics and text to represent information. Although designed for the development of any type of

software system, the language has been implemented in agentTool, a multi-agent development

environment.

 1

A COMPONENT BASED APPROACH TO AGENT

SPECIFICATION

I. Introduction

With the size and complexity of software systems increasing, the overall design,

specification, and verification of the structure of systems turns into a crucial concern for software

engineers. Software engineering as a whole has made very few significant advances in the past

two decades in the realm of software development [MM97]. Structured programming,

declarative specifications, object-oriented programming, formal methods, and visual

programming were supposed to bring software development to a level capable of implementing

software systems correctly and efficiently. Unfortunately, this has not happened and software

systems have not kept pace with the rest of the computing industry. While processor performance

increased at a rate of 48% per year, and network capacity increased at a 78% annual rate,

software productivity increased by only 4.6% and the power of programming languages and tools

has been growing 11% per year [MM97].

The Air Force, as well as all of industry, is currently faced with the problem of having to

produce larger and more complex software systems that run efficiently and reliably as well as

being extensible and maintainable. The lack of a well-established notation upon which software

engineers may agree has made solving this problem even more difficult. The goal of this research

is to develop a knowledge representation language that can be used to unambiguously specify and

design software systems in a verifiable, efficient, and understandable manner. To ensure

 2

maximum understandability and ease of use, the language should make use of both graphics and

text to represent information.

1.1 Background

A newer paradigm that is gaining in acceptance and use in the realm of software

engineering is multi-agent systems design. Multi-agent systems are computational systems in

which several semi-autonomous software agents interact or work together to perform some set of

tasks or to satisfy some set of goals. These systems vary from those involving computational

agents that are homogeneous or heterogeneous, to those including participation on the part of

humans and intelligent computational agents. Research and use of these systems generally

focuses on problem solving, communication, and coordination aspects, as opposed to low-level

parallelization or synchronization issues that are more the focus of distributed computing. A

significant advantage seen to using multi-agent systems is their ability to handle distributed

problem solving. Large, complex problems that were normally solved by single applications on

single machines can now be broken down and distributed to multiple applications running on

multiple machines. Parallelism can be achieved by assigning different tasks or sub-problems to

different agents. Possible coordination and information sharing can take place between agents in

a manner that is totally transparent to the user. Another advantage to using multi-agent systems is

their scalability. Since they are inherently modular, it is a simple to add a new agent to a multi-

agent system in order to adapt to new problems without having to rewrite or redesign the whole

system.

A methodology being revived to help improve the development of software systems is

formal methods. Formal methods involve the use of mathematically based languages, techniques,

and tools for specifying and verifying systems. Although formal methods have existed for quite

 3

some time, a lack of usable tools and general acceptance has left the methodology a virtually

untapped resource in software development. The majority of past research has been concerned

with developing formal notation and inference rules while very little effort has been put toward

the development of methodology and tool support [FKV94]. The correct use of formal methods

allows requirements to be better understood, contradictions and ambiguities to be removed,

specifications verified for correctness, and allows for a much smoother transition from

specification to design to implementation [FKV94].

Graphical modeling is very much the opposite of formal methods. Although it is said that

a picture is worth a thousand words, it should also be added that a picture is worth a thousand

interpretations. A problem with modeling using graphical tools is user understanding. Often

pictures and diagrams do not contain enough detail to eliminate ambiguities in how the designer

wishes to represent something. The advantage of visual descriptions is seen in their ability to

communicate complex relationships. Figures and diagrams are usually much easier to convey to

others and are also easier for others to understand. These two points make graphical modeling a

very attractive addition to software engineering.

The combination of multi-agent systems, formal methods, and graphical modeling is not

a silver bullet that will take software engineering to a realm of creating correct software the first

time every time. However, the correct use of certain aspects of each methodology offers a means

to achieve robust reliable software capable of solving a large number of complex problems. The

Air Force Institute of Technology (AFIT) is currently conducting research in the development of

a multi-agent design tool called agentTool. The overall methodology is based on the Multiagent

Systems Engineering (MaSE) [MASE99] approach to agent system design proposed by DeLoach.

This thesis will define the Agent Definition Language (AgDL) used in MaSE. DeLoach’s AgDL

 4

is based on the development of a knowledge representation language for completely describing

the internal behavior of individual agents of a system.

1.2 Problem Statement

The Air Force currently does not implement any type of formal methodology for

developing software systems. As systems are becoming larger and more distributed, the need to

integrate complex systems in distributed environments requires that systems have some common

methodology. This statement has led to a two-fold problem the Air Force is currently struggling

to correct. First, the problem of finding a useful, easy to use methodology that can be

implemented Air Force wide and allows for software reuse, easy documentation, and the removal

of ambiguities. Second, the problem of finding a way to formally represent this methodology so

verification and maintenance of software can be done easily and cheaply. Many methodologies

currently exist and are well defined for the development of software. However, in choosing any

one of these methodologies to solve the first problem, the second remains almost completely

intact and vice versa. The solution to this dilemma does not involve abandoning current software

practices to use one methodology to solve all of these problems, but rather an integration of

formal methods within a software design methodology to create a formal, more verifiable

software system [BH95].

The area that can benefit most from this integration is the specification phase of software

development. The creation of a formally based knowledge representation language that is also

easy to read and write will allow for unambiguous specifications to be written quickly and

efficiently. Ensuring the language is also easily decomposable allows for maximum reuse. The

use of such a language in a multi-agent development system will allow for individual agents to be

formally specified, allowing for the verification of all components of the system.

 5

1.3 Thesis Overview

Chapter 2 provides a review of literature including a definition of what a knowledge

representation language is, what it is composed of, types of knowledge that must be represented

in a knowledge representation language, and representation languages used in the past and

present. Chapter 3 outlines the specific methodology followed to allow the transition from

problem definition to design. Chapter 4 presents the design decisions made relating to the

definition of the language as well as presents an implementation of the language. Chapter 5

defines software architectural styles relating to the field of artificial intelligence. Chapter 6

provides conclusions and areas requiring future work.

 6

II. Background

2.1 Overview

The goal of this chapter is to review knowledge representation and how it may be used in

Artificial Intelligence (AI) agent-based systems. To effectively design a knowledge

representation language for a multi-agent system such as agentTool, past and present work in the

area must be reviewed. A knowledge representation language needs to be defined and broken

down into its most basic parts to determine what a representation language is and what is

necessary to clearly and completely define such a language.

Section 2.2 addresses what knowledge representation languages are, why they are

needed, and possible requirements. This thesis views representation languages at two levels of

abstraction: architectural and internal. Section 2.3 outlines various aspects of architectural

languages and representations while Section 2.4 does the same for internal languages and

representations. Section 2.5 summarizes the chapter.

2.2 Knowledge Representation

Newell and Simon argued in their Turing Award lecture in 1976 that intelligent activity

in a human or machine is achieved through the following:

1. Symbol patterns to represent significant aspects of a problem domain.

2. Operations on these patterns to generate potential solutions to problems.

3. Search to select a solution from among these possibilities.

 7

The physical symbol system hypothesis is based on these three assumptions and outlines

the major focus of most AI research: specifying the symbol structures and operations required for

problem solving and defining efficient and correct strategies to search the plausible solutions

generated by the structures and operations [LS98]. Brachman and Levesque [BL85] state that

knowledge representation “simply has to do with writing down, in some language or

communicative medium, descriptions or pictures that correspond in some salient way to the world

or some state of the world.” At first, the task at hand does appear “simple”. Write things down in

some language, be it graphical or textual (or both), in such a manner that the pictures and

descriptions match what you are trying to represent. Unfortunately, the problem is not so easily

solved. A number of issues must be addressed when defining a knowledge representation

language, such as: [LS98, CM87, REICH91]

•= what must be represented by the language

•= how to formally specify the semantics of the language

•= how to deal with incomplete knowledge

•= how to maintain current knowledge

•= how to control multiple inferencing

•= how to represent meta-knowledge

These topics will be looked into more closely in the remainder of this thesis.

2.2.1 Representation Language Defined

Knowledge representation languages consist of two main components, syntax and

semantics [RN95]. The syntax of a language deals with the manner in which information is

 8

stored in an explicit format and describes the possible configurations that constitute a valid

sentence. Semantics define the meaning of the symbols. If the semantics of a language are

formally and completely specified, then a group of symbols can only be interpreted in one way.

Specification is the act of writing down information in a precise manner. A formal

specification uses a representation language with precisely defined syntax and semantics in order

to specify what a system is supposed to do. Because specifications eliminate distracting detail

and only provide a general description, they become resistant to future system modifications

[NASA95]. Regardless of the manner in which it is accomplished, specification is a

representation process. In the realm of software engineering, these requirements are depicted in a

manner that will lead to the successful implementation of a piece of software [PRES97]. The

quality, timeliness, and completeness of any software project can usually be traced back to how

much time was spent developing a specification of the system [PRES97].

Once it has been determined what knowledge representation is and why it is necessary,

the issue of language requirements needs to be addressed.

2.2.2 Language Requirements

Luck and d’Inverno [DAF97, SZS95] describe three requirements they believe must be

met in order for a language to be used to specify agents.

1. A language must precisely and unambiguously provide meanings for common concepts
and terms and do so in a readable and understandable manner

2. A language should enable alternative designs of particular models and systems to be
explicitly presented, compared and evaluated. It must provide a description of the
common abstractions found within that class of models as well as a means of further
refining these descriptions to detail particular models and systems.

3. A language should be sufficiently well structured to provide a foundation for subsequent
development of new and increasingly more refined concepts. In other words,
practitioners should be able to choose the level of abstraction suitable for their purpose.

 9

The first requirement states the language must have a formally defined syntax and

semantics as well as be easy to understand. The first half of this requirement does not pose a

significant problem since a number of formally defined languages exist today. However,

requiring something to be “readable” and “understandable” is a rather vague requirement since

both words are subject to interpretation. Computer engineers often get caught up in defining

information so that it is easier for a machine to understand, but often forget there is a human

element interacting at some point in the process. The use of visual descriptions often aids in the

ability to communicate complex relationships and concepts. Therefore, using graphics along with

text should yield a much more clear and understandable description of a system rather than just

using either approach independently of the other.

The second requirement states the language should have the flexibility to allow designers

to represent a model in multiple ways. If the language is not flexible enough to allow multiple

representations of a problem, the designer may be constrained to a single solution. The ability to

represent and model numerous solutions to the same problem often provides insight that would

otherwise be difficult to attain. This flexibility can lead to possible performance gains and

improved resource usage not otherwise available. Multiple representations may greatly impact

the implementation of the system.

The last requirement implies the language must have ability to represent multiple levels

of abstraction. Any time a modular approach to a software problem is taken, as is the case in

multi-agent systems, multiple levels of abstraction are found. At the highest level, a solution is

stated in broad terms in a domain specific language. This may be as simple as a box and line

diagram depicting the overall software system. At lower levels, a more procedural approach is

taken and specific details are addressed [PRES97].

 10

As with the flexibility, abstraction also allows issues such as performance and resource

usage to be examined at various levels. For example, the designer may look at a design at the

agent interaction level and find no way to improve performance. Upon closer inspection of the

internal details, the designer may find several redundant communication requests that can be

removed, thus reducing network congestion and increasing the overall performance of the system.

Another benefit of multiple levels of abstraction is the ability to hide information. If a

design is being developed by multiple teams, each of which is working on a different aspect of

the same problem, certain teams may not need to look at all levels of the design. The team

interested in the agent communication structure is not concerned with the internal representation

of each component making up the design. They do not need to know the internal representation

to correctly model their portion of the design.

The final advantage of multiple levels of abstraction is communication and

understandability. A design is much easier to communicate if it can be presented in multiple

layers of abstraction. Software designs are often very large and complex. Multiple layers of

abstraction allow a design to be communicated at a more incremental pace instead of having to

understand the whole thing at once.

2.2.2.1 Multi-agent Requirements

The language requirements imposed thus far are fine if someone is just defining one

agent, but in order to define agents in a multi-agent system, a number of additional requirements

must be taken into account. A paper written by d'Inverno, Fisher, Lomuscio, Luck, de Rijke,

Ryan and Wooldridge defines specific requirements a multi-agent language should contain

[FMS97].

 11

1. The multiplicity of agents

2. Group properties of agent systems, such as common knowledge and joint
intention

3. Interaction among agents, such as communication and cooperation

The first requirement addresses the fact that a single agent type may be defined for a

particular problem requiring multiple instances of the agent type to exist at any one time. The

specification language chosen must be able to represent this attribute. Requirement two states

that the language must allow for the representation of shared agent properties. Agents must be

able to have common data stores that can be accessed and manipulated by all agents. The last

statement implies that the interaction occurs strictly between agents. Interaction must not only

exist between agents, but also between an agent and its environment.

2.2.2.2 Additional Requirements

Although all requirements mentioned thus far imply that the language needs to be

expressive, the actual word is never used. The expressiveness of the language used to define any

type of software system should not be overlooked. A language must be able to represent complex

data types and operators. Many existing languages offer a number of predefined data types and

operators a designer may use, but the key is being able to define new data types and operators not

available. If a chosen language cannot be adapted to represent new language requirements, it will

quickly become outdated.

A general requirement desirable in most languages is the ability to represent knowledge

in a modular and reusable fashion. Although modularity does not guarantee reuse, for software to

be reusable it is beneficial if it is modular. It has been stated that “modularity is the single

attribute of software that allows a program to be intellectually manageable” [MYE78]. A “divide

and conquer” approach offers a means of breaking a problem into smaller pieces that can be more

 12

easily solved. If some thought is put into what should be considered a module, patterns may be

identified which may in turn lead to reuse of existing modules, or the definition of new modules

to be reused in the future.

A final language requirement not specifically addressed by any of those previously

mentioned is the ability to capture the dynamic behavior of the agents. All requirements

mentioned to this point have applied to the static structure of an agent, rather than its ability to

express the dynamics of a system. Describing a system’s static structure reveals what a system is

composed of and how the parts are related, but it does nothing to explain how all of these parts

work together to make the system more functional [EP98]. Because of this, an important

requirement that should be considered when defining a language is the ability to capture the static

and dynamic behavior of a system.

2.3 Architectural Representation

As stated in the chapter introduction, this thesis views knowledge representation at two

levels of abstraction, architectural and internal. Maes defines an agent architecture as “a

particular methodology for building [agents]. It specifies how the agent can be decomposed into

the construction of a set of component modules and how these modules should be made to

interact” [MAE91]. Agent architectures provide a higher level of abstraction for constructing and

viewing agents and agent systems. Section 2.3.1 outlines the most common languages used for

representing architectures. Sections 2.3.2 through 2.3.6 review the most common types of agent

architectures and the components they are constructed from. Section 2.3.7 reviews the

communication component that is common to all multi-agent architectures.

 13

2.3.1 Architecture Description Language (ADL)

Software architectures define the high-level structure of a software system, showing its

overall organization as a collection of interacting components [ACME97]. The structure of the

system may include “global control structure; the protocols for communication, synchronization,

and data access; the assignment of functionality to design elements; physical distribution; the

composition of design elements; scaling and performance; dimensions of evolution; and selection

among design alternatives”[GS96]. Simply stated, a software architecture defines elements from

which software systems are built, the communication that takes place between these elements, the

patterns of combination between one another, and the constraints that exist on these patterns

[GS96]. Software architectures are important because of their ability to make complex systems

manageable by describing them at a high level of abstraction and by allowing designers to take

advantage of recurring patterns of system organization [AES95]. The basic elements comprising

any software architecture are components and connectors. Components represent the repository

for computation and state while connectors explicitly describe the interaction between these

components. Each component has an interface specification that describes its properties. These

properties may include, but are not limited, to the signature and functionality of its resources as

well as performance properties [GS96]. Components are classified and named according to

function. Examples of component types are filters, memory, and server. Connectors have

protocol specifications that may include hookup rules, ordering rules, and performance properties

as well as others [GS96]. Like components, connectors are also categorized by function and

contain the following types; remote procedure call, pipeline, broadcast, etc.

Architectural design of software systems is not a totally new concept in the realm of

software engineering, but until recently the process had been rather adhoc, lacking in formality

and re-invented for each new design. Because of this, “architectural designs are often poorly

 14

understood by developers; architectural choices are based more on default than solid engineering

principles; architectural designs cannot be analyzed for consistency or completeness; architectural

constraints assumed in the initial design are not enforced as a system evolves; and there are

virtually no tools to help architectural designers with their tasks.” [ACME97] In response to

these problems, architecture description languages (ADLs) were developed to act as a formal

notation for representing and analyzing architectural designs. ADLs generally consist of a

language and an environment. The language is used to define the component as well as the

interconnection between components while the environment provides a medium to make the

descriptions usable and reusable. The generic elements of an ADL are shown in Figure 1.

Figure 1 Generic Elements of ADL [AES95]

Although the above figure is specific to the Aesop [AES95] ADL, most ADLs are similar.

Components and connectors were described above. Configurations define topologies of

components and connectors. Ports define the component interfaces and determine the

component’s points of interaction with the environment. Roles are the connector interfaces and

identify the participants of the interaction. Representations (not shown in figure) refer to the

descriptions of the “contents” of components and connectors. Bindings are used to define the

Component

 Port

Configuration

Role

ConnectorBinding

 15

correspondence between elements of the internal configuration and the external interfaces of the

component or connector.

ADLs also typically provide parsing, unparsing, displaying, compiling, and analyzing

tools. Some of the more popular ADLs include Aesop, Adage, UniCon, and Wright [AES95,

CS93, UNI95]. Although the purpose of each language is to represent the architectural design of

software, each provides slightly different capabilities than the next. Aesop is primarily concerned

with the use of architectural styles; Adage allows for the description of architectural frameworks

for avionics navigation and guidance; UniCons use of a high-level compiler allows for the

support of a mixture of component and connector types; and Wright allows for the specification

and analysis of interactions between components [ACME97].

ADLs do not offer the user the ability to completely specify software systems. They do

offer a means to analyze the overall structure of the system and the interaction that takes place

between its parts before the internals of these parts are specified.

2.3.2 BDI Architecture

A widely used agent architecture is the Belief, Desire, Intention (BDI) architecture. This

architecture consists of four basic components: beliefs, desires, intentions, and plans. The exact

definition of these components varies slightly from author to author, but most generally agree that

all four need to be present in one form or another when using this architecture. In this

architecture, the agent’s beliefs represent information that the agent has about the world, which in

many cases may be incomplete or incorrect [DMAR97]. The content of this knowledge can be

anything from knowledge about the agent's environment to general facts an agent must know in

order to act rationally. The desires of an agent are a set of long-range goals, where a goal is

typically a description of a desired state of the environment. An agent’s goals simply represent

 16

some desired end state. These goals may be defined by a user or may be adopted by the agent.

New goals may be adopted by an agent due to an internal state change in the agent, an external

change of the environment, or because of a request from another agent. State changes may cause

rules to be triggered or new information to be inferred that may cause the generation of a new

goal. Requests for information or services from other agents may cause an agent to adopt a goal

that it currently does not possess. An agent’s desires provide it with motivations to act. When an

agent chooses to act on a specific desire, that desire becomes an intention of the agent. The agent

will then try to achieve these intentions until it believes the intention is satisfied or the intention is

no longer achievable [DMAR97]. The intentions of an agent provide a commitment to perform a

plan. Although not mentioned in the acronym, plans play a significant role in this architecture. A

plan is a representation outlining a course of action that, when executed, allows an agent to

achieve a goal or desire. Plan representation will be discussed in greater detail in Section 2.3.6.

2.3.2.1 PRS-CL

One of the best established agent architectures currently available [DMAR97, WJ94],

PRS has been used for several significant real world applications ranging from fault diagnosis on

the space shuttle to air traffic control management [DMAR97, WJ94]. PRS is a BDI architecture

that includes a plan library as well as explicitly defined symbolic representations for beliefs,

desires, and intentions. PRS provides an architectural framework to express and execute

knowledge in an easy and efficient manner. First described by [LG87], the architecture has

evolved over the years to a number of usable implementations. One implementation of the PRS

architecture is PRS-CL developed at SRI International.

PRS-CL consists of the following components [PRS99]:

•= A database containing the agent’s current beliefs or facts of the world

 17

•= A set of goals to be realized

•= A set of plans describing how goals are achieved and how situations are reacted to

•= An intention structure containing the plans chosen for eventual execution

Figure 2 shows a graphical depiction of the architecture.

Figure 2 PRS-CL Architecture [PRS99]

The PRS-CL database contains an agent’s beliefs, which include facts about the static and

dynamic properties of the domain. The database knowledge is represented in Lisp syntax

although it is not evaluable by a Lisp interpreter. New beliefs are acquired by the system

dynamically as the agent executes its plans, which are referred to as Acts.

In PRS-CL, “goals are expressed as conditions over some interval of time (i.e., over some

sequence of world states) and are specified as a combination of a goal operator applied to a

User ACT Editor

Goals ACT
Library

Intention
Structure

Database

World

Interpreter

 18

logical formula” [PRS99]. For example, the goal of (USE-RESOURCE(A B C)) indicates

resources A, B, and C are needed for the completion of the Act to occur.

The backbone of the PRS-CL architecture is its use of Acts (Acts will be discussed in

greater detail in Section 2.3.6.2). Acts are declarative procedure statements containing

knowledge on how to accomplish goals and how to react to given situations. So although PRS is

procedural by definition, the majority of the knowledge is represented in a declarative format.

All Acts stored in PRS consist of a body and an invocation condition. The body of the Act

describes the steps of the procedure to be taken. The Act body is considered a plan or plan

schema in this architecture. The invocation condition contains triggering information describing

all events that must occur before an Act is executed. In PRS-CL, Acts are represented as graphs

containing a start node and one or more end nodes. The nodes of the graph are labeled with all

subgoals to be achieved in carrying out the plan. The successful completion of a plan is realized

when all subgoals between the start node and end node are achieved.

The final portion of the PRS-CL architecture is the intention structure. The intention

structure holds the tasks the agent has chosen to execute. Intentions may either be executed

immediately or at some time in the future depending on the invocation condition. Because of

this, the intention structure of an agent may contain zero to many intentions, some of which are

not currently active due to deferment or the waiting for certain conditions to become true.

2.3.2.2 Distributed Multi-Agent Reasoning System (dMARS)

D’Inverno, Kinny, Luck, & Wooldridge propose another PRS-based BDI architecture

that is very similar to the one proposed by SRI except that it is based on formally specifying the

agents [DMAR97]. One of the drawbacks to using PRS-CL is that the agent specification has no

formal backbone. Ambiguities and program correctness cannot be easily verified until the agent

system has been completely constructed. A significant advantage offered by dMARS is that an

 19

agent specification is written using the Z formal specification language. Agent’s beliefs, goals,

intentions, plans, and actions are all specified using Z. Doing this allows system verification to

be accomplished before implementation as well as the possibility of going from specification to

implementation in a systematic manner.

2.3.3 Reactive Architectures

Perhaps simplest and among the most widely used agent architectures are reactive

architectures. Wooldridge and Jennings [WJ94] describe a reactive architecture as an architecture

that does not have a central world model and does not use complex reasoning. Unlike

knowledge-based agents that have an internal symbolic model from which to work, reactive

agents act by stimulus-response to environmental states. A simple example would be “If it starts

raining, close all windows”. The agent perceives an environmental change and reacts

accordingly. Reactive agents can also react to messages from other agents. An example of a

simple reactive agent may be a database “wrapper”. The “wrapper” surrounds the database

intercepting and interpreting all interactions with the database. Whenever a query for data comes

in, the agent collects the appropriate data and returns it to the requestor. Although reactive agents

are basic and can only perform simplistic tasks, they do form a building block from which other

more complex agents can be built. By adding a knowledge base to a simple reactive agent, you

now have an agent capable of making decisions that take into account previously encountered

state information. By adding goals and a planning mechanism, you can create a rather complex

goal directed agent. One of the more elaborate uses of reactive agents was seen in Brook’s

Subsumption Architecture [BRK85]. The Subsumption Architecture is based on Brook’s belief

that the Artificial Intelligence community need not build "human level" intelligence directly into

machines. Citing evolution as an example, he claims we can first create simpler intelligences,

 20

and gradually build on the lessons learned from these to work our way up to more complex

behaviors. Brooks uses a layered finite state machine for representation of the agent’s function.

Although complex patterns of behavior can be developed using reactive agents, their primary

goals usually consist of being robust and having a fast response time. Most agent architectures

contain a reactive component of some kind, but are not actually truly reactive agents. The

majority of reactive architectures can be modeled using a basic “IF-THEN” rule structure.

2.3.4 Knowledge-Based Architectures

Although the BDI architecture has a knowledge base, a large number of architectures

exist built around a centralized knowledge store. In general these are referred to as knowledge-

based or expert systems. Knowledge-based systems use data structures consisting of explicitly

represented problem-solving information. This knowledge can be viewed as a set of facts about

the world. Three aspects of knowledge-based systems making them powerful are:

1. They can accept new tasks in the form of explicitly described goals

2. They can achieve competence quickly by being told or learning new knowledge
about the environment

3. They can adapt to changes in the environment by updating the relevant knowledge.
[RN95]

In general, knowledge-based systems represent knowledge using a formal declarative

language. Using a declarative language allows knowledge to be added or deleted from the

knowledge base quickly and easily without affecting the rest of the system. Using a declarative

language such as first-order logic also allows new information to be derived from the current

knowledge stored in the system using inference mechanisms. An inference mechanism can

perform two actions. First, given a knowledge base, it can generate new sentences that are

necessarily true, given that the old sentences are true. Second, given a knowledge base and a

 21

sentence, it can determine whether or not the sentence was generated by the knowledge base

[RN95]. The relation just described between sentences is called entailment and is used a great

deal in knowledge-based systems.

A common use of standalone knowledge-based systems is seen in expert systems.

Although the name is often used synonymously with knowledge-based systems, expert systems

are really a specific instantiation of a knowledge-based system. The first expert system,

DENDRAL, was used to interpret the output of a mass spectrometer, an instrument used to

analyze the structure of organic chemical compounds. A major result of the research done on

expert systems has been the development of techniques that allow users to model information at

increasing levels of abstraction. These techniques allow programs to be designed closely

resembling human logic thus allowing for easier development and maintenance. Rule-based

programming is the most common technique for the development of expert systems. Rules are

used to represent heuristics specifying a set of actions to be performed for a given input. The

foundation behind an expert system is its inference engine, which automatically matches facts

against patterns and determines which rules are applicable. Once the inference engine finds an

applicable rule, the actions of the rule are executed. The execution of the particular actions may

affect the list of applicable rules by adding or removing facts. The inference engine then selects

another rule and executes its actions. This process continues until no applicable rules remain.

Figure 3 shows a general expert system architecture.

The general knowledge base in Figure 3 holds the problem-solving knowledge

normally represented as a set of if-then rules. The inference engine is used to determine which

actions to execute based on the information provided by the user. Case specific data is used to

hold facts, conclusions, and other information relevant to the particular case being analyzed.

 22

Figure 3 Architecture of a typical expert system [LS98]

An explanation subsystem is usually used to display to the user the reasoning used by

the inference engine. The knowledge-based editor is simply a programming tool to allow a

programmer to correct bugs in the knowledge base.

A significant problem in the design and use of expert systems is developing the

knowledge needed to populate the knowledge base. The MYCIN expert system used for

diagnosing spinal meningitis was developed in approximately 20 person-years. A number of

tools were developed to aid in the design of expert systems. Two of these will be addressed in the

remainder of this section.

2.3.4.1 C Language Integrated Production System (CLIPS)

CLIPS is an environment for the construction of rule and object-based expert systems. It

is currently used by all NASA sites, all branches of the military, numerous federal bureaus,

government contractors, universities, and many companies [CLIP98]. CLIPS allows for the

handling of a variety of knowledge and includes support for rule-base, object oriented, and

User
Interface
may employ:

question-
and-
answer,

menu-driven,

natural
language, or

graphics
interface
styles

Knowledge-
base editor

Explanation
subsystem

Inference
engine

General
knowledge-

base

Case-specific
data

User

 23

procedural programming paradigms. Knowledge and queries to the system are formatted in a

declarative Lisp-like syntax. CLIPS can be embedded within procedural code, and integrated

with languages such as C, FORTRAN and ADA. This makes CLIPS ideal for either the

embedding of knowledge within an agent or as a standalone expert system. CLIPS also provides

a number of tools to support the verification and validation of expert systems. These tools

provide support for modular design and partitioning of a knowledge base and semantic analysis of

rule patterns to determine if inconsistencies could prevent a rule from firing or generating an error

[CLIPS98].

A rule in CLIPS is similar to an IF THEN statement in a procedural language like Ada,

C, or Pascal. An example of an actual rule would be as follows:

(defrule duck "Here comes the quack" ; Rule header
(animal-is duck) ; Pattern
=> ; THEN arrow
(assert (sound-is quack))) ; Action

Rules normally start with an optional rule-header comment which is specified in quotes.

There can be only one rule-header comment and it must be placed after the rule name and before

the first pattern. Following the rule-header is one or more patterns and actions. The number of

patterns and actions do not have to be equal, which is why different indices, N and M, were used

for the rule patterns and actions as seen in the above example.

Each pattern consists of one or more fields. In the duck rule, the pattern is (animal-is

duck), where the fields are animal-is and duck. CLIPS attempts to match the patterns of

rules against facts in its fact list. The fact-list consists of one or more declaratively defined

CLIPS facts. Pattern matching can be done against a pattern entity, which is either a fact or an

instance of a user-defined class.

An action in CLIPS is a function which typically has no return value, but performs some

useful action, such as an assert or retract. The above example shows the function named

 24

assert and its argument sound-is quack. This function returns no value, but instead

asserts the fact sound-is quack. As with most programming languages, CLIPS recognizes a

number of reserved keywords. The keyword assert is used to add data to the CLIPS fact-list.

2.3.4.2 Java Expert System Shell (JESS)

JESS is an expert system shell written in Java to develop rule-based expert systems that

can be integrated in other Java code [JESS98]. Jess started as a clone of CLIPS, but evolved into

a distinct environment of its own. In spite of this fact, JESS is still compatible with CLIPS and

many JESS scripts are valid CLIPS scripts or vice-versa. JESS may be used to build Java applets

and applications possessing the ability to reason over knowledge supplied by the user. Like

CLIPS, Jess uses a declarative Lisp-like syntax for defining knowledge and rules.

2.3.5 Reusable Task Structure-based Intelligent Network Agents (RETSINA)

RETSINA was developed at Carnegie Melon as a technique “for developing distributed

and adaptive collections of agents that coordinate to retrieve, filter and fuse information relevant

to the user, task and situation, as well as anticipate a user’s information needs.” [SYC96] One

reason that RETSINA is an important architecture is that it does not follow any of the “major”

architectures covered in this chapter. In developing a robust knowledge representation language,

one must take into account information in well-known architectures as well as those that are not

as widely used. This section will show how even lesser known architectures contain the same

knowledge components that the more common architectures possess.

RETSINA is a multi-agent infrastructure consisting of reusable agent types that can be

adapted to address a variety of different domain-specific problems. RETSINA has three types of

agents; interface agents, task agents, and information agents. In order for all of the agents to

 25

effectively use and coordinate their resources, a common architectural backbone is needed for the

agents to interact with. This architecture is shown in Figure 4.

Figure 4 RETSINA Architecture [SYC96]

The communication and coordination module accepts and interprets Knowledge Query

Manipulation Language (KQML) messages from other agents. In addition to this, interface

agents also accept and interpret e-mail messages. Messages can contain requests for services that

become goals of the recipient agent.

The planning module takes a set of goals as input and produces a plan that satisfies those

goals. In RETSINA, the agent planning process is based on a hierarchical task network (HTN)

planning formalism. Agents have a domain-independent library of plan fragments, which can be

indexed by goals, as well as a domain-specific library of plan fragments that can be retrieved and

incrementally instantiated according to input parameters.

Domain-Independent Control Constructs Agent
 Knowledge

Scheduling

Execution
Monitoring

Communication
& Coordination

Planning

Domain-
Independent

Plan Fragments

Domain-Specific
Plan Fragments

Beliefs, Facts
Base

Task
Tree
Task
Tree

 26

The scheduling module is used to schedule each of the steps in a given plan. The

scheduling process takes an agent’s current set of plan instances (the set of executable actions)

and decides which are to be executed next (if any). The action is identified as a fixed intention

(as seen in BDI architectures) until it has been satisfied.

The execution monitor takes the agent’s next intended action and prepares, initiates, and

monitors its execution until completion.

2.3.6 Planning Architectures

A number of authors give various definitions for planning, but all boil down to the same

essential facts. Planning is the process of formulating a list of actions in order to achieve a

specified goal [MP92, RN95, PB94, LS98]. In Artificial Intelligence, a planner uses knowledge

about the actions it may perform and their consequences, as well as knowledge about the

environment, in order to formulate a list of acceptable state transforming operators that can

transform the agent from an initial state to a goal state. As seen in BDI and RETSINA, planning

architectures are usually embedded in other agent architectures to determine actions an agent will

perform. Within a given agent architecture, plans may be either synthesized dynamically or

defined ahead of time and placed in a plan library. In general, plans come in two varieties; total

order and partial order. Total order plans simply consist of a list of steps that an agent must

follow to accomplish some goal. These steps have a definite order that must be followed for the

goal to be achieved. Partial ordered plans may have some steps ordered while the order of other

steps is arbitrary and inconsequential to reaching the goal. An example of this would be putting

on your pants. Given a goal to put your pants on, and a plan with the unordered steps “put left leg

in pants” and “put right leg in pants”, the order in which these are carried out does not matter as

long as both of them are accomplished. If the step “zip up pants” is added to the list of steps, a

 27

partial order now needs to be imposed. The first two mentioned steps can still be done in any

order, but now they must both be accomplished before the zipping can occur. At one more level

of abstraction, plans can be fully or partially instantiated. The steps of a plan are generally

operators containing parameters that need to be set to some value in order for the operator to

function. A fully instantiated plan is one in which all of these parameters are set to some value.

Sometimes committing a variable to early in the planning process may overly constrain or limit

the planner. For this reason, variables are often left uncommitted until a later time.

Russell and Norvig [RN95] state that a plan is a formally defined data structure that

contains the following components:

•= A set of plan steps. Each step is one of the operators of the problem.

•= A set of step ordering constraints.

•= A set of variable binding constraints.

•= A set of causal links to record the purpose(s) of steps in the plan

The goal of this portion of the thesis is not to understand how a planner works, but to

understand what knowledge a planner needs to function properly.

2.3.6.1 PRODIGY

One of the best known planning architectures is PRODIGY. PRODIGY has been used

primarily as a research testbed in the areas of planning, machine learning, and knowledge

acquisition.

In the simplest terms, PRODIGY searches for a list of actions that will transform an

initial state into a goal state. In order to do this transformation, PRODIGY requires a certain

 28

amount of information be available to it. All knowledge entered into PRODIGY must be in the

PRODIGY4.0’s Description Language (PDL4.0), which is essentially a watered down version of

first order logic.

The first, and perhaps most critical piece of information PRODIGY needs is the domain

theory, also called the domain specification. The domain specification consists of a type

hierarchy for all entities in the domain, a set of operators, inference rules, and search control rules

[PROD92]. The type hierarchy defines all of the objects that may be able to have operators

applied to them. Once the type hierarchy is entered, operators and inference rules are defined.

Operators are representations of actions leading to changes in the state. Operators have a set of

effects, commonly referred to as postconditions, describing changes to the world that take place

when the operator is applied. Inference rules represent all of the legal inferences that can be

made for a given domain. For example, in a domain specified for a robot, there may be a single

inference rule used to indicate that the robots arm is empty (represented by (arm-empty)).

Every operator and inference rule has a precondition, which must be satisfied before the operator

can be applied. An effects list describes how the application of the operator changes the state of

the environment [PROD92]

Once the domain is totally described, an initial state and goal expression (any arbitrary

PDL expression) can be defined. Prodigy then uses a backward chaining mechanism to find a

sequence of operators that produce a state satisfying the goal expression. Figure 5 shows a

simple example of how this works using the Extended-Strips Domain. Figure 5a shows the initial

state of the world and figure 5b displays the goal state. The initial state consists of a robot, three

boxes, and four doors. The robot starts in room 1, boxes 2 and 3 are in room 3, and box 3 is in

room 4. The doors between rooms 1 and 3 and rooms 1 and 2 are open, while the doors between

rooms 3 and 4 and rooms 2 and 4 are closed.

 29

Figure 5 Prodigy Example [PROD92]

The goal is for the robot to end up next to box 3 with the door between rooms 3 and 4 closed.

Prodigy’s solution is shown below.

Solution:
<goto-dr door13 room1>
<go-thru-dr door13 room1 room3>
<goto-dr door34 room3>
<open-door door34>
<go-thru-dr door34 room3 room4>
<close-door door34>
<goto-obj box3 room4>

To use PRODIGY in an agent system, the domain specification for each agent would

need to be entered into PRODIGY. When an agent is presented with a goal inconsistent with its

given state, it would have to transform its initial state and goal state into PDL and submit the

information to PRODIGY. The agent would then be returned a solution, which would contain a

list of actions the agent would have to sequentially execute in order to achieve its goal state.

(inroom robot room1) (inroom box1 room3) (and (dr-closed door34)
(inroom box2 room3) (inroom box3 room4) (next-to robot box3))
(dr-open door12) (dr-open door13)
(dr-closed door34) (dr-closed door24)
 (a) Initial State (b) Goal State

1 2

3 4
 Box 3

Box 1 Box 2

1 2

3 4
 Box 3

 30

2.3.6.2 Act Formalism

While PRODIGY is a domain independent planning architecture, the Act formalism is a

domain independent language for the representation of plans. The Act formalism is a language

used to represent knowledge necessary to develop complex plans.

For the most part, plan generation and reactive execution are considered separate entities

in Artificial Intelligence [WM94]. The purpose of Act is to serve as a general representation

language for sharing knowledge between multiple planning and execution systems. As discussed

in Section 2.3.1.1.1, the basic unit used in the Act formalism is the Act. An Act “describes a set

of actions that can be taken to fulfill some designated purpose under certain conditions” and can

describe procedures, planning “operators”, or plans [WM97]. Environment conditions define the

purpose and applicability criteria for a given Act. Action specifications are referred to as plots

and consist of a partially ordered set of actions and subgoals. The environment conditions and

plots are both specified using goal expressions.

Goal expressions define all requirements on the planning/execution process and the

desired states to reach [WM97]. Goal expressions consist of predefined Act metapredicates

applied to a logical formula built from predicates specified in first-order logic, connectives, and

Act names. The predicates of the expressions describe possible goals and beliefs of the system.

These goals and beliefs are interpreted in the same manner as they would be in a BDI

architecture. Metapredicates allow for the specification of many modes of activity to include

goals of achievement, maintenance, and testing [WM97]. Once defined, a goal expression

specifies both the applicability conditions for environment conditions and subgoals for plot

nodes. Metapredicates such as TEST or ACHIEVE can be used in conjunction with logical

formula to specify wants or needs of the system. For example, (TEST P) in the precondition

 31

means P must be true in order for the Act to be applied, while (ACHIEVE G) means the system

must currently have G as a goal in order for the Act to be applied.

Figure 6 is an example of an Act describing an operator for deploying an air force to a

particular location. The environment conditions are listed on the left side of the screen and the

plot nodes (discussed below) are on the right. When the overall system achieves the goal of

executing this deployment, the Cue will be invoked.

The precondition ensures various constraints on the intermediate locations get enforced,

while the setting is used to look up the cargo to send by air and sea for this particular deployment.

The plot (right side of figure 6) shows the activities for accomplishing the purpose of an

Act and consists of a directed graph whose nodes represent actions and whose arcs impose a

partial order of execution [WM94]. A plot contains one start node and one or more termination

nodes. Each plot node also contains a list of goal expressions (subgoals) that must be satisfied for

the action to take place. Plots are composed of conditional (displayed as rectangles) and parallel

(displayed as rounded squares) nodes. Arcs coming into and going out of parallel nodes are

conjunctive and must be executed, while arcs coming into and going out of conditional nodes are

disjunctive and only one arc needs to be executed. If a conditional node has multiple successor

nodes, the system will execute all successor nodes until one is found whose goals are satisfied.

Execution will now commit to that branch in the tree and will ignore all other branches.

Completion of a plot requires the successful execution of all nodes along a given branch of plot

from the start node to some terminal node. A significant advantage Act has over many other plan

representation languages is the Act-Editor. The Act-Editor, developed by SRI, is a graphical tool

used for the interactive viewing, creating, modifying, and verifying of Acts. This offers the user

not only a graphical user interface for the creation and modification of plans, but more

importantly, a way to verify their correctness.

 32

Figure 6 Act diagram example [WM97]

2.3.7 Multi-Agent Communication

When dealing with multi-agent systems, an area of critical importance is communication.

Communication is the basis for interaction and organization without which agents would be

unable to cooperate, coordinate, or sense changes in their environment. There are three forms of

agent communication that may take place: agents may communicate directly with other agents via

message passing, agents may communicate with the environment using sensors and effectors, and

P503:
(ACHIEVE-BY
((MOBILIZED AIR.1 LOCATION.1)

P509:

(ACHIEVE
(LOCATED CARGOBYSEA.1

P507:

(ACHIEVE
(LOCATED CARGOBYAIR.1

P510:

(ACHIEVE
(LOCATED CARGOBYSEA.1

P511:

(ACHIEVE
(LOCATED CARGOBYSEA.1

P508:

(ACHIEVE
(LOCATED CARGOBYAIR.1

P512:
(CONCLUDE
(AND
(LOCATED AIR.1 AIRFIELD.2)
(NOT
(LOCATED CARGOBYAIR.1 AIRFIELD.2))
(NOT
(LOCATED CARGOBYSEA.1 AIRFIELD.2))))

DEPLOY-AIRFORCE

Cue:

(ACHIEVE (DEPLOYED AIR.1
AIRFIELD.2 END-TIME.1))

Preconditions:

(TEST
(AND (LOCATED AIR.1 LOCATION.1)
 (NEAR AIRFIELD.1 LOCATION.1)
 (NEAR SEAPORT.1 LOCATION.1)
 (PARTITION-FORCE AIR.1
 CARGOBYAIR.1 CARGOBYSEA.1)
 (TRANSIT-APPROVAL AIRFIELD.2)
 (TRANSIT-APPROVAL SEAPORT.2)
 (NEAR SEAPORT.2 AIRFIELD.2)
 (ROUTE-ALOC AIRFIELD.1
 AIRFIELD.3 AIR-LOC.1)
 (ROUTE-SLOC SEAPORT.1
 SEAPORT.2 SEA-LOC.1)))

Setting:

(TEST
(AND (NOT (= AIRFIELD.2 AIRFIELD.1))
 (NOT (= SEAPORT.1 SEAPORT.2))))

Resources:

- no entry -

Properties:

((AUTHORING-SYSTEM SIPE-2(CLASS
 OPERATOR))

Comment:

 33

agents may communicate with other agents by effecting changes to the environment using

effectors.

2.3.7.1 Message Passing

A multitude of languages exist allowing for the communication needs of agents.

Telescript, Java, TcL, and Python name just a few. These language capabilities combined with

infrastructural capabilities (such as CORBA) form complete agent communications mechanisms

[KJ98]. However, because more than just agent state and simple messages may need to be

passed, more is needed. Because agents act on complex rules and ontologies, specific protocols

need to be defined for message passing between agents. The Knowledge Query and

Manipulation Language (KQML) from the Defense Advanced Research Project Agency

(DARPA) and the Agent Communication Language (ACL) from the Foundation for intelligent

Physical Agents (FIPA) represent the two most utilized representations to date. These languages

provide the designer with a standard syntax for forming messages as well as a number of

performatives that define the intent of the message. A performative is a keyword that designates

the type of illocutory act associated with a message. Using these agent communication languages

allows agents to share knowledge and information to cooperate with each other to perform

complex tasks. These languages used in conjunction with the aforementioned communication

protocols provides a means for agents running on disparate systems to communicate effectively

and efficiently.

Regardless of communication format, the overall message-passing model can be

simplified to two methods; send and receive. Although explicit details of how these methods are

implemented will be strictly dependent on the type of messaging protocol being used, they do

have a number of general characteristics. An agent send function will generally take a formatted

 34

agent message and extract specific “address” information in order to deliver the message to the

correct agent. This may consist of an internet protocol (IP) address or could simply be a name

that can be interpreted by the agent. Receive functions are generally event driven and are invoked

by the act of a message arriving from another agent. What actually happens once the receive

method is called can be specified by the designer of the system.

2.3.7.2 Communicating with the Environment

Communication does not only take place between agents, but can also occur between an

agent and its environment. Agents can be implemented with sensors and effectors to allow the

agent to interact with its surroundings. Sensors are required in order for an agent to interpret

changes in the environment, while effectors are used to impose a change to the environment.

Both sensors and effectors may be implemented in hardware or software but will normally have a

software interface to the agent itself.

Agent sensors can be either functional or persistent. Functional sensors allow an agent to

get a piece of information on demand. An example of this type of sensor could be used by an

agent system deployed on a satellite. Periodically temperature readings may need to be taken and

reported back to earth. The agent would query the temperature sensor and then send a message

containing the results. Persistent sensors are those that perceive changes in the environment and

continuously update the agent. Using the example just stated, the same agent system may need to

keep track of the internal temperature of the satellite. If certain components overheated they

could be permanently damaged. For this reason, the sensor would continually update the agent

with internal temperature readings of the satellite components.

 35

Agent effectors can be looked at as the actions that an agent may perform on its

environment. If an agent system has a robotic arm, it may use this arm to make changes to its

surroundings.

2.3.7.3 Communicating Through the Environment

A less direct model of agent communication has to do with one agent effecting a change

on the environment and other agents perceiving this change and acting accordingly. Instead of

sending a message directly to another agent, an agent may use it effectors to change the

environment in a way that can be perceived and interpreted by the sensors of other agents. This

method is not as effective as message communication since it assumes that all agents will

interpret this environmental change in the same manner. However, it does offer a significant

advantage if message passing capability between agents is lost but coordination between agents is

still required.

2.3.8 Architectural Summary

This section reviewed some of the most popular architectures currently being used in the

field of agents. Although seemingly disparate, many similarities exist in the types of knowledge

represented in each architecture.

Not explicitly addressed in any of the architectures but of critical importance in agent

systems is communication. If a representation language is to be used in any type of multi-agent

based system, some means must exist to represent how agents communicate with other agents as

well as their environment. The majority of agent architectures designed on paper or implemented

in the real world utilize some form of communication.

 36

2.4 Internal Agent Representation

In order to completely describe the internal behavior of an agent a representation

language is needed. Knowledge representation languages in artificial intelligence and software

engineering are not new, and a great deal of research has been done concerning this issue. It

would be nice if natural language could be used as a knowledge representation language since it

is well known and for the most part well understood. However, a number of issues regarding the

use of natural language quickly dispel any thoughts of its use. Bigus and Bigus [BB97] point out

that natural language is very expressive, but is more appropriate for communication than

representation since the meaning of natural language is very dependent on the context in which it

is spoken or written.

A formal language is a language having a vocabulary, syntax, and semantics that are

formally defined and usually have a mathematical basis. Ideally you want a knowledge

representation language combining the advantages of both natural and formal languages.

An issue that must be addressed when selecting a knowledge representation language is

determining the type of representation scheme needed. Knowledge representation schemes

categorize the general types of knowledge represented in a program. Two schools of thought

exist: declarative and procedural [WIN75].

2.4.1 Declarative Representations

Architectures whose internal representation is based on declarative knowledge are

formatted in a way that may be manipulated, decomposed and analyzed by a reasoning engine

independently of the content. Declarative knowledge deals with representing knowledge as a set

of facts. The most well known declarative representation is logic. A significant advantage of a

declarative representation is the ability to use knowledge in ways the system designer did not

 37

foresee. Since a piece of knowledge is not inextricably linked to the manipulation of that

knowledge, multiple uses can be obtained from a single statement. Ease of modification also

represents a major advantage of the declarative approach. A single fact may be easily added,

deleted, or modified without affecting any other facts being stored. A final advantage of the

declarative approach described by Winograd is that much of the information we know can be

more easily stated using declarations. He states that human communication in general consists of

breaking information into statements that are passed from person to person.

2.4.2 Procedural Knowledge Representation

In contrast to declarative knowledge, which can be read and modified by humans and all

processes that know the format, procedural knowledge is in a machine-optimal representation that

cannot be read or modified by humans or other internal processes. Procedural representations are

characterized by their ability to store knowledge in a faster-to-access but less flexible format.

An advantage procedural representations have over declarative is the representation of

second order or metaknowledge. “In applied AI, metaknowledge is that part of the knowledge

which the system has about its internal knowledge.” [PB94] In its most general terms,

metaknowledge is knowledge about the domain knowledge. This is an important concept since it

essentially gives the ability to acquaint a system with what it knows.

2.4.3 Declarative and Procedural Summary

The arguments for declarative and procedural approaches have been made, but there is no

clear winner. Genesereth and Ketchpel [GK94] believe that although functional representations

may be winning the battle due to their familiarity, declarative representations will overall win the

war. Genesereth and Ketchpel are referring to agent communications languages but the statement

seems just as applicable in knowledge representation languages.

 38

Once all aspects of the problem have been accounted for, the basic approach to be taken

is to look at the overall problem and try to determine if the knowledge needed is more easily

represented declaratively or procedurally. Once a scheme has been chosen, the next decision to

be made is the language that it will be implemented in.

2.4.4 Languages

The majority of research done in knowledge representation languages fall into four major

areas: logic, semantic networks, frames, and production systems.

2.4.4.1 Logic

Formal logic was one of the first attempts to model knowledge unambiguously. It is one

of the most studied and best-understood schemes to date [PB94]. Based on predicate calculus,

logic is used primarily to communicate declarative rather than procedural knowledge. The ability

to reason over sentences is obtained by using axioms and inference rules that specify how new

sentences can be derived from given sentences [HODG91].

The advantages of using logic are its clear semantics and expressiveness [REICH91].

Having a clearly defined mathematical semantics ensures a lack of ambiguity in all expressions.

The expressiveness of logic can be seen in its ability to express incomplete knowledge. First

order logic “determines not so much what can be said, but what can be left unsaid.” [REICH91]

This means that details not yet known do not have to be represented. There are numerous logics

to choose from. One may use temporal logic to represent and reason about time or epistemic

logic to represent and reason about knowledge and belief.

Since logic represents declarative knowledge it also has all of the advantages and

disadvantages discussed in Section 2.4.1. In spite of its limitations, logical representation is still

 39

one of the most studied knowledge representation languages for use in artificial intelligence

[PB94]. Three well-known logic-base knowledge representation languages are surveyed next: the

Object Constraint Language (OCL), Z (pronounced “zed”), and the Knowledge Interchange

Format (KIF).

2.4.4.1.1 Object Constraint Language (OCL)

OCL was designed to be used with the Unified Modeling Language (UML) to describe

constraints on object-oriented models [WK99]. Rumbaugh et al. [RUM91] defines a constraint

as a “functional relationship between entities of an object model” while Booch [BOO94] defines

it as “the expression of some semantic condition that must be preserved.” Instead of focusing on

any one definition, “OCL tries to express the common factor, thereby setting a standard that is

understandable and easy to use and allows the modeler to specify what is necessary.” [WK99]

OCL is considered to be a “side effect free” language since OCL expressions cannot

change anything in a model. An OCL expression can never change the state of the system even

though an OCL expression can be used to specify such a state change (e.g., in a post-condition)

[OCLW99]. OCL is also considered to be a “reasonably” formal language, since although OCL

is based on well-known and defined set-theoretic concepts, a formal semantics has not yet been

defined. Because of its basis in these concepts, it is not considered a difficult task to define the

semantics [KWC98]. A metamodel for OCL has been created that defines the syntax of all OCL

concepts such as types, expressions, and values in an abstract way and by means of UML features

[RG99]. This also aids in bringing OCL closer to being considered a completely formal

language. Many arguments exist for not using formally based languages due to their inability to

be written and read by non-mathematical experts. Unlike many formal languages, OCL is touted

as being “a formal language, which remains easy to read and write” [OCLW99]. OCL has a

 40

familiar look and feel to it that can easily be learned by anyone familiar with programming

notations [KWC98]. Using OCL with traditionally non-formal graphical models provides the

precise, unambiguous information normally lacking in graphic based models. OCL was written

to give users the power of a formal language as well as an easy to read and write format. Because

OCL is a modeling language, it is not possible to write program logic or flow control and

therefore, it is not directly executable.

OCL expressions are used to specify pre- and postconditions of operations and methods

[WK99]. As is normally the case, a precondition must be true at the moment that the operation is

going to be executed while a postcondition must be true at the moment that the operation has just

ended its execution. Besides pre- and postconditions, OCL is also used to define invariants.

Used in this context, an invariant is a constraint that states a condition that must always be

satisfied.

OCL has declaratively defined semantics and contains a large number of predefined data

types to represent collections, enumerations, strings, booleans, integers, and reals. OCL has the

predefined types set, bag, and sequence to work with collections of objects and supplies a wide

range of predefined operations ranging from manipulation to checking the status of these

collections. OCL is also very robust in terms of how it handles characters and strings.

Concatenation, size, substring, equals, and not equals operations allow a user the flexibility to

handle most string and character problems that may be defined. An equally robust set of

predefined operators is also seen in dealing with boolean, integer, and real types. Besides the

“standard” data types just mentioned, a user also has access to a number of unique data types

particular to OCL. OclType refers to all predefined OCL types as well as any type defined in a

UML model. Access to this type allows a modeler access to the meta-level of the model. For

example, type.attributes returns the set of names of the attributes of type as defined in the UML

 41

model (were type is the instance of OclType). OclAny is the supertype of all types in a model.

All classes in a UML model inherit all of the features defined on OclAny. Like the previously

mentioned types, a useful set of predefined operations exists for each type.

A significant difference between OCL and many other modeling languages is the fact that

it is dependent on predefined graphical models. In order to use an attribute or method, that

attribute or method must first be defined in an object oriented (UML based) model. This offers a

significant advantage in that the model can easily be viewed from varying levels of abstraction.

The graphical model alone offers a “big picture” view of the system while the OCL offers the

ability to specify precise details about the system.

Another advantage offered by using OCL in conjunction with UML is the ability to

model communication between objects using events, signals, and messages. In UML, an event is

something that occurs in the system or environment that the system must react to and handle.

Four different types of events exist in UML: a condition becoming true, receipt of an explicit

signal object, receipt of an operation call, or passage of time [EP98]. A signal object is sent from

one object to another and may contain attributes and operations. Events may occur at the

software or hardware level. [MASE99] and [COOL95] both address agent communication by

using event diagrams to model agent coordination. Signals are a special case of events. In UML,

signals are defined as named events that may be raised. A signal is described as a class (with the

<<signal>> stereotype) representing an event that occurs in the system. Signals are passed as

messages synchronously or asynchronously between objects in a system. Messages are used to

communicate between passive objects, active and passive objects, or between active objects.

Messages are implemented by operation calls or as signal objects placed in a mailbox or queue

[EP98]. In real-time systems, message receipt is normally considered an event. To depict

 42

communication between objects, messages are shown in the following UML diagrams; sequence,

collaboration, state, and activity.

A simple example of how to specify a problem using OCL would be modeling non-

military and military students at a university. Both military and non-military students contain the

following attributes: first name, middle initial, last name, date of birth, social security number,

gender, height, weight, and age. All students have a grade point average (GPA) that is between

0.000 and 4.000. Persons in the military have an associated rank and must also meet weight

requirements. Military students must be between the ranks of 1LT and Capt, must be under the

age of 35, and must maintain a GPA greater than or equal to 3.000. The object model shown in

Figure 7 captures the main classes needed, their relationships to one another, and the attributes of

each class (there are no methods needed for this example). Figure 7 shows the main class Person

contains all of the attributes shared by a student and military member. Student inherits all of

those attributes and adds the attribute GPA. Military inherits the same attributes as student but

adds the attribute military_rank. MilitaryStudent inherits all of the attributes from Student,

Military, and Person. OCL can now be used to specify the constraints needed. The context to

which an OCL expression applies is always underlined and is followed by OCL expressions. The

constraints shown below satisfy the original conditions specified in the problem.

Student
GPA >= 0.000 and GPA <= 4.000

Military
weight <= 3*height

MilitaryStudent
military_rank = 1LT or 2LT or CPT
gpa >= 3.000
age <= 35

 43

Figure 7 OCL Object Model

A problem often seen when using any type of graphical model in a knowledge representation

language is finding a way to represent the model so that the computer can interpret it. A parser

has been developed by IBM to read in the models and OCL using a simple syntax. Type

declarations start and end with the keyword <type and can be followed by optional supertypes

starting with the key word <supertype. An example of how to convert the Person and Student

classes for Figure 7 is shown below:

<features
<type Person
lastname : String;
initial : char;
firstname : String;
birthdate : date;
ssan : Integer;
sex : enum {male, female};

 Person

lastname : String
initial : char
firstname : String
birthdate : date
ssan : Integer
sex : enum {male,
female}
height : Integer
weight : Integer
age : Integer

 Student

GPA : Integer

 Military

military_rank : enum
{2LT, 1LT, CPT, MAJ,
LTC, COL}

MilitaryStudent

 44

height : Integer;
weight : Integer;
age : Integer;

<type Student <supertype Person
GPA : Integer

The constraints themselves are written in the standard OCL syntax described earlier and are

stored in a separate file. The object model along with the OCL constraints allows the problem to

be specified in an easy to read unambiguous manner that can be easily parsed and interpreted by a

computer.

2.4.4.1.2 Z

The formal specification notation Z (pronounced “zed”) is based on Zermelo-Fraenkel set

theory and first order predicate logic. It has been developed by the Programming Research Group

(PRG) at the Oxford University Computing Laboratory (OUCL) and elsewhere since the late

1970s. Z offers essentially the same expressive power seen in OCL. Luck and d’Inverno [LD95]

provide three primary arguments for the use of Z in agent based systems.

1. Z allows for precise and unambiguous definition of common concepts and terms in a
readable way.

2. Z is sufficiently expressive to allow for a consistent, unified and structured account
of a computer system and its associated operations.

3. Z provides a foundation for development of new and increasingly more refined
concepts.

Given the reasons cited by Luck and d’Inverno, one would think that Z would be a

universal standard for knowledge representation in AI as well as software engineering. One of

the reasons Z has not been globally adopted is that although Luck and d’Inverno find Z very

readable and easy to use, most of the rest of the general population does not. Z is based on first

order logic, which in itself is mathematically very simple. The problem comes when complex

information must be represented and/or manipulated. The syntax and semantics of Z tend to

collapse everything together making it difficult to correctly interpret the specification even

 45

though it has been formally written. Another problem is that computers do not easily represent

much of the notation needed to write Z specifications and the shortcut notation needed by most

interpreters makes the knowledge virtually unreadable in a non-compiled format. Point two and

three made by Luck and d’Inverno are very strong and make Z a viable contender when choosing

a representation language, as long as all parties involved are aware of the overhead that comes

along with using it. Using the same student example as seen in Section 2.4.4.1.1, a Z

specification can be shown from start to finish. Figure 8 shows a Z depiction of all of the

attributes, constraints, and associations specified in the original problem. From this simple

example it is easy to see a small problem can quickly become unmanageable using Z as a

specification language. A problem not brought out by the example is the fact that Z contraints are

difficult to understand and ambiguous at first glance.

2.4.4.1.3 Knowledge Interchange Format (KIF)

Another alternative to OCL or Z is KIF. KIF was developed as part of the Advanced

Research Project Agency (ARPA) sponsored Knowledge Sharing Effort to aid in the sharing and

reuse of knowledge. KIF was specifically designed to be an “interlingua”, which is essentially a

mediator to translate other languages.

KIF is a prefix version of first order predicate calculus that added a number of extensions

to support non-monotonic reasoning and definitions. Although not specifically designed as a

knowledge representation language, KIF possesses all of the attributes one would want in a

language. KIF has declarative semantics giving the advantages discussed in Section 2.4.1. KIF is

also logically comprehensive in that it provides for the expression of arbitrary sentences in the

first-order predicate calculus.

 46

Figure 8 Z Representation

The language provides for the representation of knowledge about knowledge, allowing a

user to make representation decisions explicit, as well as permitting users to introduce

new representation constructs without changing the language. In terms of representing

logic, KIF can handle all standard logical sentences containing any combination of negations,

lastname: seqChar
initial: CHAR
firstname: seqChar
birthdate: DATE
ssan: SSAN
sex: GENDER
height: Ζ
weight: N1
age: N1

age ≥ 1 ∧ age ≤ 120

Person

Person
gpa: ℜ

gpa ≥ 0.000
gpa ≤ 4.000

Student

Student
Military

military_rank = 1LT ∨ military_rank = 2LT ∨ military_rank = CPT
gpa ≥ 3.000
age ≤ 35

MilitaryStudent

Person
military_rank: MIL_RANK

weight ≤ 3*height

Military

 47

conjunctions, disjunctions, implications, equivalences, existential quantifications, and universal

quantifications. KIF is also very expressive in its ability to represent numbers. KIF has

predefined types for integer, real, and complex numbers as well as an extensive list of operators

and functions that can be performed on each type. KIFs ability to represent sequences and sets is

also robust enough to deal with most problems a user may want to specify. A downside to KIF is

its lack of functions for dealing with characters and strings. Characters and strings are easily

represented in KIF, but there are no functions for manipulating these strings once created.

Another disadvantage of using KIF is that knowledge must be represented in prefix

notation, which does not always lend itself to readability and understanding. A possible solution

to the problem is using infix KIF. Every expression written in infix KIF can be translated to a

logically equivalent expression in prefix KIF. The opposite is not true in that every prefix KIF

expression cannot be translated to infix.

The student example used for OCL and Z cannot be easily represented in KIF since KIF

offers no predefined constructs for handling object-oriented models. A KIF representation of the

internal structure of the person class and its constraints is shown below.

 string lastname
char initial
string firstname
integer birthdate
integer ssan
string sex
integer height
integer weight
integer age
(and (>= age 1)

(<=age 120))
(>= (height 1))

Although not as challenging as Z, even moderately complicated expressions can quickly become

difficult to read even to those very familiar with prefix notation.

 48

2.4.4.2 Semantic Networks

Semantic networks allow for the graphical representation of relationships based on

patterns of nodes that are interconnected by arcs. Knowledge is depicted in labeled, directed

graphs by the nodes, representing the objects or concepts, and the arcs representing the

relationships between the elements. An important point to make is that no information is stored

in the nodes themselves; all knowledge is represented by the links between the nodes. Semantic

networks offer the advantage of being represented graphically as opposed to the textual

representation of Z or KIF. The biggest disadvantage seen in using semantic network

representations is that there is no formal semantics of what a given representational structure

means. A partial representation of the student example of Section 2.4.4.1.1 using a semantic

network is shown in Figure 9.

Figure 9 Semantic Network Example

StudentMilitary

Smith

Person

isa isa

J

2LT

John

firstname
initial

lastname

4.0

GPAmilitary_rank

 49

 The most well known semantics network system is the Semantic Network Processing

System (SNePS) [KM98, SHAP99]. The OK BDI architecture [KS94], is an evolved version of

SNePS based on the BDI formalism.

2.4.4.3 Frame-Based Systems

Frame-based systems in AI are usually composed of mutually linked frames that are

ordered hierarchically. Frames extend semantic networks by giving the ability to organize

knowledge in a hierarchical and descriptive manner. An individual frame may be viewed as a

“record” data structure containing information relevant to specific entities. A frame is composed

of slots that contain attributes of the object being represented by the frame itself. The slots of the

frame may contain the following information [LS98]:

1. Frame identification

2. Relationship of current frame to other frames

3. Descriptors of requirements for frame match

4. Procedural information on use of the structure described

5. Frame default information

6. New instance information

The need for each of the slots and the amount of detail needed in each is dependent on the

particular situation being addressed. The ability to attach procedures to frames is important since

it gives the ability to represent knowledge not easily represented in a declarative format.

Procedures called demons are invoked as side effects of some other action in the knowledge base

[LS98].

 50

An advantage seen in using frames is its ability to represent declarative as well as

procedural knowledge [PB94]. General frames allow knowledge that is common to a class of

objects to be stored while specific frames describe specific objects. Frames allow for an object-

oriented approach to knowledge representation where frames represent objects, slots represent

attributes, and daemons represent the methods of an object. The use of general frames as well as

inheritance has made frames one of the most efficient tools for knowledge representation [PB94].

Although not intuitively obvious, both semantic nets and frames are closely related to predicate

logic. Russell and Norvig [RN95] describe a procedure to transform both semantic networks and

frames into first-order logic [BB98]. It is because of this that semantic networks and frames offer

all of the major advantages and disadvantages associated with logic. The primary down side seen

to using frames is the lack of a formal theory for representing the knowledge. This fact has

significantly limited the use of frames in AI systems. A representation of the student example of

Section 2.4.4.1.1 using a frame representation is shown in Figure 10.

2.4.4.4 Production Rules

Production rules are a knowledge representation formalism consisting of two parts, a left

hand side and a right hand side. The conditional part (the left side) is used to show when a rule

should be applied. The transformational part (the right side) shows what actions should be taken

when the rule is applied. Production rules are used extensively in expert systems since expert

knowledge can be easily represented using these IF-THEN types of rules. The greatest advantage

to using production rules for expert systems is the modularity offered by representing data in this

manner. Rules can be added, modified, or deleted independently without effecting the rest of the

knowledge base. A complete description of these systems is outlined in Section 2.3.4.

 51

Figure 10 Frame Example

The main drawback to using this type of representation is the limited scope in which these

systems can be used.

2.4.5 Section Summary

Although arguments have been made for the use of declarative and procedural

representation schemes, it seems that of most research is directed toward the declarative

approach. The stated benefits along with a formal foundation allow agent systems to be specified

easily and unambiguously. Logic languages represent the most direct and implementable way of

 Person

lastname : String
initial : char
firstname : String
birthdate : date
ssan : Integer
sex : enum {male,
female}
height : Integer
weight : Integer
age : Integer

 Student

GPA : Integer

 Military

military_rank : enum
{2LT, 1LT, CPT, MAJ,
LTC, COL}

MilitaryStudent

isa

isa

isa

isa

 52

representing declarative knowledge. The majority of current agent implementations use some

form of first order logic for the representation of certain knowledge.

2.5 Summary

Knowledge representation is needed in all AI systems in one aspect or another. Despite

the research that has been done, a formal knowledge representation standard still does not exist.

Many specific representation languages have been defined for specific architectures, but no effort

has been made to define a language that will work with multiple architectures. By examining

agent architectures and looking for common knowledge representation components, a generic

language can begin to take shape. Continued research is needed to review past and present work

in order to determine a way to effectively incorporate knowledge representation and formal

methods.

 53

III. Approach

As stated in Chapter 1, the goal of this research is to create a precise specification

language for defining the structure and behavior of agents in a multi-agent development

environment. When developing a representation language for use in a multi-agent (or any

software) system, a number of considerations must be taken into account. This chapter describes

the approach followed in developing the language. Figure 11 depicts this approach graphically.

Figure 11 Approach

Section 3.2 defines how requirements are chosen for the language to specify agents in a multi-

agent system. Section 3.3 outlines the process of selecting a language based on the requirements

of Section 3.2. Section 3.4 details how the problem syntax and semantics are defined and Section

3.5 outlines the process of creating templates to test the language.

Define Language
Requirements

Select Language

Object Model
Definition

Language
Validation

 54

3.1 Language Requirements

Figure 12 depicts the first step of the approach.

Figure 12 Step One

The first step in defining a knowledge representation language for a multi-agent design

system is to determine all requirements the language must satisfy. This thesis follows an iterative

refinement approach in developing the requirements. The first step is to look at the problem

domain and try to determine the most basic requirements the language must satisfy. For example,

if the language is to be used to specify multi-agent systems, a basic requirement may be the

ability to define an agent. Basic requirements may also be “pre-defined” by users or designers of

the system. An example of this could be that users want to interact with the system using a

graphical interface. An extensive review of literature should also be accomplished since the

development of specification languages is well researched and a number of known issues may

have already been identified. Once all basic requirements are determined, each of these should

then be re-examined to decide if a lower level of requirements exist. Building off the above

Define Language Requirements
•= Define basic requirements
•= Iteratively refine

Select Language

Object Model
Definition

Language
Validation

 55

example, an additional requirement might be that agents should be viewed at multiple layers of

abstraction. For example, an agent may need an external graphical view as well as an internal

textual view. This refinement process is repeated until a complete listing of language

requirements is developed.

The importance of this first step should not be underestimated since it forms the

foundation from which the language will be built. Once completed, this first step is repeated at

least once more to verify the completeness of the list of requirements.

3.2 Selecting a Language

Figure 13 depicts the second step of the approach.

Figure 13 Step Two

Once the requirements for the language are specified, the next step is to choose a

language or languages to satisfy them. The three options available are to choose an existing

Define Language
Requirements

Select Language
•= Existing Language
•= Combination/Modification
•= New Language

Language
Validation

Object Model
Definition

 56

language, modify or adapt an existing language, or define a new language. Of these choices,

using an existing language offers the most potential advantages, which include documentation,

wide use and acceptance, and rigorous testing. Because of this, the first step in this portion of the

approach is to examine as many existing languages as possible. Languages used to solve similar

types of problems should be examined first. In regards to agent specification, the two best areas

to concentrate on are artificial intelligence and software engineering. Both fields address the

software specification problem at varying levels of abstraction and a large amount of research has

been focused in this area. Documentation and literature of each language should then be carefully

reviewed to determine the requirements the language will satisfy. The best approach is to make a

table listing all language requirements and all languages examined. It is then possible to check

off which languages meet which requirements. If no one language can meet all requirements, the

next step is to see if multiple languages can be used to meet the requirements. Often, different

aspects of the same problem may need different languages to satisfy all the requirements. Using

the table, it is easy to see which languages may be used to do this. If numerous languages don’t

meet all requirements, then the next step is to examine the requirements not met. Choose the

language or languages satisfying the most requirements and then examine the specific

requirements that still need to be met. It may be possible to modify or extend an existing

language so that it is able to meet the remaining requirements. If this is not possible, then the last

resort is to define a new language.

Defining a new language is by far the most undesirable solution but must be addressed in

case all other attempts fail. [FMS97] states that “at least 90% of the next 700 formalisms for

reasoning about agents will have no impact whatsoever on the development field.” A serious

problem currently being faced in software engineering is one of standardization. Software

engineering is a relatively new discipline and as such, contains very few (if any) agreed upon

 57

practices in the area of software development. Writing a new language tailored to a specific

problem will solve the problem at hand, but at the same time will add to the problem at large.

Because of the mentioned downsides, as well as the fact that defining a new language can be a

time consuming and difficult task, this option should only be used as a last resort to solving the

problem.

3.3 Object Model Definition

Figure 14 depicts the third step of the approach.

Figure 14 Step Three

Once a language is selected, the problem syntax and semantics must be specified.

Defining an object model can do this. Selecting a language that meets all the problem

requirements provides a medium to solve the problem, but it does not provide the means. This

portion of the approach is based on Rumbaugh’s object-oriented analysis (OOA) techniques for

Define Language
Requirements

Object Model Definition
•= Identify classes
•= Define attributes
•= Define links
• Organize

Language
Validation

Select Language

 58

creating an object model [PRES97]. The goal is to separate the problem into its most basic parts

so it may be seen what these parts consist of and how they are connected. The steps to follow are

shown below.

1. Identify classes relevant to the problem

2. Define attributes and associations

3. Define object links

4. Organize classes using inheritance

An example of using these steps to define a generic solution to specifying agent architectures

follows. Using Maes definition (Section 2.3) of an agent architecture, the relevant classes

identified in step one consist of components and connectors. Figure 15 shows an object-oriented

representation of these classes along with the associations between them. Definitions of attributes

are left out of this example for simplicity, but would normally be done at this time.

Figure 15 A Generic Agent Architecture

According to the template, an agent architecture consists of one or more components

linked together by connectors. Each component is connected by zero or more connectors and

each connector joins exactly two components. Once completely defined, the classes along with

their required attributes represent the problem syntax. How the classes can be constructed and

Agent Architecture

1..* 0..*

Component

1..*
Connector

0..*

0..*
ConnectedByConnects

0..*2

 59

connected together to solve the problem constitute the problem semantics. Together, the syntax

and semantics define the problem object model.

The representation of a truly generic solution is important for a number of reasons, the

first of which is extensibility. By defining a template that all solutions are based upon, new

components can easily be created and integrated within existing solutions. This leads to another

advantage of a generic solution, which is compatibility. Any component built according to the

template should be able to be integrated with any other components previously defined.

3.4 Language Validation

Figure 16 depicts the fourth step of the approach.

Figure 16 Step Four

 When defining an agent specification language, an issue of significant importance is

ensuring most agent types can be specified using the language. In order to test for this, it must

Define Language
Requirements

Language Validation
•= Determine architectural styles
•= Extract components
•= Specify components using

language

Object Model
Definition

Select Language

 60

first be determined what knowledge is needed to define any agent type. This portion of the

approach outlines the testing needed to verify the completeness of the language chosen. A

beneficial side effect of the testing is the creation of agent templates that can be used for the

design of agent systems.

One methodology to testing the language is to look at all multi-agent implementations

and try to extract required agent knowledge from each. This information could then be grouped

according to function and made into generic components that could be used to construct agents.

If the language chosen could specify all of the components, then it would obviously be a wise

choice. While this proposal may seem like an obvious answer, it is definitely not the easiest.

Besides the fact that there are an extremely large number of agent implementations in existence at

this time, this is more a brute force solution than one based on sound engineering principles. In

order for a component to be a reusable asset, more must be done than just taking a monolithic

design of complete solutions and then just breaking it down into fragments [CS98]. Descriptions

must first be carefully generalized in order to allow reuse to be possible in many contexts.

Looking at the problem at a higher level of abstraction, another approach is to examine the more

generic agent architectures from which the implementations were derived. Using the Maes

definition of agent architecture from Section 2.3, it should be possible to decompose each

architecture into a set of components and connectors, which can then be specified using the

chosen language. A problem seen to following this methodology is the fact that the recent

popularity of agents has created a large number of distinct agent architectures. The solution

involves looking at the problem at its absolute highest level of abstraction; the architectural style.

An architectural style defines a class of systems in terms of a pattern of structural

organization. It determines the vocabulary of the components and connectors that can be used in

instances of that style, together with a set of constraints on how they can be combined [SWA94].

 61

To determine the basic agent architectural styles, architectures must be reviewed and categorized

according to the below criteria proposed by Garlan and Shaw [GS96].

•= Design vocabulary – types of components and connectors

•= Allowable structural patterns

•= Underlying computational model

•= Invariants of the style

To go about this review and categorization in the most comprehensive manner possible, each

architecture must be modeled using object-oriented techniques. Object-oriented design and

component-based design are closely related to one another. A component is likely to come into

existence through objects and will normally consist of one or more classes or constant prototype

objects [SZY98]. Modeling each architecture as a collection of classes and associations

significantly aids in identifying the basic components and connectors that each is composed of. It

also shows the basic structure of the specific architecture.

The first step in decomposing an architecture is to determine the basic classes needed to

model the architecture. An example of this using the PRS-CL architecture of Section 2.3.2.1 can

be seen in Figure 17.

Figure 17 Generic BDI Architecture

As described in the previous chapter, the architecture consists of beliefs, goals, and

intentions as well as a plan library, interpreter, and interface to the environment. Each class must

Beliefs Plan_Library Goals Intentions Interpreter IO_Interface

PRS-CL_Architecture

1..* 1 1..* 0..* 1 11..* 1 1..* 0..* 1 1

 62

then examined to see if it can be further decomposed. A possible decomposition of the

Plan_Library, Goals, and IO_Interface can be seen in Figure 18.

Figure 18 Refined BDI Architecture

This process is repeated for each class until no further breakdown of classes is

appropriate or needed. Once all classes are defined, iterative refinement of each class is done to

specify attributes, methods, and data structures. Dependencies and interactions between classes

are then examined to determine what can be modeled as a component. Using Figure 17 as an

example, candidate components are Beliefs, Plan Library, Goals, Intentions, Interpreter, and

IO_Interface. The whole process must then be repeated for a different architecture. Architectures

should be grouped according to the types of components and connectors they contain as well as

how these components and connectors are organized. After reviewing a number of specific

architectures, a general set of agent styles should begin to take shape. Once a listing of styles is

completed that the majority of architectures belong to, a general set of components are extracted.

The components should then be specified in the language selected in Section 3.3 to verify its

applicability.

Beliefs Goals Intentions Interpreter

PRS-CL_Architecture

1..* 1..* 0..* 11..* 1 1..* 0..* 1 1

UtilityGoalPlan

Plan_Library
1

1..*

Sensor Effector MessageInterface

IO_Interface

1

0..* 0..* 0..11..* 0..* 0..* 0..1

 63

3.4.1 Template and Testing Summary

Determining a set of generic architectural styles and generic components not only allows

the language to be thoroughly tested, but it also provides a set of templates a designer can use in

creating agents. The templates are not meant to limit the designer in any way, only aid in the

rapid design of agent-based systems.

3.5 Chapter Summary

This chapter has outlined the general approach to be followed in order to define a

knowledge representation language for a multi-agent system. Section 3.2 discussed the method

of determining the requirements that should be imposed on the language. Section 3.3 elaborated

the steps to be followed in selecting a language once the requirements have been defined.

Although three options were presented, the third was highly discouraged because of significant

drawbacks. Section 3.4 defined the method for determining the language object model and

Section 3.5 outlined the approach for validating the language through the use of architectural

styles.

 64

IV. Design and Implementation

The purpose of Chapter 3 was to outline the generic approach that can be used to

reproduce the results of this research. This chapter covers the first three steps of the approach.

Chapter 5 is dedicated to the final step of the approach. Section 4.1 defines the requirements the

language must possess. Section 4.2 evaluates two existing languages against the requirements

defined in Section 4.1. Section 4.3 completely defines the language and Section 4.4 uses this

definition to create the language object model. Section 4.5 describes how the language was

implemented within the agentTool multi-agent design environment.

4.1 Defining the Requirements

This section of the thesis outlines the language requirements chosen and the reasoning

behind their selection. The complete list of language requirements is shown below.

1. The language must precisely and unambiguously provide meaning for common concepts
and terms and do so in a readable and understandable manner.

2. The language must allow agents to be specified using a combination of graphics and text.

3. The language must allow for interaction among agents as well as interaction between

agents and their environment.

4. The language must support design modularity.

5. The language must allow for the development and viewing of multiple levels of

abstraction for a given design.

6. The language must allow for the representation of complex data structures and

operations.

7. The language must allow alternative designs of particular models and systems to be

presented, compared, and evaluated.

8. The language must allow for the static and dynamic behavior of the system to be
captured.

 65

The remainder of this section describes the rationale behind the selection of each

language requirement.

The first two requirements were originally addressed as thesis goals in Chapter 1. The

first states that the internal agent representation must be specified using a precise and

unambiguous language. This requirement is also addressed by Luck and d’Inverno and is

covered in Section 2.2.2. The reasoning behind this requirement are the possibility of agent

verification, automated code generation, and overall ease of understanding. The second

requirement outlined in Chapter 1 states that agents must be specified using a combination of

graphics and text so as to aid in understanding and composition of agent systems.

The next requirement was imposed by the multi-agent characteristics of the problem.

Because the language will be used to specify agents in a multi-agent system, it is assumed an

agent system may contain multiple agents capable of interacting with one another. To allow for

this, the third language requirement states that the language must have the ability to represent

interaction among agents as well as interaction between agents and their environment.

The next requirements were realized after closer examination of what an agent can

represent. Agents can range in complexity from simple reactive agent to complex reasoning

agents. Because of this, a number of additional requirements were needed to ensure agents of

varying degrees of complexity could be specified. The first of these requirements is derived from

Section 2.2.2.2 and states that the language must support design modularity. In order to

efficiently and effectively specify agents, the language must allow for large and difficult

problems to be partitioned into manageable pieces. The next requirement is derived from Section

2.2.2 and states that the language must allow agents to be developed and viewed at multiple levels

of abstraction. As agents become more complex, it may not be desirable or even possible to

 66

represent the internal details of an agent at one level of abstraction. The final requirement in

regard to agent complexity is derived from Section 2.2.2.2 and states that the language must allow

for elaborate data structures and operations to be represented. Even the most basic agent may

need complex data structures to store information and complex operations to manipulate it.

Not all language requirements were extracted by examination of the problem. After

reviewing literature on agent specification languages, an additional requirement was realized.

Derived from Section 2.2.2.2, this requirement states that a multi-agent language should enable

alternative designs of particular models and systems to be presented, compared, and evaluated.

This requirement is important when defining a language to specify any type of software system

since it provides the designer with options. Just because a design solves a problem does not mean

it is the best design. Options give the designer the ability to compare and contrast designs and

then choose the most appropriate.

The final language requirement specified was the ability to represent an agent

dynamically. Until now, all requirements dealt with the static structure of the agent and have not

addressed agent execution. As stated in Section 2.2.2.2, a dynamic representation is needed to

address how the structure or system configuration may change due to external events [PRES97].

4.2 Review of Existing Languages

Using the language descriptions of Section 2.4.4.1.1 and 2.4.4.1.2, Z and the combination

of UML and OCL were evaluated against the requirements specified in Section 4.1. After

reviewing a number of existing languages, Z and the combination of UML and OCL were

determined the best candidates for satisfying the requirements of Section 4.1. A report card of

how well each language met the requirements is shown in Table 1. Grades are based on the

standard academic grading scheme.

 67

Requirement Z OCL & UML
1 B+ B+
2 D A
3 D A
4 A A
5 B A
6 A A
7 A A
8 B A

Table 1 Language Report Card

An A is excellent, B is above average, C is average, and D is below average. Plus and

minus symbols may be added to further delineate levels of good and bad appropriately. Sections

4.2.1 and 4.2.2 review the reasoning behind the grading of each language.

4.2.1 Z

Z is a formal specification language adopted by a number of researchers [DAF97,

DMAR97, SZS95] to construct formal agent frameworks. As stated in Section 2.4.4.1.2, Z is

based on set theory and first-order logic.

The first requirement for the language was that it be able to represent information

precisely, unambiguously, and do so in the most readable and understandable manner possible.

Without question Z offers the ability to represent information precisely and unambiguously by

having clearly and completely defined syntax and semantics. However, the ability for Z

specification to be considered readable and understandable is arguable (Section 2.4.4.1.2), which

is the reason the requirement was rated B+.

In regards to the language using graphics and text for representation of information, Z

meets the textual portion of the requirement with ease, it is the graphical portion that is lacking.

The only graphics used in Z are the lines bordering a schema (see Figure 8). Z may be used in

 68

conjunction with graphical languages such as object-oriented diagrams, but because Z was not

designed to be used in this fashion, it is questionable if the overall interpretation could still be

considered precise and unambiguous, thus further compromising Requirement 1.

Requirement 3 addresses the ability to model agent interaction. A downside to using Z to

specify agent systems is that it is inappropriate for modeling interactions between agents

[FMS97]. When it is necessary to model some sort of communication structure, a formalism such

as the Communicating Sequential Process (CSP) algebra may be more appropriate [FMS97].

CSP allows a system to be modeled as a collection of processes that communicate with one

another. CSPs lack of use in the realm of multi-agent systems is based on the fact that CSP was

developed in relation to distributed processes and the semantics of parallel languages. These are

not always well suited to the problems of multi-agent systems, especially those in which agents

carry out actions in an environment [JF99].

In regards to modularity, Z schemas allow Requirement 4 to be met. As stated in Section

2.4.4.1.2, the schema is the main element in Z to decompose a specification into smaller, more

manageable pieces.

In a paper written by Luck and d’Inverno, they specifically address the ability of Z to

satisfy Requirements 5 and 7, the ability to support multiple levels of abstraction and the ability

to compare and evaluate a design in multiple ways. They state that through the use of schemas

and schema inclusion, Z depicts a system description at different levels of abstraction, thus

satisfying requirement five [FMS97]. Something not stated by Luck and d’Inverno, is that

although multiple levels of abstraction are possible, they are not always beneficial. Because Z is

a textual language, it is difficult to visualize multiple layers of abstraction. Luck and d’Inverno

also state Z is expressive enough in representing a consistent, unified, and structured view of a

 69

computer system and its operations to allow for alternative designs of agent models to be

presented, compared, and evaluated [FMS97]. This satisfies Requirement 7.

Z’s ability to represent complex data structures and operations was addressed in Section

2.4.4.1.2, and is adequate to satisfy Requirement 6.

The final requirement states the language must be able to represent the static and dynamic

behavior of a system. Although [ZRM98] states that Z schemas are used to describe both static

and dynamic aspects of a system, dynamic representation in Z can be hard to follow. Z offers no

“big picture” view of the dynamics of a system, making interpretation difficult.

4.2.2 UML & OCL

Although UML and OCL are two separate languages, OCL was designed for use with

UML diagrams. Because of this, UML and OCL were evaluated together against the

requirements of Section 4.1.

In regards to representing information in a precise and unambiguous manner, OCL has

selected ideas from formal methods and combined them with diagrammatic, object-oriented

modeling thus resulting in a precise, robust, and expressive notation. Like Z, OCL is based on

predicate logic. As stated in Section 2.4.4.1.1, OCL currently has no complete formal semantics

defined, but because it is based on logical and set-theoretic concepts, it is not seen as a significant

problem to define them. Addressing the readability and understandability portions of this

requirement, OCL is intended to be simple to read and write, having a familiar syntax that can be

readily learned by anyone comfortable with programming notation. Because of its lack of formal

semantics, OCL is rated B+ in satisfying Requirement 1.

 70

Requirement 2 specified the language must be able to represent information using a

combination of graphics and text. OCL itself is a textual language, but because it was designed

for UML, OCL contains a tightly coupled graphical level of expressiveness, thus meeting this

requirement.

As outlined in Section 2.4.4.1.1, UML offers a variety of options to meet the interaction

ability addressed in Requirement 3. Events, signals, and messages represent the most common

communication techniques available using UML.

Because the object-oriented paradigm is based on the decomposition of a problem into

objects, and because UML and OCL are based on this paradigm, the modularity support of

Requirement 4 is easily satisfied.

As stated in Chapter 2, a modeler can view just the UML diagram to understand the

overall relationships represented, or can examine low-level details of the model specified in OCL.

This allows a specification to be examined at various levels of abstraction and satisfies language

Requirement 5.

Requirement 6 states the language must allow for the representation of complex data

structures and operations. Through the use of inheritance and aggregation, one or more classes

can be connected in such a manner as to create the most simple to the most complex data

structures. In regards to representing operations, OCL expressions can be used to define the pre

and postconditions of an operation. Because of the expressiveness of the language, operations

can be defined ranging from simple to very complex.

The same Z argument allowing the representation of alternate designs that satisfied

requirement 7 in Section 4.2.1, also applies to UML and OCL. By using UML case tools,

designers can manipulate and view alternative representations of a design quickly and easily.

 71

The final requirement states the language must be able to represent the static and dynamic

behavior of a system. Regarding this requirement, UML provides diagrams to capture both the

static and dynamic aspects of a system. Class diagrams are used to document and express the

static structure of a system, while state, sequence, collaboration, and activity diagrams can all be

used to express the behavior (dynamics) of the system.

4.2.3 Existing Language Summary

As seen in Table 1, the combination of UML and OCL clearly seem like the best

languages for modeling agents. However, after some preliminary testing, a number of problems

became apparent. A significant advantage of using UML and OCL to specify agents is its ability

to represent information at various levels of abstraction using both graphics and text. The

problem was that the graphical level of abstraction was not high enough to allow for the

manageable construction of agents. Figure 19 shows a simple reactive agent modeled using

UML. The purpose of the agent is to receive messages from other agents and react to them based

on the content and performative. When a message is received by the MessageInterface, the

checkRules method of the ReactiveAgent is called. The checkRules method iterates through

all of the rules in the RuleContainer, and executes any that are appropriate. Because the

execution of some rules may involve sending reply messages or invoking effectors, the Rule

class needs associations to both MessageInterface and Effector. The specifics of the operation

of the agent are written in OCL and embedded in the operators. The OCL code for all operators

can be seen in Appendix B. The diagram depicts how even the most basic agent quickly becomes

large and complicated using UML. The answer to the problem required a higher level of

graphical descriptions be used.

 72

UtilityRule
utilityValue : Integer

{ordered by user}

ParamTypes
type : OclAny

Message
sender : String
receiver : String
performative : String
content : OclAny

RuleContainer
msgTrigger : Message

executeMsgValid(msg : Message)

MessageInterface
send(msg : Message)
receive(msg : Message)

1..1

0..*

+received by 1..1

+receives 0..*

Reactive Agent

checkRules()

0..10..10..1 0..1

Operator
name : String
precondition : OclExpression
postcondition : OclExpression

0..* 0..*

Rule
name : String
precondition : OclExpression
postcondition : OclExpression

0..*0..*

Effector
name : String

executeOp(params:Sequence(OclAny)

0..*0..*

0..* 0..*

Figure 19 Reactive Architecture

Following Step 2 of the approach outlined in Section 3.2, the next step was to see if an existing

language could be modified to meet all requirements. As described in Section 2.3, software

architectures separate and represent information at a higher level of abstraction, but don’t provide

the low-level detail offered by a language such as OCL. The solution was to use an architectural

representation for the graphical depiction of internal agent components, and use OCL as the low-

level specification language to represent the explicit details of each component. Because UML

and OCL met all language requirements, the goal was to find a way to capture the UML diagrams

in a more abstract, architecture-based diagram. The approach followed was to transform the class

diagram into a software architecture, thus preserving the expressiveness, but doing so at a higher

 73

level of abstraction. The result would be an architectural specification language having the high

level graphical abstraction of an ADL and the low-level details of OCL.

4.3 Language Definition

This section outlines how the UML class diagrams are converted into an architectural

specification language and defines the syntax and semantics of the language. The language

object model is defined in Section 4.4 and the implementation of the language is described in

Section 4.5.

As stated earlier, the main elements of software architectures are components and

connectors while the main elements of a class diagram are classes and relationships. The overall

approach was to find a way to represent classes and relationships as components and connectors.

The first step was to define what would be considered a component. Using the definitions of

Section 2.3.1, a component represents an independently deployable repository of computation.

Therefore, any class or classes with computational ability that can work independently is a

component candidate. Using this definition as a guideline, Figure 20 is an example of how the

classes of Figure 19 were grouped into components. The grouped classes shown in Figure 20 will

be referred to as component classes for the remainder of this section. Because some level of

computation must take place (per the definition), a component class must contain at least one

operator. Once a component identification process was determined, the next step was to

transform the class relationships.

Two types of relationships have to be examined, component class relationships and

component relationships. Component class relationships exist between the classes making up the

components and component relationships exist between the selected components.

 74

UtilityRule
utilityValue : Integer

{ordered by user}

ParamTypes
type : OclAny

Message
sender : String
receiver : String
performative : String
content : OclAny

RuleContainer
msgTrigger : Message

executeMsgValid(msg : Message)

MessageInterface
send(msg : Message)
receive(msg : Message)

1..1

0..*

+received by 1..1

+receives 0..*

Reactive Agent

checkRules()

0..10..10..1 0..1

Operator
name : String
precondition : OclExpression
postcondition : OclExpression

0..* 0..*

Rule
name : String
precondition : OclExpression
postcondition : OclExpression

0..*0..*

Effector
name : String

executeOp(params:Sequence(OclAny)

0..*0..*

0..* 0..*

Figure 20 Component Grouping

For example, the relationship between Message and MessageInterface is a component class

relationship while the relationship between the ReactiveAgent and the MessageInterface is a

component relationship. It is important to note the order in which associations are transformed.

Component class relationships must always be transformed first. Component class associations

are transformed in a bottom up manner until the user is left with one class per set of component

classes. Which set of component classes are done first is not important. Once all component class

relationships have been transformed, component relationships can then be addressed. The order

in which these relationships are transformed is not important.

 75

4.3.1 Component Class Relationships

Numerous types of relationships exist in class diagrams, but the two most encountered

are associations and generalizations (also known as inheritance). Section 4.3.1.1 outlines the

transformation of associations and Section 4.3.1.2 presents the process to transform inheritance

from a class diagram.

4.3.1.1 Associations

The most common associations are normal associations and aggregation. Aggregation is

often referred to as the “consists of,” “contains,” or “is part of” association and for those reasons

is the easiest to eliminate. For example, in Figure 20, the RuleContainer “consists of” zero or

more Rule where Rule is the aggregate class. All aggregate classes are transformed by simply

moving them into the parent class and representing them as attributes. An example of this is seen

in Figure 21. Note that the aggregate Rule class cannot be transformed until the inheritance class

UtilityRule is transformed. This is done in Section 4.3.1.2.

If the cardinality of the aggregation is greater than one, it is represented as a set, unless

the aggregation is ordered, in which case it is represented as a sequence. An example of this is

the ops attribute of Effector from Figure 21. Because Effector consisted of an aggregate class,

which itself consisted of an aggregate class, aggregation was removed in a bottom up fashion. As

previously stated, the lowest level of aggregation is transformed first followed by each higher

level of aggregation. In Figure 20, ParamTypes was first moved into Operator and represented

as the attribute params:Sequence(OclAny). Because of the ordering imposed on the aggregate

class, the information had to be captured as a sequence. Operator was then moved into Effector

and represented as the attribute ops:Set(Operator). Because the cardinality was greater than one

and not ordered, the class was captured as a set with type Operator. Although the aggregation

 76

within the components is removed, the collection element types must still be stored somewhere so

the component may access them.

UtilityRule
utilityValue : Integer

RuleContainer
msgTrigger : Message

executeMsgValid(msg : Message)

Effector
name : String
ops : Set(Operator)
executeOp(params:Sequence(OclAny)

Message
sender : String
receiver : String
performative : String
content : OclAny

Reactive Agent

checkRules()

0..10..1 0..*0..*

Rule
name : String
precondition : OclExpression
postcondition : OclExpression

0..*0..*

MessageInterface
send(msg : Message)
receive(msg : Message)

1..1

0..*

+received by 1..1

+receives 0..*

0..1 0..1

Figure 21 Aggregation Removal

In Figure 21, the collection is a set containing elements of type Operator. Collection element

types that in and of themselves meet the definition of a component, must be stored as

substructures. A substructure represents the internal architecture of a component. Just as a

system may be composed of one or more components, so may a given component. A

substructure is one or more components that are “inside” a component. Referred to as

compositional knowledge [KJ98], this “has-a” relationship allows for the organization of

information that makes up complex components. A component can directly access all attributes

and operators of any components in its substructure. However, if a component needs access to

 77

the substructure of another component, an interface must be defined. For example, if Operator

were a component and was stored as a substructure of Effector, any other component needing

access to attributes of Operator would need to call an operator in Effector, which would then

access the information. In order for a user to know if a component has substructures, the asterisk

symbol (*) is appended to the name of any component containing substructures. A substructure

may be used at any time at the designer’s discretion, to embed varying levels of complexity into a

component. Any component within a substructure may also contain a substructure (and so on).

All other collection element types not considered to be substructures are stored as data

structures. A data structure is a representation of the logical relationship among individual

elements of data [PRES97]. Each component may have a set of data structures associated with it.

All data structures specified are stored in a common library. Data structures are used in the same

manner as basic OCL types (integer, real, boolean, etc.), but unlike the standard set of OCL types,

which are available to all components, data structures are only available to components having

access to them. A component only has access to the data structures associated with it. When the

OclAny type is used as an attribute type, the attribute value can be of any basic OCL types as well

as any data structures the component has access to. The component does not have access to all

data structures stored in the library. Data structures are not visible in the component diagram but

can be accessed by the user.

Two types of normal associations exist that must be removed: normal associations

between component classes and normal associations within component classes. Normal

associations between component classes will eventually be replaced by connectors. This issue

will be addressed in Section 4.3.2. All other normal associations in a class diagram are used

simply to give one class access to the attributes of another. Within component classes, normal

associations are also treated as data structures since if the associative class had any operators, it

 78

would either be a component or be part of a component. The Message class of Figure 21 is an

example of an associative class that is converted to a data structure. The sole purpose of the

Message class is to allow the component access to the format of Message. The class does not

do anything; it simply provides a representation of the logical relationship of the data.

4.3.1.2 Inheritance

The last relationship within component classes to be removed is inheritance. If a subclass

Y inherits all of the attributes and operations associated with its superclass X, this means that all

the data structures and algorithms designed and implemented for X are immediately available to

Y [PRES97]. Therefore, inheritance is removed by copying all inherited class attributes and

operators into the superclass. Subclass attributes and operators override any attributes or

operators in the superclass with the same name as those in the subclass. Two types of inheritance

exist that must be removed: component inheritance and data structure inheritance. If the

superclass or subclass meets the component definition, then the combination of classes results in

a component. If the superclass and subclass are data structures, then the combination of classes

results in a data structure. For example, in Figure 21, the subclass UtilityRule becomes a data

structure composed of the attributes of both the UtilityRule and Rule classes. The resulting class

is a data structure because both the superclass and subclass are data structures If the superclass

met the component definition, then the resulting class would have been a component containing

all of the attributes and operations of the two classes. If both the superclass and subclass need to

be accessed individually, the following additional steps must be taken. When there is component

inheritance, two components must be created. One component represents the combination of

both the superclass and the subclass while the other component contains just the superclass

information. The superclass component is then placed in the substructure of the new inheritance

 79

component. Both components now exist individually and can be accessed by other components.

If there is data structure inheritance, then a data structure must be defined for the combination of

the superclass and subclass and a data structure must be defined for just the superclass. For

example, if both UtilityRule and Rule were accessed individually (i.e., one component uses Rule

and another component uses UtilityRule), separate data structures would be defined. One data

structure would be called UtilityRule and would contain all of the attributes of both Rule and

UtilityRule. The other data structure would be called Rule and would contain all the attributes

associated with the rule class. These data structures can then be associated with any components

needing access to them. Figure 22 depicts Figure 21 once all component class relationships are

removed.

Effector
name : String
ops : Set(Operator)

executeOp(param s:Sequence(OclAny)

Reactive Agent

checkRules()

0..*0..*

RuleContainer
msgTrigger : Message
rule : Set(UtilityRule)

executeMsgValid(msg : Message)

0..10..1

MessageInterface

send(msg : Message)
receive(msg : Message)

0..10..1

Figure 22 Inheritance and Aggregation Removal

Each class shown in Figure 22 now represents a component. As seen from the figure and

the previous sub-sections, the main elements a component consists of are attributes, operators,

data structures, and substructures. Because classes normally have state diagrams associated with

them to represent the dynamics of the system, each component has a state model to represent the

behavior of the component.

 80

4.3.2 Dynamic Representation

State diagrams are used to represent the dynamic aspects of a component. A state

diagram describes the states a component can be in during its life cycle along with the behavior

of the component while in those states. The diagram also describes the events that cause a state

change. An event is something that happens and that will cause some action. How events are

received by a component is addressed in Section 4.3.3.2. An example of a state diagram for the

MessageInterface component of Figure 22 is shown in Figure 23.

Figure 23 MessageInterface StateDiagram

When the component is instantiated, it automatically goes into the Wait state. Whenever

a message event is received the receiveMsg operator is invoked. Any operator called within the

state diagram must be defined in the component diagram. When the receiveMsg operator has

completed execution, the component will transition back to the Wait state. Whenever the send

operator is executed, a send event is generated. There is no OCL code associated with the send

operator in the component diagram since everything the operator does is depicted in the state

diagram. Any operator declared within a component must either have an OCL definition

associated with it (as seen in Appendix B) or must be associated with the generation or receipt of

an event. If an operator does neither of these things then it does nothing and should be removed

from the component. Because both the receive event and send event are implementation

Wait

receive a message/receiveMsg(message)

send(message) ^send a message

 81

dependent, they are defined on a case by case basis. For the purposes of modeling the events,

they are represented in the diagram as receive a message and send a message respectively.

4.3.3 Component Relationships (Connectors)

Once components are defined, the only relationships left are between the components

themselves. Because the language is based on software architecture principles, any relationship

between two components is replaced with a connector. To represent all component interaction,

two types of connectors are needed: inner and outer agent connectors.

4.3.3.1 Inner Agent Connectors

Inner agent connectors are used to connect two components within an agent. The

purpose of the connector is to give components access to the attributes and operations of other

components. Access in this context, is the ability to read attributes, add data to collections, and

invoke operators. Access does not give other components permission to delete or modify the

structure of a component. For example, one component cannot delete the attributes or operators

of another component. A component also cannot change the definition of any attributes or

operators (i.e. cannot change attribute types or operator specification). All remaining class

relationships of Figure 22 were replaced with inner agent connectors as shown in Figure 24.

The inner agent connector is represented as a one-way or two-way thin arrow. A one-

way arrow indicates that the component at the originating end of the arrow can access the

component where the arrow points, but the other component has no access to the originating

component. An example of this is seen between the RuleContainer and the Effector. A Rule

within the RuleContainer may be triggered that has the agent make changes to its environment

using its effectors. Because of this, the RuleContainer component must have access to the

Effectors.

 82

Figure 24 Inner-agent Connectors

There is no reason for an Effector to have access to the attributes and operators of the

RuleContainer, therefore a one way arrow is used. A double arrow indicates that each

component has access to the others attributes and operators. As mentioned in Section 4.3.1, a

component will only have access to another components substructure if an interface operator is

defined.

UML Class diagrams have two levels of visibility to control access to attributes and

operators; public and private. Visibility describes whether the attribute or operator is visible and

can be accessed from other classes. A public attribute or operator can be viewed and used

outsides of the class while a private attribute or operator cannot be accessed by any other classes.

Components also require this level of protection. Therefore, each attribute and operator of every

component can be declared as visible or invisible. Invisibility makes an attribute or operator

inaccessible to all other components. Invisible attributes and operators are still depicted in the

component diagram but are preceded by the ‘#’ symbol. An example of when this would be

necessary is seen in the receiveMsg operator of the MessageInterface component. The

MessageInterface

 send(msg:Message)
receiveMsg(msg:Message)

Controller

msgCheckRules(msg:Message)

RuleContainer
rule: Set(Rule)
msgTrigger: Message
executeMsgValid(msg:Message)

Effector
name:String
ops: Set(Operator)
executeOp(params:

Sequence(OclAny)

 83

operator is only triggered by an external message event (discussed in detail in Section 4.3.2.2).

Therefore, no other component should ever be able to invoke this operator. To ensure this does

not happen, the operator is made invisible. Visible attributes and operators are depicted normally.

4.3.3.2 Outer Agent Connectors

Outer agent connectors allow agents to interact with other agents as well as their environment.

Like the inner agent connector, outer agent connectors are also represented as one-way or two-

way arrows. In regards to appearance, two differences exist; outer agent connectors are

represented as much thicker, dashed arrows and only one end of the outer agent connector is

connected to a component as seen in Figure 25.

Figure 25 Outer-agent Connectors

The other end of the connector represents the external entity the component is interfacing with.

Outer agent connectors are used for sending and receiving external events. Component

interaction will only begin taking place in an agent after one of two things occurs: an external

event causes an operator to be executed (discussed in Section 4.3.2) thus triggering a sequence of

events or the initialization operator is invoked. The initialization operator is an optional method

MessageInterface

 send(msg:Message)
#receiveMsg(msg:Message)

Controller

msgCheckRules(msg:Message)

Effector
name:String
ops: Set(Operator)
executeOp(params:

Sequence(OclAny)

RuleContainer
rule: Set(Rule)
msgTrigger: Message
executeMsgValid(msg:Message)

 84

that can be placed anywhere within a component diagram. Only one operator is allowed per

agent and it is executed immediately upon agent instantiation. The operator may be used to start

a continuous chain of events or may be used to simply send a message stating the agent is active.

If a one-way outer agent connector points away from a component, the component can

only generate events, and cannot be affected by events generated by the entity it is connected to.

An example of when this would be useful is an effector component. An effector is going to

impose changes on the environment by generating events, it is never going to receive. The

opposite of this would be a one way outer agent connector pointing towards a component. This

type of connector can only receive events from external entities. An example of this would be a

basic sensor component. The sensor component will receive information from the sensing device

whenever changes occur. The final connector type is the two-way outer agent connector, which

can send and receive events. Examples of this would be a message interface or a sensor that can

be periodically queried for changes in the environment. Figure 25 adds outer agent connectors to

Figure 23.

4.3.4 Language Definition Summary

This section defined the architectural specification language used in this thesis. It has

also shown that the representation captures all information in a UML class diagram. The process

outlined simply collapses a class diagram into a higher level of abstraction while maintaining the

attributes of a class diagram. Although the language is based on object-oriented principles, this

does not imply that an object-oriented design methodology has to be used. The language defined

can be used in conjunction with any established design methodology for the creation of software

systems.

 85

4.4 Object Model Definition

Once the language has been completely defined, it is then possible to create a generic

template defining the syntax and semantics of the language. This is accomplished by creating an

object model for the language. Following the approach of Section 3.4, the first step in defining an

object model was to determine the basic classes required. Because the overall solution is based

on using a software architecture approach, Figure 15 of Section 3.3 depicts an initial

decomposition. A flaw in the figure is that it does not take into account the two different kinds of

component connectors defined in Section 4.3.2. The diagram specifies that every connector

connects two components, however, outer agent connectors only connect one component. A

corrected version of the diagram is shown in Figure 26.

Figure 26 Basic Object Model

The remainder of this section builds on this figure by further refining and defining each class

based on the language description outlined in Section 4.3.

4.4.1 Component Class

As stated in Section 4.3.3.1, each component consists of attributes, operators, data

structures, and substructures. A refinement of Figure 26 capturing this information is shown in

Figure 27.

1..*

Agent Architecture

0..*
ConnectedBy

0..*
Connector

0..*
ConnectsComponent

1..*

0..*1..2

 86

1..2 ConnectorDataStructure

Architecture

0..* 0..*

Operator

Component 0..*
+connected by

0..*
+connects

0..* 0..*
+utilizedBy

0..*
+utilizes
0..* 0..*0..*

0..10..1

0..*0..*
Attribute

0..* 0..*

Figure 27 Object Model Refinement

The aggregation from Component to Architecture states a component may be composed of zero

or one architecture. This captures the fact that every component may contain at most one

substructure and that substructure may contain zero or more connected components (which may

each consist of one substructure, and so on). The association from Component to

DataStructure captures the fact that a component may have data structures associated with it.

Once the basic classes were identified, attributes were determined for each class. The

first attribute identified in the component class was the name attribute. Like a class in a class

diagram, every component must have a unique name to distinguish it from other components. To

adequately capture the aggregation between Component and Architecture, three additional

attributes were added to the component class; hasSub, sub, and parent. The hasSub attribute

is of type boolean, and specifies if the component contains any substructures. The sub attribute

is also boolean, and defines if the component is part of a substructure itself. If the sub attribute is

true, the parent attribute is used to hold the name of the parent component. As stated earlier, in

order to capture the dynamics of a component, each component contains a state diagram. This

information is captured in the stateDiag attribute. The stateDiag type ATstatetable represents

 87

the object model for state diagrams used in the component. A more thorough examination of this

data type is presented in [WOOD00]. The constraints attribute represents any invariant

constraints imposed on the component. One or more conjuncted predicates may be used to define

all component constraints. For example, a designer may specify a RuleContainer component

that has max and min attributes used to represent the maximum and minimum number of rules

needed for the agent to function properly. To specify that the minimum number of rules needed

is 5 and the maximum number of rules allowed is 50, the designer could specify the constraint

min>=5 and max <=50. The object model with all component attributes added is shown in

Figure 28.

1..2

MethodAttribute

Connector

Component
name : String
basic : Boolean
hasSub : Boolean
sub : Boolean
parent : String
stateDiag : ATstatetable
constraints : OclExpression

0..*0..*

0..*
+ConnectedBy

0..*
+Connects

0..* 0..*

Architecture

0..*0..*

0..*0..*

0..10..1

Figure 28 Component Attributes

4.4.1.1 Attribute Class

In a class diagram, attributes capture information needed to describe and identify an

instance of a class. Attributes also have an associated type that tells what kind of attribute it is.

In general, agent attributes are used to hold information specifying the agent’s state. Given these

 88

descriptions, two basic attributes needing to be represented in the Attribute class were name and

type. In order for an attribute to be represented as any of the predefined OCL types as well as

any new user defined types, the type attribute was made of type OclAny.

To limit access to an attribute, the visible attribute was added. If visible is true, then

other components have access to the given attribute, but if visible is false, no access is given.

To capture the fact that an attribute may represent a collection of objects, the boolean

attributes set, sequence, and bag were added. Only one of these attributes may be true at any

time. If one of the three attributes is set to true, then type represents the type of the elements in

the collection. If all three are false, then type represents the type of name.

Because the component diagrams act as a template from which executable code may be

generated, it must be possible to instantiate the component attributes with specific values. Since

an attribute can be user instantiated, system instantiated, or both user and system instantiated, the

boolean attributes userDefined and runTimeDefined were added. If both userDefined and

runTimeDefined are set to true, then the attribute could be instantiated by a user and by the

system. An example of this could be a data attribute in a knowledge base component. Some

information in the knowledge base will need to be predefined by the designer of the system, while

other information will be added by the system once it is running.

In order to store an instantiated attribute value, a generic Value class was defined. This

generic class inherits from classes SingleValue, SetValue, SequenceValue, and BagValue

depending on the values of set, sequence, and bag. SingleValue has a value attribute of type

OclAny, SetValue has a value attribute of type Set(OclAny), SequenceValue has a value

attribute of type Sequence(OclAny), and BagValue has a value attribute of type

Bag(OclAny). An example of this would be, if the values set, sequence, and bag were all

 89

false, then the value attribute of SingleValue would contain a specific instance of the attribute.

For example, if name were equal to ‘Car’ then value could equal ‘Mustang’. The object model

showing all attributes of the Attribute class is shown in Figure 29.

1..2 Connector

DataStructure

Architecture

0..*0..*

Operator

Component
name : String
hasSub : Boolean
sub : Boolean
parent : String
stateDiag : ATstatetable
constraints : OclExpression

0..*
+connected by

0..* +connects

0..* 0..*
+utilizedBy

0..*
+utilizes
0..* 0..*0..*

0..10..1

0..*0..*

Attribute
name : String
type : OclAny
initValue : OclAny
visible : Boolean
userDefined : Boolean
runTimeDefined : Boolean
set : Boolean
sequence : Boolean
bag : Boolean

0..* 0..*

Value
1 1

SingleValue
value : OclAny

SetValue
value : Set(OclAny)

SequenceValue
value : Sequence(OclAny)

BagValue
value : Bag(OclAny)

Figure 29 Attribute Class Attributes

4.4.1.2 Operator Class

Operators provide a representation of the behaviors of objects, normally done through

the manipulation of attributes. Resembling a function in most programming languages, operators

are described with a name, return-type, and zero or more parameters. To capture this

information, name and returnType attributes and a Parameter class was added. Operators may

 90

consist of zero or more parameters each having a unique name and type. Because parameters

can be of differing types, the order in which they are evaluated is important. Representing the

Parameter class using an ordered aggregation was done to take this into account. The attributes

mentioned thus far describe everything needed to use the operator, but to capture what the

operator does, precondition and postcondition information must be specified. This information is

stored in the pre and post attributes. The pre attribute stores the information that must be true in

order for the operator to be executed while the post attribute stores what must be true after the

execution of the operator is complete. Because pre and post are specified using OCL, both are

of type OclExpression.

As with the Attribute class, a visible attribute was added to limit accessibility to each

operator. An updated object model is shown in Figure 30.

4.4.1.3 Data Structure Class

Like Component, Attribute, and Operator, DataStructure required a unique name for

identification purposes. To capture both simple and complex data structures, an aggregate class

DataField was added. DataField consists of name and type attributes to allow data structure

fields to be of varying types. An example of using this would be if the user needed to define an

automobile data structure. The data structure would need several fields that could hold

information regarding a particular automobile such as make, model, price, year, etc. To model

this, a data structure would be defined with name set to ‘Automobile’. Each piece of information

relating to an automobile would be defined as a data field. One data field would have name set

to ‘make’ and type set to ‘String’. Another would have name set to ‘year’ and type set to

‘Integer’. Once completed, this data structure could be associated with a component and

referenced just as any other basic OCL type.

 91

0..1

1..2

{ordered by user}

Parameter
name : String
type : OclAny

Connector

DataStructure

Architecture

0..* 0..*

Operator
name : String
returnType : OclAny
pre : OclExpression
post : OclExpression
visible : Boolean

0..*0..*

Component
name : String
hasSub : Boolean
sub : Boolean
parent : String
stateDiag : ATstatetable
constraints : OclExpression

0..* +connected by
0..* +connects

0..* 0..*
+utilizedBy

0..*
+utilizes
0..* 0..*0..*

0..1

0..*0..*
Attribute

name : String
type : OclAny
initValue : OclAny
visible : Boolean
userDefined : Boolean
runTimeDefined : Boolean
set : Boolean
sequence : Boolean
bag : Boolean

0..* 0..*

Value
1 1

SingleValue
value : OclAny

SetValue
value : Set(OclAny)

SequenceValue
value : Sequence(OclAny)

BagValue
value : Bag(OclAny)

Figure 30 Operator Class Attributes

For instance, if the user needed a variable to store multiple automobiles, they could define an

Automobiles variable of type Sequence(Automobile).

Because OclAny is the supertype of all predefined OCL types as well as any user defined

types, in order for a DataStructure to be used in an OCL diagram, it must be stored as an OCL

type. This would allow any attribute having type OclAny to have access to the data structure.

The object model including data structure information is shown in Figure 31.

 92

4.4.2 Connector Class

As depicted in Figure 31, an architecture consists of zero or more connectors, each of

which is connected to one or two components. To more adequately represent the fact that there

are two types of connectors, two additional classes were created: InnerConnector and

OuterConnector.

Value

1..2

{ordered by user}

DataField
name : String
type : OclAny

Parameter
name : String
type : OclAny

Connector

DataStructure
name : String
basic : Boolean

1..* 1..*

Architecture

0..*0..*

Operator
name : String
returnType : OclAny
pre : OclExpression
post : OclExpression
visible : Boolean

0..*0..*

Component
name : String
hasSub : Boolean
sub : Boolean
parent : String
stateDiag : ATstatetable
constraints : OclExpression

0..*
+connected by

0..*
+connects

0..* 0..*
+utilizedBy

0..*
+utilizes
0..* 0..*0..*

0..10..1

0..*0..*
Attribute

name : String
type : OclAny
initValue : OclAny
visible : Boolean
userDefined : Boolean
runTimeDefined : Boolean
set : Boolean
sequence : Boolean
bag : Boolean

0..* 0..*

1 1

SingleValue
value : OclAny

SetValue
value : Set(OclAny)

SequenceValue
value : Sequence(OclAny)

BagValue
value : Bag(OclAny)

Figure 31 Data Structure

Both classes inherit from the Connector class. Each class has a name and type

attribute, were name is used to identify a connector and type is hard coded. For

InnerConnector, type is set to ‘innerAgent’ while for OuterConnector, type is set to

 93

‘outerAgent’. The reason behind separating these into two classes was to represent that an

InnerConnector must connect two components and an OuterConnector connects one

component. This fact was enforced using associations between each class and Component.

Figure 32 shows the complete architectural object model.

 0..1

{ordered by user}

SingleValue
value : OclAny SetValue

value : Set(OclAny) SequenceValue
value : Sequence(OclAny)

BagValue
value : Bag(OclAny)

1..2

DataField
name : String
type : OclAny

Connector

Parameter
name : String
type : OclAnyValue

DataStructure
name : String
basic : Boolean

1..* 1..*

Architecture

0..* 0..*

Operator
name : String
returnType : OclAny
pre : OclExpression
post : OclExpression
visible : Boolean

0..*0..*

Attribute
name : String
type : OclAny
initValue : OclAny
visible : Boolean
userDefined : Boolean
runTimeDefined : Boolean
set : Boolean
sequence : Boolean
bag : Boolean

1 1

InnerConnector
name : String
type : String = 'innerAgent'

End
type : Enum(arrow, null)

Component
name : String
hasSub : Boolean
sub : Boolean
parent : String
stateDiag : ATstatetable
constraints : OclExpression

0..* 0..*
+utilizedBy

0..*
+utilizes
0..*

0..*0..*

0..1

0..*0..*
0..* 0..* 0..*

1..1

0..*

1..1

associated with

0..*
+connected by

0..*
+connects OuterConnector

name : String
type : String = 'outerAgent'

1..1

0..*

+connects

1..1 +connected by

0..*

2 2

Figure 32 Complete Object Model

4.5 Language Implementation

The language described in the previous sections was implemented in the multi-agent

design environment agentTool. The purpose of this section is to give an overview of how the

 94

language described in the previous sections was implemented in this environment. A complete

description of the implementation is given in Appendix C.

Based on the Multiagent Systems Engineering (MaSE) [MASE99] methodology, the

purpose of agentTool is to allow multiagent systems to be quickly and easily designed and

implemented. Within the system, once an agent has been defined, internal agent components may

be added, deleted, modified, and connected to other components or to the environment. Both the

static and dynamic representation of components is currently implemented. A static

representation of the internal components of a reactive agent is shown in Figure 33.

Figure 33 Component & Connectors

Once a component is specified, attributes and methods may be added, deleted and

modified for that component. Figure 34 shows the interface used to specify a component

attribute, while Figure 35 shows the interface used to specify a component method. Both

interfaces coincide with the language object model specified in Figure 32.

 95

Figure 34 Attribute Interface

Figure 35 Method Interface

As shown in Figure 34, the user can choose whether the attribute is user defined, run time

defined, or both. These selections will be used for the code generation portion of agentTool (not

yet implemented). As seen in Figure 33, the ‘+’ symbol indicates an attribute is user defined,

while the ‘−‘ symbol indicates an attribute is run time defined. Although not shown in the figure,

the ‘±’ indicates an attribute that is both run time and user defined. Figure 35 shows how the

OCL code is specified in the postcondition for a given method. Although not shown in the

 96

component diagram, this information is stored in the language object model to be used for code

generation purposes.

To define the dynamic representation of the software, every component defined has an

associated state diagram. The representation of the information within these diagrams is the same

as that used in UML. The dynamic representation for the Message_Interface component is

shown in Figure 36.

Figure 36 Completed Dynamic Model

Using methods described in [LACEY00], it is possible to automatically verify that a component

dynamic model is free of dead locks and infinite loops.

4.6 Chapter Summary

The first section of this chapter defined the requirements that must be met by a language

in order to be used to specify agents in a multi-agent environment. These requirements were

 97

based on analysis of the problem as well as a review of literature of existing languages used for

similar purposes. Section 4.2 compared two existing languages against these requirements to find

out which was better suited. Because neither language adequately met all language requirements,

an existing language was modified to satisfy the problem. Section 4.3 defines this modification

and completely outlines the language. Section 4.4 uses the description from Section 4.3 to

completely define an object model for the problem. Section 4.5 is an overview of the

implementation of the object model in the multi-agent definition environment agentTool.

 98

V. Architectural Styles

This chapter tests the validity of the language defined in Chapter 4 by using the language

to define some of the most common architectural styles used in artificial intelligence. Sections

5.1 through 5.4 describe the architectural styles selected and the process followed in selecting

them. The section closes by describing the generic set of components obtained from the selected

architectural styles.

A number of existing agent architectures were reviewed, decomposed using object-

oriented techniques and then categorized based on their components, connectors, and overall

structural pattern. Four architectural styles were found using this approach: reactive, knowledge-

based, planning, and Belief Desire Intention (BDI). The remainder of this section follows a four-

step process for each architectural style. First, the requirements of each style are described.

Second, a generic component model is constructed defining the basic components and outlining

the overall structure. Third, based on the information presented in steps one and two, an object

model is created. Fourth, the object model is then transformed into a component diagram using

the techniques defined in Section 4.3.

5.1 Reactive Agent Architectural Style

As stated in Section 2.3.3, reactive agents come in a number of different forms based on

the attributes that the agent may possess. However, all agent architectures that are reactive in

nature share a common set of characteristics.

Because of the stimulus-response nature of reactive agents, all architectures in this

category are based on a set of rules. The rules are used to interpret the stimulus and generate a

response if appropriate. Although various styles are used to represent rules, the same IF-THEN

 99

structure is predominate. To receive signals and generate responses, each architecture also

contained an interface to the environment. These interfaces included a message interface,

resource interface, sensors, and effectors. Message interfaces are used to send and receive

messages between agents. Effectors are used to send changes to the environment and sensors are

used to receive changes from the environment. Resource interfaces are used to interact with

external data sources ranging from HTML files to databases. Architectures in this category also

contain a control mechanism to interpret inputs from the interfaces and select the appropriate rule

based on the input. Therefore, using the notation defined in Chapter 4, the architectural style can

be represented as shown in Figure 37.

Figure 37 Reactive Architectural Style

In the figure, all interfaces (message interface, sensors, effectors, and resource interfaces)

have been combined and represented as an IO_Interface component. This captures the fact that

only one of these interfaces need be present. This also shows that no matter which interface is

present, the same inner agent connectors connect it to the other components. Although not all

interfaces have a two-way connector to the environment, the main point of the figure is to stress

the structure of the architecture. All interfaces will interact with the environment and the

Controller component. The Controller may take information received from the IO_Interface,

IO_Interface

RuleContainer

Controller

 100

and query the rules of the RuleContainer to determine what action needs to be taken. The

RuleContainer contains all rules for the agent as well as the operations needed to manipulate the

rules. Because a given rule may in turn cause a change to the environment, or cause a message to

be sent, there is a one-way inner connector from RuleContainer to IO_Interface. Using Figure

37 along with the initial description, it was possible to determine the basic classes as well as

generic attributes and methods. The object model depicting this is shown in Figure 38.

Figure 38 Reactive Architectural Object Model

Each Rule has a name attribute to identify it from any other rule currently defined.

Since rules are generally of the IF-THEN format, precondition and postcondition attributes

were defined to capture the rule structure. An example of how a rule may be used is shown

below.

name: “FoodGratuityRule:”
precondition: msgTrigger.performative= “CalculateFoodTip”
postcondition: RuleContainer.ReactiveAgent.replyMsg.content=msgTrigger.content*.15

and RuleContainer.ReactiveAgent.replyMsg.receiver=msgTrigger.sender
and RuleContainer.ReactiveAgent.replyMsg.sender= “RestaurantAgent”
and RuleContainer.ReactiveAgent.replyMsg.performative= “FoodTip”

 101

An agent could send a message to the “RestaurantAgent” containing the amount of the bill as

the content and the performative “CalculateFoodTip”. The agent would then iterate through all

of its rules and see that the precondition of the “FoodGratuityRule” is true. Upon finding a valid

rule, the postcondition would then be evaluated. As stated in Appendix B, each conjuncted OCL

postcondition expression is evaluated in a top to bottom, left to right fashion. Therefore, in the

above example, replyMsg.content=msgTrigger.content*.15 is made true before

replyMsg.receiver=msgTrigger.sender. How these expressions are made true is dependent on

the language that will be used to implement the specification. In the above example, the easiest

way to make replyMsg.content=msgTrigger.content*.15 true is to take replyMsg.content and

set it equal to the value of msgTrigger.content*.15. The specification is not concerned with

how the value is made true, only that it is made true.

Because two or more rules may be applicable to a given situation, a utilityValue attribute

was also defined. This value can be used to determine the overall applicability of a given rule.

The RuleContainer class acts as a central repository from which all rules may be accessed. The

msgTrigger and perceptTrigger attributes contain the most recent message or percept received

by the agent. The executeRule operator is used to evaluate rules (i.e. if the precondition is true,

then the postcondition is made true).

The control structure of the agent is primarily seen in the ReactiveAgent class. When a

message is received, the receiveMsg operator in MessageInterface calls msgCheckRules,

and if a percept is received, the receivePercept operator in Sensor calls perceptCheckRules.

These two operators then use the executeRule operator to iterate through all the rules searching

for valid preconditions. These operators can be specified in a number of ways depending on the

goal of the agent. They can be used to find and execute all valid rules, they can be used to find

 102

and execute the first valid rule, or they can be used to find and execute the rule with the highest or

lowest utility value. The operator definition is dependent primarily on the desired result.

The MessageInterface class simply contains the send and receiveMsg operators.

These generic operators represent the sending and receiving of messages to other agents. The

actual implementation of these operators is based on the type of agent communication protocol

selected by the designer. When implemented, these generic operators will be mapped to the

particular protocol selected. The receiveMsg operator reacts to external message events (as

described in Section 4.3) from the environment. As stated previously, the receiveMsg operator

invokes the msgCheckRules operator of the ReactiveAgent class whenever a message is

received. Just as receiveMsg reacts to external events, send is used to create external message

events. When the send operator is invoked, an external message event is created that may be

received by other agents with a receiveMsg operator. The associative Message class contains

the general template used to pass messages between agents. This template can be modified at the

designer’s discretion.

The two attributes comprising the Sensor class are name and percept. As stated in

Section 2.3.7.2, sensors can come in two forms: persistent and functional. A persistent sensor is

one that is initiated by a change of environmental state. The receivePercept operator was

defined to model this characteristic. The operator is invoked whenever an external environmental

event occurs that the Sensor is able to detect. Once invoked, the operator can call the

perceptCheckRules operator of the ReactiveAgent class to determine if any rules have

become valid based on the change. The functional sensor was modeled using the getPercept

operator. Invoking this operator queries the sensor for current information, which is returned and

stored in the percept attribute.

 103

The Effector class contains a name attribute to specify the category of effector that the

agent will access. For instance, an agent may have five effectors that control a robot arm and

another five effectors with the exact same names controlling a robot leg (i.e. move up, move

down, etc.). Each set of effectors could be grouped under the type Arm and Leg respectively

without having to rename all operators. The user could then call Arm.up or Leg.up as

appropriate. Each effector class consists of one or more operations that it can perform. In the

above example, the Arm effector contained five operators to control arm movement. In the

majority of the architectures examined, effectors were modeled as agent operators. Keeping with

this naming convention, the Operator class contains the actual information needed to effect the

change to the environment. As described in Section 4.4.1.2, the precondition and postcondition

attributes contain the information that must be true for the operator to be evaluated along with the

information that will be true upon completion. These operators may be instantiated by calling the

executeOp operator of the Effector class. This operator takes the name of the operator to be

executed as well as a possible list of parameters and evaluates the precondition attribute of that

operator. If precondition evaluates to true, then the postcondition attribute is then made true.

The ResourceInterface class contains a name attribute to delineate between different

resources that may be accessed. The main functionality seen in the class is in the execute

operator. Any type of external data source residing on a computer will always be accessed

through some type of application. This application could be an operating system, database, or

web browser just to name a few. To interface with the data source, the agent must interface with

the application. In order to effectively interact with the application, three pieces of data are

required; the name of the file needed, the location of the file, and the command to be executed.

To capture this information, the execute operator contains the parameters name, loc, and

 104

command (representing filename, file location, and command). Any return information or

feedback from the application is stored in the returnValue attribute.

Using the methods described in Section 4.3 for transforming a class diagram into a

component diagram, Figure 39 was created.

Figure 39 Reactive Architecture Component Model

The components comprising the architecture are a RuleContainer, IO_Interface, and a

Controller. The Controller component essentially replaces the ReactiveAgent class and acts as

the control center of the agent. The most interesting component is the IO_Interface. The

substructure of the IO_Interface contains all interfaces the system may have with other agents

and the environment. The representation of the substructure is shown in Figure 40. It is

important to note that all outer agent connectors are represented in the substructure, hence the

reason none appear in Figure 39. Each component of the IO_Interface substructure could be

represented in the Figure 39 representation. They were moved into the substructure for

readability and understandability purposes only. The Controller and RuleContainer component

can still access the components by calling the appropriate interface operator in the IO_Interface

component. These operators in turn call the operator of the appropriate component.

Controller

 msgCheckRules(msg: Message)
 perceptCheckRules(per: OclAny)

RuleContainer
+rules: Set(Rule)
−msgTrigger:Message
−perceptTrigger:OclAny
 executeRule(rule: Rule)

IO_Interface*

 send(msg:Message)
 getPercept(per:OclAny)
 executeOp(name:String,

params:String)
 execute(name:String,

loc:String,
command:String)

 105

Figure 40 IO_Interface Substructure

Substructure components can access higher-level components by first accessing the

parent component. For example, when invoked, the receiveMsg operator in turn calls the

msgCheckRules operator in the Controller component. The MessageInterface accesses this

operator by calling IO_Interface.Controller.msgCheckRules. Any return values associated

with an operator are returned to the calling component. The Operator, Rule, and Message

classes are all implemented as data structures and are associated with the components that use

them. The OCL representation of the component operators is defined in Appendix D.

5.2 Knowledge Based Architectural Style

Knowledge based agents have been around for a number of years and although not as

popular as they once were, they still represent a fundamental agent style. As the name implies,

the central element in knowledge-based architectures is the knowledge base. The knowledge base

MessageInterface

 send(msg:Message)
#receiveMsg(msg: Message)

Sensor
+name:String
−percept:OclAny
 getPercept():OclAny
#receivePercept(per:OclAny)

Effector
+name:String
+ops:Set(Operator)
 executeOp(name:String, params:String)

ResourceInterface
+name:String
−returnValue: OclAny
 execute(name:String, loc:String,

command:String)

 106

contains any predefined information the agent may need as well as any new information derived

by the agent. As with reactive architectures, knowledge based architectures also use a set of rules

to make decisions. Like the reactive architecture, these rules are also of an IF-THEN structure.

Although the knowledge base is considered the key element in a knowledge-based system, the

second most important component is the inference engine. The inference engine provides the

facilities for navigating through and manipulating the knowledge in order to deduce something

from it. The inference engine will use the rules and the knowledge base to reason over

information and deduce results in an organized manner. Because the knowledge-based system

normally has the ability to accept external queries and updates from other sources as well as react

to changes in the environment, an input/output interface is also required. After analyzing the

structure of a number of knowledge-based architectures, the architectural style of Figure 41 was

defined. The main components comprising this style are IO_Interface, RuleContainer,

Controller, KnowledgeBase, and InferenceEngine. Like the reactive style, the IO_Interface

component encompasses all components that allow the agent to interact with other agents and the

environment. Again, the definition of the component is to show how the interfaces are connected

to the other components in the diagram. Similar to the reactive style, incoming information is

forwarded to the Controller component so that it may be properly directed. The Controller is

then able to direct the information to the RuleContainer (for updates) or the InferenceEngine

(for queries) as appropriate. Because a query will normally need to be responded to, two-way

inner connector is needed between the Controller component and the IO_Interface component.

Once the Controller has accessed the InferenceEngine to solve the requested problem, it can

take the solution and send it to the requestor of the message using the MessageInterface.

 107

Figure 41 Knowledge Based Architectural Style

Because the InferenceEngine may need access to both the rules and the knowledge base to solve

a problem, one way inner connectors go from InferenceEngine to both RuleContainer and

KnowledgeBase. Since rules may be defined that update the KnowledgeBase, a one way

inner connector connects the RuleContainer to the KnowledgeBase. Because the user may

want a message sent back if the update succeeded or failed, the RuleContainer also has a one-

way connector to the IO_Interface. Using Figure 41 along with the initial requirements allowed

for the construction of the object model seen in Figure 42.

Because all of the interfaces of the knowledge base architecture are modeled in the exact

same manner as those of the reactive architecture of Figure 38, for simplicity they are collectively

represented as the IO_Interface class. The RuleContainer and Rule classes are essentially the

same as those described in Section 5.1.

IO_Interface

RuleContainer

KnowledgeBase

Controller

InferenceEngine

 108

Figure 42 Knowledge Base Object Model

The interpretMsg operator of the KB Agent class directs the message based on the

content and performative. For example, if the performative was solve and the content was

America has a king, the message would be directed to the InferenceEngine. However, if the

performative was add and the content was sky=blue, then the message would be directed to the

RuleContainer. This is done because certain preconditions may need to be met before the

knowledge base can be manipulated. The agent may only allow certain agents to modify its

knowledge base, and may therefore have a rule that first checks the sender of any update message

before it makes any changes. The KnowledgeBase class contains the knowledgeType attribute

to delineate between multiple knowledge bases. This allows the user the ability to categorize

knowledge in different repositories instead of using one centralized container for all information.

The add method inserts a piece of data into the knowledge base while the delete method

removes information from the knowledge base. The query method checks if a certain piece of

 109

information is in the knowledge base and returns a true or false response as appropriate. The

aggregate Condition class represents the actual data stored in the knowledge base. Because this

data may be of varying types, OclAny is used to define the value attribute. The value attribute

contains the actual data and can be identified by the name attribute. The InferenceEngine class

provides the computational power needed to move through and manipulate the knowledge in

order to effectively reason over new or existing data. Although many techniques exist for doing

this, forward chaining and backward chaining are two of the most common, hence the definition

of the forward and backward operators. The forward operator is passed the piece of information

needing to be proven and then iterates through the rules and the knowledge base until it is proven

or disproved. The backward operator is passed a goal and then attempts to find evidence for

proving or disproving it. As previously stated, these two operators do not represent the only

inference mechanisms in existence, therefore other inference classes may be added at the

designers discretion. The transformation of the object diagram of Figure 42 into a component

diagram is seen in Figure 43.

Like the reactive architectural style, a Controller, IO_Interface, and RuleContainer

component are all defined. The IO_Interface is implemented in the same manner as Figure 39,

while the substructure of the component is the same as that shown in Figure 40. The two new

components are KnowledgeBase and InferenceEngine. An important aspect of the

KnowledgeBase component is the data attribute. Because the data attribute of the knowledge

base can be initialized by the user as well as modified by the agent, the attribute must be able to

be both user defined and run time defined. This fact is captured by attaching ‘±’ to the beginning

of data. As with the reactive architecture, Rule, Message, and Condition data structures must

be defined and associated with the appropriate components.

 110

Figure 43 Knowledge-based Component Diagram

5.3 Planning Architectural Styles

As described in Section 2.3.6, there are two general types of planners used in most

Artificial Intelligence systems today: dynamic planners and static planners. Dynamic planners

take as input a goal, a set of operators, and the state of the agent and dynamically produce a plan

to satisfy the goal. Static planners take as input a goal and the state of the agent, and use this

information to choose an existing plan that best satisfies the goal. Although significantly

different in how they execute, the overall architectural style is essentially the same. Both

architectures contain a message interface used to receive messages from other agents. Messages

contain the required information needed for the generation or selection of a plan. Because all

required information is passed to the planner and because the only thing the planner is capable of

doing is selecting or generating a plan, no other interfaces are required. In general, a plan

consists of one or more steps, each of which contains a number of attributes. Each step contains

InferenceEngine

 forward(data: String)
 backward(goal: String)

KnowledgeBase
+knowledgeType: String
±data: Set(Condition)
 add(data: Condition)
 delete(data: String)
 query(data:String):Boolean

IO_Interface*

 send(msg:Message)
 getPercept(per:OclAny)
 executeOp(name:String,

params:String)
 execute(name:String,

loc:String,
command:String)

RuleContainer
+rules: Set(Rule)
−msg:Message
 executeRule(rule:Rule)

Controller

 interpretMsg(msg:Message)

 111

the name of the operator that must be executed, an ordering constraint, and a binding. The

ordering constraint specifies which step or steps must be first executed before this step can

execute. The binding is simply a list of parameters each operator will be passed. Plans generated

by dynamic planners normally conform to this generic definition. Plans used by static planners

are based on this plan definition, but add a number of attributes. Because the plans are already

defined and must be chosen, a list of ‘goals satisfied’ is often associated with each plan. This list

defines any goals that this plan may satisfy. Because multiple plans may satisfy the same goal, a

utility value is also normally attached to each goal.

Based on this information the general architectural style for both types of planners is seen

in Figure 44. The MessageInterface along with the two-way outer connector allows plan

requests to be received, and plans to be sent back to requesting agents. Because the Planner is

simply generating or selecting a plan, no access is needed to the MessageInterface.

Figure 44 Planner Architectural Style

Therefore, a one-way inner connector connects the MessageInterface component to the

Planner component. When the MessageInterface receives a request, the Planner will be

called which will compute and return the plan to the MessageInterface, where it can then be

sent to the requestor. The Planner contains some planning operator that will generate or select a

plan based on the information passed to it. Each operator will have a return value that will be set

equal to the plan generated or selected. Therefore, the MessageInterface is returned a plan once

MessageInterface

Planner

 112

the operator has completed execution, and is the reason a two-way inner connector is not

required.

Although both planner types fall under one style, the object and component models differ

significantly. For this reason, each planner type will be examined independently.

5.3.1 Dynamic Planner

Based on the information of Section 5.3 and Figure 44, the dynamic planner object model

of Figure 45 was generated. The DynamicPlanner class acts as an interface to the planner being

used. The generatePlan operator takes as parameters a goal, a list of available operators, and

the current state of the agent. When implemented, the actual planner being used to generate plans

will replace this component. The purpose of the operator is to capture the data the planner will

require. This is not to say that a dynamic planner could not be specified from scratch using OCL,

but for the purposes of this research, it is assumed a dynamic planner exists. The requests come

in through the MessageInterface, which interprets the data and calls the generatePlan

operator. The generated plan is returned to the MessageInterface, which in turn sends it to the

requesting party. The Plan class represents the form the generated plan will be in. Each plan

consists of one or more PlanSteps, which upon execution will satisfy the requested goal. The

op attribute represents the operator that must be executed to complete the particular step.

The Operator type of this attribute is the same as that defined in Figure 38. The

ordering attribute contains one or more operators that must have been evaluated before the

current step can execute. If the ordering attribute is set to NULL, then that step represents the

first step of the plan and can therefore be evaluated immediatley. A key attribute to making this

whole process work is stepExecuted. This boolean attribute keeps track of which steps have

been executed.

 113

PlanStep
op : Operator
ordering : Operator
binding : String
stepExecuted : Boolean

Message
sender : String
receiver : String
performative : String
content : OclAny

Plan

1..*1..*

Dynamic Planner

generatePlan(goal:OclExpression, operators:Set(Operator), state:Set(Condition) : Plan

1..1

1..1

+generates
1..1

+generated by1..1

MessageInterface

send(msg : Message)
receive(msg : Message)

1..1

0..*

+received by 1..1

+receives 0..*

11

Figure 45 Dynamic Planner Object Model

For example, if a certain step is being examined for execution, and two operators are present in

the ordering attribute, stepExecuted can be used to see if those operators executed. By taking

the operator name, matching it to the op attribute in another plan step, the stepExecuted

attribute will determine if the operator has been executed yet or not. This is not at all meant to

imply that the planner controls the execution of a plan. This attribute is needed by the execution

component that must exist in the agent that called the planner. Figure 46 depicts the component-

based version of the object model. As seen from the figure, the only two components required

are MessageInterface and DynamicPlanner. The conversion to the component diagram is

rather straightforward with the only issue of importance being the definition of the data

structures.

 114

Figure 46 Dynamic Planner Component Diagram

Message, Operator, Condition, and Plan must all be defined and associated with the

appropriate components.

5.3.2 Static Style

The major difference between the static planner and the dynamic planner is the fact that

instead of generating a plan based on a set of conditions as in the dynamic planner, the static

planner must choose from an existing set of plans based on a set of conditions. Figure 47 depicts

the object model of the static planner. The StaticPlanner class contains the single operator

choosePlan. This operator is passed as parameters a goal that must be achieved as well as the

state of the environment. Based on this information, choosePlan will iterate through all plans it

has access to and choose the most appropriate. As seen from the diagram, the plans used by this

planning mechanism are an extension of those defined for the dynamic planner. The inherited

class StaticPlan contains the additional attributes needed by the static planner. The goals

attribute contains all information pertaining to what goals may be satisfied by the instantiation of

the plan. The utilityValue attribute defines the applicability of the plan to the given situation.

This attribute is used when more than one plan is found satisfying a particular goal.

Dynamic Planner

 generatePlan(goal:OclExpression,
 operators:Set(Operator)
 state:Set(Condition)):Plan

MessageInterface

 send(msg:Message)
#receiveMsg(msg: Message)

 115

PlanStep
op : Operator
ordering : Operator
binding : String
stepExecuted : Boolean

Precondition
data : OclExpression
name : String

Trigger
data : OclExpression
name : String

Postcondition
data : OclExpression
name : String

StaticPlan
utilityValue : Integer
goals : Set(OclAny)

0..*0..* 0..*0..* 0..*0..*

Message
sender : String
receiver : String
performative : String
content :
O lA

Plan

1..* 1..*

StaticPlanner

choosePlan(goal : OclExpression, state:Set(Condition) : Plan

1..*1..*

MessageInterface

send(msg : Message)
receiveMsg(msg : Message)

1..1

0..*

+received by 1..1

+receives 0..*

1 1

Figure 47 Static Planner Object Model

Because other conditions besides the overall goal must be taken into account when choosing a

plan, the Precondition, Trigger, and Postcondition classes were required. The Trigger class is

used to capture the fact that certain conditions may automatically trigger the selection of a

particular plan. If certain conditions hold, the user may want a certain plan selected regardless of

the overall goal. Precondition and Postcondition allow the user to add constraints to a

particular plan. If certain conditions must be true before a plan can be selected, the Precondition

class can store this information. If certain conditions must be made true once a plan has been

executed, this information can be specified in the Postcondition class. Using the language

defined in Chapter 4, Figure 48 depicts the component diagram.

5.4 BDI Architectural Style

As described in Section 2.3.2, the major attributes comprising a BDI architecture are beliefs,

desires, intentions, and plans.

 116

Figure 48 Static Planner Component Diagram

An agent may have multiple types of beliefs, such as beliefs about the environment or beliefs

about other agents, but all this information is normally represented using declarative, logic-based

statements. Desires correspond to the goals the agent must satisfy. The majority of architectures

represent goals as a declarative statement or statements specifying the agent’s state once the goal

is achieved. The user may define goals or the agent may adopt them. The intentions of the agent

are simple to represent since they are just a list of plans that the agent will attempt to achieve. In

order for an agent to achieve any of its desires, an existing plan must be chosen or a new plan

generated that will satisfy the goal. Therefore, BDI agents can use static planners, dynamic

planners, or both. The interfaces used in this type of architecture varied depending on the overall

goal being achieved, but include sensors, effectors, message interfaces, and resource interfaces.

A centralized controller is used to direct information as well as to control the execution of the

agent’s intentions. A representation of this architectural style is seen in Figure 49.

As with the reactive architectural style, all interfaces are represented as a single

IO_Interface component. Doing this shows how all interactions with other agents as well as

with the environment are directed to the Controller component.

StaticPlanner
+plans: Set(StaticPlan)
 choosePlan(goal:Goal,
 state:Set(Condition)):StaticPlan

MessageInterface

 send(msg:Message)
#receiveMsg(msg: Message)

 117

Figure 49 BDI Architectural Style

Because the overall execution is based in this centralized component, the Controller needs access

to the resources of all components in system. Because the Beliefs, GoalContainer, and Planner

are simply acting as resources, these components do not need access to any other components. It

is for this reason that one way inner connectors connect the Controller to these components.

Because intentions can be represented as a sequence of plans, they are stored within the

Controller component and is the reason they do not show up in the diagram. The object model

for this architectural style is seen in Figure 50. Because all of the interfaces of the BDI

architecture are modeled in the exact same manner as those of the reactive architecture of Figure

38, they are omitted. The beliefs of the agent are captured in the Beliefs class of the figure.

Because the type of information that may stored in an agents beliefs is the same type of

information stored in a knowledge base, the Belief class is modeled in the exact same manner as

the KnowledgeBase class of Figure 42.

IO_Interface

Controller

Beliefs

GoalContainer

Planner

 118

Figure 50 BDI Object Model

Also, because the planners used for this architecture are the same as those described in Section

5.3, the StaticPlanner and DynamicPlanner are modeled in the same manner as in Figures 46

and 48 (the operator signature is deleted from Figure 50 to save space). The only new classes not

previously described are GoalContainer and Goal. The GoalContainer is a central repository

for all goals defined for and generated by the agent. The addGoal and removeGoal operators

are used for the addition and removal of goals from the repository. The Goal class consists of a

name attribute for identification purposes and a value attribute to store the goal value. Figure 51

depicts the BDI component diagram. The IO_Interface component and its substructure is the

same as that shown in Figures 39 and 40. Because either a static or dynamic planner can be used

within this architecture, a generic Planner component was defined. This component contains the

dynamic and static planner components of Figures 45 and 47 within its substructure. The

substructure is shown in Figure 52. The operators generatePlan and choosePlan can then be

used to call the operators of the respective components for the generation of or selection of a plan.

 119

Figure 51 BDI Component Diagram

Figure 52 Planner Component Substructure

5.5 Generic Components

As a product of defining a set of architectural styles, a generic set of components was

extracted that can be used to define many different agent types. Although each style represents

Controller
−intentions:Sequence(Plan)
 interpretMsg(msg:Message)
 interpretPercept(per:OclAny)
 selectGoal(goal:Goal)
 executePlan(plan:Plan)

GoalContainer
±goals:Sequence(Goal)
 addGoal(goal:Goal)
 removeGoal(goal:Goal)

Planner*

 choosePlan(goal:Goal,
 state:Set(Condition)):StaticPlan
 generatePlan(goal:OclExpression,
 operators:Set(Operator)
 state:Set(Condition)):Plan

Beliefs
+knowledgeType: String
±data: Set(Condition)
 add(data: Condition)
 delete(data: String)
 query(data:String):Boolean

IO_Interface*

 send(msg:Message)
 getPercept(per:OclAny)
 executeOp(name:String,

params:String)
 execute(name:String,

loc:String,
command:String)

StaticPlanner
+plans: Set(StaticPlan)
 choosePlan(goal:Goal,
 state:Set(Condition)):StaticPlan

Dynamic Planner

 generatePlan(goal:OclExpression,
 operators:Set(Operator)
 state:Set(Condition)):Plan

 120

the ability to do drastically different things, it is readily apparent from the previous sections that

there exist common components of which the majority of agents are a subset. Figure 53

represents the components extracted from the styles presented in Section 5.1 through 5.4. Note

that because the Beliefs component of Section 5.4 was based on the same object model as the

KnowledgeBase component of Section 5.2, both components are simply referenced as

KnowledgeBase in the figure. The IO_Interface seen in many of the styles is represented in

Figure 51 as the individual components that compose it.

Figure 53 Component Baseline

The figure is not meant to imply that a working agent can be defined by simply connecting

together a set of these components in an ad-hoc manner. Operators will need to be completely

defined and additional attributes added to customize the components to the designers needs. The

components selected are meant to act as templates from which large complex systems can be

constructed.

5.6 Summary

This chapter defined a basic set of architectural styles that the majority of agent-based

systems fall under. Each style was then modeled using the component language defined in

Chapter 4. Doing this accomplished two things: it demonstrated the language was expressive

enough to represent the most commonly used agent architectural styles, and it also built a set of

templates a designer may use to more quickly and easily define an agent based-system. From

 121

these templates, a basic set of components was extracted. These component templates provide

the designer with building blocks that can be used to add to an existing style or to create a new

style. As stated in Section 5.5, these templates are not all encompassing and should not limit the

designer in any way. It may be necessary to define other styles and components in order to define

a given system.

 122

VI. Conclusions and Future Work

This thesis has presented the definition and implementation of a knowledge

representation language that can be used to specify software systems. This chapter summarizes

the conclusions of the previous chapters and presents ideas for future work that may be done with

this research. Section 6.1 defines the conclusions of this thesis and Section 6.2 outlines possible

future work.

6.1 Conclusions

The majority of this thesis has been concerned with the definition of a representation

language to allow for the specification of software systems, specifically multi-agent software

systems. The end result was a graphical and textual component-based language. This section

outlines the key characteristics of the language and reviews the reasoning behind the approach

used.

6.1.1 Use of Graphics and Text

Many software specification languages are strictly textual because of the ambiguity

introduced by using graphics. The use of graphics within a specification does not allow any new

information to be represented, but it does allow information to be presented in a way that is easier

to comprehend. Using both graphics and text in a specification allow a problem to be viewed at

two distinct levels of abstraction. The graphical view allows the overall structure of the system to

be examined without being overwhelmed by specific details. The textual representation allows

explicit details of every aspect of the system to be represented in a concise and unambiguous

manner.

 123

Object-oriented representation initially seemed like a logical choice for the required

language. However although object-oriented techniques allowed for the correct level of detail,

they provided the wrong level of abstraction. The premise of this research was that graphics

would aid in understanding the specification by allowing the user to view the problem at a more

manageable level of abstraction. Using object-oriented techniques was equivalent to taking a ten

word sentence, putting an icon around each word, connecting the icons together and then saying

the sentence is now easier to understand. The graphical representation was too detailed to allow

for the desired level of abstraction. Component-based approaches allow for the desired graphical

level of abstraction, but lacked text to provide the appropriate level of detail. To complement the

component approach and to unambiguously specify and design software systems in a verifiable,

efficient, and understandable manner, OCL was chosen.

6.1.2 Software Composition

It is important not to confuse the language defined in this thesis with a methodology for

specifying software. This thesis does not propose an approach to specifying software systems,

but does provide a means for doing so. Although the language was defined using many object-

oriented techniques, this does not imply that these techniques must be used in defining the

components used in this system. Any well-defined methodology for the specification of software

can be followed when using the language.

6.2 Language Usage

The purpose of the language defined in this thesis is not to replace object-oriented

techniques or ADLs, but rather to extend and enhance them. Object-oriented diagrams cannot

capture architectural styles; however, using the approach described in Section 4.3, these diagrams

can be transformed into component diagrams that may then be abstracted to an architectural style.

 124

Traditional ADLs are not suited for specifying the internal behavior of components. However,

using the language defined in this thesis, the internal behavior of components can be completely

specified.

The overall approach to using the language is to examine the general characteristics of a

problem and see if there is an existing architectural style to which the problem best conforms. If

the problem can be described by an existing style, use that architectural style as a template for

specifying and designing the system. The idea is to use the style to define a specific architecture

by instantiating the style with particular values. Although components may need information

added, deleted, or modified, the general structure of the style should aid in developing the system

quickly and easily. Multiple styles can be combined, however, connectors may need to be added,

deleted, and modified to allow for the two styles to be represented as one. Redundant and unused

components may also have to be deleted. If multiple styles are used, styles can also be embedded

in the substructure layer of components and connected together with inner-agent connectors.

If the problem cannot be categorized by an existing style, a new architecture may have to

be defined. Using an object-oriented or other component based design methodology, the problem

should first be broken down into basic components. Once these components have been identified,

the designer should see if any predefined components exist matching the characteristics of the

identified components. Components designed using the language should be stored in a common

library that may be accessed by other designers to promote maximum reuse. In the agentTool

environment, both architectural styles and components are stored in a central repository. Even if

an existing component is not an exact match, the component can be modified to meet the

requirement. If no existing component can be found, new components can be defined using the

technique described in Section 4.3.

 125

6.3 Possible Future Work

A number of areas in the research and implementation of this thesis still need more work.

The purpose of this section is to identify and describe these areas.

6.3.1 Static Verification

The static representation of the system is the basic component diagram as shown in

Figures 43. Verification of this portion of the system involves ensuring all information entered is

of the appropriate type and is in the correct format. As mentioned throughout Section 4.5, the

current implementation of the language lacks type and format checking in most areas. If an

attribute is defined having a specific type, nothing is currently done to ensure any initial value

assigned to that attribute is of that type. Besides type checking, the current implementation also

does not do any format checking on most inputs. For example, when a user specifies an operator,

one or more parameters may be defined that the operator can accept. These parameters should be

entered in a certain format as described in Section 4.3. This format is not checked at this time.

The final area needing work is the verification of OCL expressions. Like any language, OCL has

a syntax and semantics that must be followed if the language is to be interpreted correctly.

Currently no checking is done of any OCL expressions specified in the language. All of these

issues become of critical concern if automatic code generation is ever to be achieved from the

specification.

6.3.2 Variable Instantiation

Another area requiring work is component variable instantiation. The language is

defined in such a way as to be used in two modes: specification and instantiation. The current

implementation of the language only allows for specification. In the instantiation mode, the user

 126

would be able to take the specification and instantiate the variables with specific values. For

example, if the user specified a variable instructors that was of type set(Instructor), in the

instantiation mode the user could specify all the instructors belonging in this set. The object

model defined in Figure 32 allows for the storage of any values associated with a variable, but

currently the implementation does not. Type checking would also be required here to ensure the

value associated with a given variable was of the same type as that specified.

6.3.3 Dynamic Verification

The overall dynamic representation of any system specified using the language defined in

Chapter 4 is realized through the dynamic representation of each of its components. Because of

this, verification must be done on the finite state machine of each component as well as the

relationships between each component. Checking must be done to ensure there are no deadlocks

or infinite loops within the system. Verification also needs to be done to ensure that all operators

called from the state diagrams are currently implemented within the component diagram.

6.3.4 Code Generation

Before work in this area may begin, it is critical that the work of Section 6.2.1 through

6.2.3 be accomplished first. Until specific data values can be entered and until complete

verification of the system can be done, automatic code generation should not be considered. This

thesis provides the tools to allow for the automatic generation of code from specification, but

currently does not provide the means.

6.4 Thesis Summary

The goal of this thesis, as outlined in Chapter 1, was to develop a knowledge

representation language that can be used to unambiguously specify and design software systems

 127

in a verifiable, efficient, and understandable manner. To ensure maximum understandability and

ease of use, it was stated that the language should make use of both graphics and text to represent

information. The language defined is a component-based specification language capable of

representing all aspects of a software system in a formal and easy to understand manner. The

graphical representation presents both the static and dynamic aspects of the system at an

understandable level of abstraction, while the textual representation allows system details to be

added in a precise and unambiguous manner. Completely defining the language object model

allows for both extensibility and possible verification of a system specified using the language.

Any specification composed according to the object model is now compatible with any past,

present, or future specification defined according to the model. Because the object model

formally defines the syntax and semantics of the overall language, the structure of the system

specified can be verified for correctness. Because the dynamic representation is defined using

finite state machines, verification of the behavior of the system can be done using techniques

proposed by Lacey [LACEY00].

Although automatic code generation is not yet possible, the language contains the

constructs that allow for this. The language can be used strictly for the specification of software

systems or can be used to instantiate a specification with specific values. Although this portion of

the language has not yet been implemented, the object model was defined in such a manner as to

allow for this. Code generation issues such as variable and operator visibility and run time versus

user-defined variable instantiation are embedded within the language.

The definition of architectural style and component templates do not make the language

itself better, but do provide a designer with valuable examples of how to define specific

components and styles. Designers may use the existing templates or may define their own

templates to aid in the rapid development of system specifications.

 128

Unlike many concept papers written on software specification languages, the vast

majority of the language defined in this thesis has been implemented and integrated into the

agentTool multi-agent development environment.

A number of languages have been defined for the specification of software systems. The

language defined in this thesis has combined the best aspects of a number these specification

languages to create a formal yet understandable language capable of specifying large software

systems in an easy and precise manner.

 129

REFERENCES

[ACME97] Garlan, D., Monroe, R., & Wile, D., “Acme: An Architecture Description
Interchange Language,” Proceedings of CASCON ’97, 1997.

[AES95] Garlan, D., “An Introduction to the Aesop System,”

http://www.cs.cmu.edu/afs/cs/project/able/www/aesop/html/aesop-overview.ps,
1995.

[BB98] Bigus, J.P. & Bigus, J., Constructing Intelligent Agents with Java, John

Wiley & Sons, Inc., 1998.

[BL85] Brachman, R. & Levesque, H., Readings in Knowledge Representation. Los
Altos, Ca, Morgan Kaufmann, 1985.

[BRK85] Brooks, R., “A Robust Layered Control System for a Mobile Robot,” IEEE

Journal of Robotics and Automation, vol 2, pp. 14-23, 1985.

[BOO94] Booch, G., Object-Oriented Analysis and Design with Applications, 2nd edition,

Benjamin/Cummings, 1994.

[BH95] Bowen, J. & Hinchey, M., “Seven more myths of formal methods,” IEEE

Software, pp. 34-41, 1995.

[CLIP98] CLIPS, What is CLIPS?, http://www.ghg.net/clips/CLIPS.html, 1999.

[CM87] Cercone, N. & McCalla, G., The Knowledge Frontier, Essays in the

Representation of Knowledge, Springer-Verlag New York Inc., 1987.

[COOL95] Barbuceanu, M. & Fox, M., "COOL: A Language for Describing Coordination in

Multi Agent System", in Proceeding of the first International Conference on
Multiagent Systems (ICMAS 95), 1995.

[CS93] Coglianese, L. & Szymanski, R., “DSSA-ADAGE: An Environment for

Architecture-based Avionics Development,” in Proceedings of AGARD ’93, May
1993.

[DMAR97] d'Inverno, M., Kinny, D., Luck, M., & Wooldridge, M., “A Formal Specification

of dMARS,” Tech. Rep. 72, Australian Artificial Intelligence Institute,
Melbourne, Australia, November 1997.

 130

[DAF97] d'Inverno, M. & Luck, M., “Development and Application of a Formal Agent
Framework,” Proceedings of the First IEEE International Conference on Formal
Engineering Methods, Hinchey and Shaoying (eds), 222-231, Hiroshima, Japan,
1997.

[EP98] Eriksson, H. & Penkar, M., UML Toolkit, John Wiley & Sons, Inc., 1998.

[FKV94] Fraser, M., Kumar, K., & Vaishnavi, V., “Strategies for incorporating formal

specifications in software development.” Communications of the ACM, vol. 37,
pp. 74-86, 1994.

[FMS97] M. d'Inverno, M. Fisher, A. Lomuscio, M. Luck, M. de Rijke, M. Ryan and M.

Wooldridge. “Formalisms for Multi-Agent Systems”, The Knowledge
Engineering Review, vol 12, 1997.

[GK94] Genesereth, M. & Ketchpel, S., “Software agents,” Communications of the ACM,

vol 37, pp. 48-53, 1994.

[GL87] Georgeff, M. & Lansky, A., Reasoning About Actions & Plans – Proceedings of

the 1986 Workshop. Morgan Kaufmann Publishers, 1987.

[GS96] Garlan, D. & Shaw, M., Software Architecture Perspectives on an Emerging

Discipline, Prentice-Hall, Inc., 1996.

[HODG91] Hodgson, J.P.E., Knowledge Representation and Language In AI. Ellis Horwood
Limited, 1991.

[JESS98] Friedman-Hill, E, “Jess, The Java Expert System Shell,” Distributed Computing
Systems, Sandia National Laboratories, ver 4.3, 1998.

[JF99] Ferber, J., Multi-Agent Systems An Introduction to Distributed Artificial
Intelligence. Addison Wesley Longman Inc., 1999.

[KJ98] Knapik, M. & Johnson, J., Developing Intelligent Agents for Distributed Systems,
McGraw-Hill Companies, Inc., 1998.

[KM98] Kumar, D. & Meeden, L., “A Hybrid Connectionist and BDI Architecture for

Modleing Embedded Rational Agents.” Proceedings of 1998 AAAI Symposium
on Cognitive Robotics, AAAI Press, 1998.

[KWC98] Kleppe, A., Warmer, J., and Cook, S., “Informal formality? The Object

Constraint Language and its application in the UML metamodel,” Proceedings of
UML ’98 International Workshop, pages 127-136, 1998.

[KS94] Kumar, D. & Shapiro, S., “The OK BDI Architecture”, International Journal of

Artificial Intelligence Tools, vol 3, number 3, pp 349-366, 1994.

 131

[LD95] Luck, M. & d’Inverno, M., “A Formal Framework for Agency and Autonomy,”
In Proceedings of the Firest International Conference on Multi-Agent Systems,
254-260, AAAI Press/MIT Press, 1995.

[LS98] Luger, G. & Stubblefield, W., Artificial Intelligence Structures and Strategies for

Complex Problem Solving, Addison Wesley Longman, Inc., 1998.

[MAE91] Maes, P., “ The Agent Network Architecture,” SIGART Bulletin, 2(4):115-120,

1991.

[MASE99] DeLoach, S., “Multiagent Systems Engineering: A Methodology and Language

for Designing Agent Systems,” to be presented at Agent-Oriented Information
Systems '99.

[ML84] Mylopoulos, J. & Levesque, H., “An Overview of Knowledge Representation,”

in Brodie et al, 1984.

[MM97] Huhns, M. & Singh, M., Readings In Agents. Morgan Kaufmann, Inc., 1997.

[MP92] Pollack, M., “The Use of Plans”, Artificial Intelligence, 43-68, 1992.

[MYE78] Myers, G., Composite Structured Design, Van Nostrand Reinhold, 1978.

[NASA95] “Formal Methods Specification and Verification Guidebook for Software and

Computer Systems, Volume I: Planning and Technology Insertion”, NASA-GB-
002-95, Release 1.0, 1995.

[OCLW99] The Object Constraint Language OCL, the expression language for the UML,

http://www.software.ibm.com/ad/standards/ocl.html/ocl_info.htm, 1999.

[PB94] Popovic, D. & Bhatkar, V.P., Methods and Tools for Applied Artificial

Intelligence, Marcel Dekker, Inc., 1994.

[PDDL98] Ghallab, M., Howe, H., Knoblock, C., McDermott, D., Ram, A., Veloso, M.,

Weld, D., & Wilkins, D., PDDL – The Planning Domain Definition Language,
Yale Center for Computational Vision and Control Tech Report, CVC TR-98-
003/DCS TR-1165, 1998

[PRES97] Pressman, R., Software Engineering: A Practitioner’s Approach, Fourth Edition,

The McGraw-Hill Companies, Inc., 1997.

[PROD92] “Prodigy 4.0: The Manual and Tutorial,” Prodigy Research Group, School of

Computer Science, Carnegie Mellon University, 1992.

[PRS99] “Procedural Reasoning System User’s Guide,” Artificial Intelligence Center, SRI

International, 1999.

 132

[RAM88] Ramsey, A., Formal Methods in Artificial Intelligence, Cambridge University
Press, 1988.

[REICH91] Reichgelt, H., Knowledge Representation An AI Perspective. Ablex Publishing

Co., 1991.

[RG99] Gogolla, M., “A Metamodel for OCL,” Second International Conference on the

Unified Modeling Language: UML’99, 1999.

[RN95] Russell, S. & Norvig, P., Artificial Intelligence A Modern Approach, Prentice

Hall, Inc., 1995.

[RUM91] Rumbaugh, J., Blaha, M., Premelani, W., Eddy, F., &Lorensen, W., Object-

Oriented Modeling and Design, Prentice-Hall, 1991.

[SHAP99] Shapiro, S., “SNePS 2.5 User’s Manual”, Department of Computer Science, State

University of New York, 1999.

[SWA94] Garlan, D. & Shaw, M., “An Introduction to Software Architecture,” in V.

Ambriola and G. Tortora, editors, Advances in Software Engineering and
Knowledge Engineering, pages 1-39, Singapore, 1993. Also appears as SCS and
SEI technical reports: CMU-CS-94-166, CMU/SEI-94-TR-21, ESC-TR-94-021.

[SYC96] Sycara, K., Decker, K., Anandeep, P., Williamson, M., & Zeng, W., “Distributed

Intelligent Agents”, IEEE Expert/Intelligent Systems & Their Applications, Vol.
11, No. 6, December 1996.

[SZS95] Luck, M. & d’Inverno, M., “Structuring a Z Specification to Provide a Formal
Framework for Autonomous Agent Systems,” in ZUM'95: The Z Formal
Specification Notation, 9th International Conference of Z Users, Jonathan Bowen
and Mike Hinchey (eds.), Lecture Notes in Computer Science, 967, 47-62,
Springer-Verlag, Heidelberg.

[SZY98] Szyperski, C., Component Software Beyond Object-Oriented Programming,

Addison Wesley Longman Limited, 1998.

[UNI95] Shaw, M., DeLine, R., Klein, V., Ross, T., Young, D., & Zelesnik, G.,

“Abstractions for software architecture and tools to support them,” IEEE
Transactions on Software Engineering, Special Issue on Software Architecture,
21(4):314-335, April 1995.

[WIN75] Winograd, T. “Frame Representations and The Declarative/Procedural
Controversy”, In Representation and Understanding: Studies in Cognitive
Science. Edited by D. G. Bobrow and A. M. Collins. New York: Academic
Press, 1975, 185-210.

 133

[WJ94] Wooldridge, M. & Jennings, N., “Intelligent Agents Theory and Practice,”
Available by FTP, 1994. Submitted to The Knowledge Engineering Review,
1995.

[WK99] Warmer, J. & Kleppe, A., The Object Constraint Language Precise Modeling
with UML, Addison Wesley Longman, Inc., 1999.

[WM94] Wilkins, D. & Myers, M. “A Common Knowledge Representation for Plan

Generation and Reactive Execution”, SRI International Artificial Intelligence
Center, 1994

[WM97] Wilkins, D. & Myers, M. “The Act Formalism”, SRI International Artificial

Intelligence Center, 1997

 134

APPENDIX A OCL GRAMMAR [WK99]

This appendix describes the grammar for OCL expressions. The grammar description

uses the EBNF syntax, where "|" means a choice, "?" optionality and "*" means zero or more

times [OCLW99].

expression :=
logicalExpression

ifExpression :=

"if" expression
"then" expression
"else" expression
"endif"

logicalExpression :=

relationalExpression
(logicalOperator relationalExpression)*

relationalExpression :=

additiveExpression
(relationalOperator additiveExpression)?

additiveExpression :=

multiplicativeExpression
(addOperator multiplicativeExpression)*

multiplicativeExpression :=

unaryExpression
(multiplyOperator unaryExpression)*

unaryExpression :=

(unaryOperator postfixExpression)
| postfixExpression

postfixExpression :=

primaryExpression
(("." | "->") featureCall)*

 135

primaryExpression :=
literalCollection
| literal
| pathName timeExpression? qualifier?
 featureCallParameters?
| "(" expression ")"
| ifExpression

featureCallParameters :=

"(" (declarator)? (actualParameterList)? ")"

literal :=

<STRING> | <number> | "#" <name>

enumerationType :=

"enum" "{" "#" <name> ("," "#" <name>)* "}"

simpleTypeSpecifier :=

pathTypeName
| enumerationType

literalCollection :=

collectionKind "{" expressionListOrRange? "}"

expressionListOrRange :=

expression
(("," expression)+
| (".." expression))?

featureCall :=
pathName timeExpression? qualifiers?
featureCallParameters?

qualifiers :=

"[" actualParameterList "]"

declarator :=

<name> ("," <name>)* (":" simpleTypeSpecifier)? "|"

pathTypeName :=

<typeName> ("::" <typeName>)*
pathName :=

(<typeName> | <name>)
("::" (<typeName> | <name>))*

timeExpression :=

"@" <name>

 136

actualParameterList :=
expression ("," expression)*

logicalOperator :=

"and" | "or" | "xor" | "implies"

collectionKind :=

"Set" | "Bag" | "Sequence" | "Collection"

relationalOperator :=

"=" | ">" | "<" | ">=" | "<=" | "<>"

addOperator :=

"+" | "-"

multiplyOperator :=

"*" | "/"

unaryOperator :=

"-" | "not"

typeName :=

"A"-"Z" ("a"-"z" | "0"-"9" | "A"-"Z" | "_")*

name :=

"a"-"z" ("a"-"z" | "0"-"9" | "A"-"Z" | "_")*

number :=

"0"-"9" ("0"-"9")*

string :=

"'" ((~["'","\\","\n","\r"])
 | ("\\" (["n","t","b","r","f","\\","'","\""]

 | ["0"-"7"] (["0"-"7"])?
 | ["0"-"3"] ["0"-"7"] ["0"-"7"]
)
)
)*

"'"

 137

APPENDIX B FIGURE 19 OPERATOR DEFINITION

The general definition of an OCL operator is as follows:

Type1::operation(arg : Type2) : ReturnType
pre: --precondition expression goes here
post: --postcondition expression goes here with optional result variable

The expression specified after post is only evaluated if the expression specified after pre

evaluates to true. Postconditions may contain two optional keywords to represent time: result

and @pre. The @pre keyword is used to indicate the value of an attribute or association at the

beginning of the execution of the operation. The keyword is postfixed to the name of the item it

is associated with. The result keyword is used to indicate the return value for the operation

[WK99]. Because a user may want to have a number of things to happen when the postcondition

is evaluated, OCL expressions can be conjuncted together. Although OCL does not specify any

order for the evaluation of conjuncted expressions, for the purposes of this thesis, it is assumed

that expressions are evaluated in a top to bottom, left to right fashion. For example, the

postcondition of the executeMsgValid operator of RuleContainer (specified below) contains

two OCL expressions conjuncted together. The msgTrigger=msg expression will be evaluated

first, followed by the rule->forAll(x:Rule | x.execute) expression. Listed below are the operator

signatures for Figure 19.

MessageInterface::receiveMsg(msg: message)
pre: --none
post: ReactiveAgent.CheckRules(msg)

ReactiveAgent::CheckRules(msg: message)
pre: --none
post: RuleContainer.executeMsgValid(msg)

RuleContainer::executeMsgValid(msg: message)
pre: --none
post: msgTrigger=msg

and rule->forAll(x:Rule | x.precondition=>x.postcondition)

 138

APPENDIX C LANGUAGE IMPLEMENTATION

This appendix shows how the language described in this thesis was implemented in the

multi-agent system agentTool. What follows is a step by step description of how components

needed for the reactive architecture described in Section 4.3 are created and saved in the

agentTool multi-agent development environment.

It should be noted that I designed the language and coded the basic components (Figures

56 through 62). The coding of the connectors and component state diagrams (Figures 63 through

70) was accomplished by Jennifer Mifflin, an undergraduate research assistant.

Before any components can be specified, an agent must first be created. From the main

agentTool dialog, the user must select the Add Agent button to add an agent to the screen. Once

done, an additional tab will be created containing the agent name. Figure 54 shows how this is

represented in agentTool. To change the agent name, the user must use the mouse to select

within the Currently Selected text box. Once there, the user can change the name of the agent

by replacing Agent1 with the desired name. For the purposes of this example, the name

Reactive will be used. Although multiple agents can be created and connected, only one agent

will be examined for this example. Once the agent is created, the user can then select the tab

containing the agents name (in this case Reactive). Once this tab is selected, the user will be

presented with the inner agent screen seen in Figure 34. The internal representation of the agent

is defined within this tab. The user can now begin specifiying the components making up the

particular agent type. Adding a component is done by selecting the Add Component button. A

generic component will automatically be added to the window. By selecting a component and

pushing the right mouse button, the component menu of Figure 56 is presented to the user.

 139

Figure 54 Creating an Agent

This menu allows the user to define all the static characteristics of the given component to include

name, attributes, and operators. Selecting Properties will bring up the dialog seen in Figure 57

thus allowing the user to change the component name and designate whether it contains a

substructure. Selecting the Substructure check box indicates that the component will contain a

substructure. The default is not selected. Defining substructures within agentTool is not

available in the current version of the software. An asterisk is appended to the name of any

component designated as containing a substructure.

Selecting Add Attribute from the component menu allows the user to define component

attributes one at a time. When the option is selected, the user is presented with the dialog box

shown in Figure 58. The Attribute Name field is used to specify the name of the attribute being

defined.

 140

Figure 55 Internal Agent Panel

The Attribute Type field can contain any of the predefined OCL types as well as any

user-defined types. The current version of agentTool does not allow the specification of user-

defined types. The Initial Value field is optional, but can be used to set the attribute to a default

value. Currently, no type checking is done within agentTool to ensure the type of Initial Value

matches Attribute Type or to ensure Attribute Type is valid. If the attribute is a collection of

objects, the user can specify it as a Set, Sequence, or Bag by selecting the appropriate radio

button. The software enforces the constraint that only one of these types be selected at any given

time. The attribute of Figure 58 will be represented as rule:Set(Rule). The user can then choose

whether the attribute is user defined, run time defined, or both. These selections will be used for

the code generation portion of agentTool (not yet implemented). Once completed, the user

selects the Add button. Figure 59 displays the RuleContainer once all attributes have been

added.

 141

Figure 56 Component Menu

Figure 57 Component Properties

The ‘+’ symbol indicates an attribute is user defined, while the ‘-‘ symbol indicates an attribute is

run time defined. Although not shown in the figure, the ‘±’ indicates an attribute that is both run

time and user defined. If the user later wants to edit any of the attributes previously defined, they

can go to the Edit Attribute option of the component menu. Once there, the user will be

presented with a drop down menu containing the names of all attributes defined at that time.

 142

Figure 58 Component Attribute

Figure 59 RuleContainer Attributes

The user can then select the attribute they wish to edit and will be presented with a dialog box

similar to that of Figure 58 except with all values filled in and the Add and Cancel buttons

replaced by Delete, Change, and Cancel buttons. The user can then make any desired changes

to the attribute or delete the attribute.

 143

 Once all attributes have been defined, the user can then specify any operators needed for

the component. Selecting Add Method from the component menu brings up the dialog seen in

Figure 60. The Method Name is used to designate the particular operator being defined.

Although not currently checked for, methods within the same component should not have the

same name. The Return Type field is used to specify the type of data (if any) being returned by

the method. Like Attribute Type, this field should contain a valid OCL or user defined type.

The Parameters field is used to specify data to be passed to the method.

Figure 60 Rule Container Method

The format for entering data in this field is parameter name:parameter type. Commas should

separate multiple parameters. No type checking is currently done on the format of this field or on

whether the parameter types are valid. The Precondition and Postcondition fields are for

entering OCL expressions describing the pre- and postconditions of the method. The Visible

checkbox is used to specify the operator’s visibility to other components. If the box is checked

then the operator may be accessed by other components. Operators not visible are preceded by

 144

the ‘#’ symbol. Figure 61 depicts the RuleContainer once all attributes and methods have been

defined.

Figure 61 RuleContainer Component

The Edit Method option of the component menu works in a similar manner to that of the

attribute, allowing the user the ability to change or delete any methods. All remaining

components can then be defined following the same procedure. Figure 62 shows the Reactive

agent panel once all components have been defined. Once one or more components have been

defined, the user may wish to link a component to the agents environment or to another

component. To do this the user simply selects the Add Connection button. To define an outer

agent connector, the user must then simply use the left mouse button and double click on the

desired component. Doing so will automatically add a one way outer agent connector to the

component.

 145

Figure 62 Reactive Agent Components

By right clicking on the connector, a drop down box will appear with four options (as seen in

Figure 63). Selecting the first option, Message_Interface, would reverse the direction of the

connector so that it was pointing at the Message_Interface component. Choosing the second

option, Framework, points the connector away from the component, towards the environment

framework. Selecting the BothArrows option defines a two-way outer agent connector. The

Delete option simply removes the selected connector.

The process for adding an inner agent connector is very similar, except that once the Add

Connection button is selected, the user must choose the two components that are to be

connected. Once the second component is chosen, a one way inner agent connector will be drawn

from the component selected first to the component selected second.

 146

Figure 63 Outer Agent Connector

To change the orientation of the connector, the user right clicks on the connector and is presented

with a set of options similar to those of the outer agent connector. The options will include the

first components name, the second components name, BothArrows, and Delete. Selecting either

component name will make the connector point to that particular component. BothArrows and

Delete work in the same manner as outer agent connectors. Figure 64 depicts the reactive agent

components completely connected. The thicker, dashed arrows represent the outer agent

connectors, while the thin, solid arrows represent the inner agent connectors. The static

representation of the agent is now complete.

To define the dynamic representation of the agent, state diagrams must be specified for

each component. To specify the state diagram for a specific component, the user must select a

component by left clicking on it. Once accomplished, another tab will appear with the name

component Stat Diag. This tab will represent the state diagram for the selected component.

 147

Figure 64 Component & Connectors

Selecting the tab will display the state diagram panel as seen in Figure 65, where the solid circle

represents the start state, and the circle within a circle represents the end state. Adding a state is

simply done by selecting the Add State button. Once defined, a state can be customized by right

clicking on the state and selecting Properties from the pull down menu. The user can then

change the name of the state as well as specify the action associated with the state. Figure 66

shows Figure 65 with a Wait state added. Once a state has been created, transitions can be

created in one of two ways. If the transition goes between two states then the user must select the

Add Trans button and then select the two states that the transition will go between. If the

transition loops back on itself, the user must select the Add Trans button and then double click

on the state having the loop back. For example, to add a transition from the start state to the Wait

state, the user must select Add Trans and then select the start state followed by selecting the

Wait state. To add a transition from the Wait state back to the Wait state, the user selects Add

Trans and then double clicks on the Wait state.

 148

Figure 65 Component State Diagram

Figure 66 Wait State Added

 149

Figure 67 depicts the diagram after this has been accomplished. To correctly model the

Message_Interface components state diagram depicted in Figure 24 of Section 4.3.2.2, two

transitions are needed from the Wait state to the Wait state. Currently agentTool does not offer a

robust way to handle this situation. To model this second transition, a “dummy” state must be

added for the state to transition to. A depiction of this workaround is shown in Figure 68.

Figure 67 Wait State with Transitions

Once all states and transitions have been defined, the last thing that must be done is to

define the transition characteristics. By selecting the transition and right clicking on it, the user is

presented with the transition menu seen in Figure 69.

Selecting the Properties option allows the user to specify the received message, guard

conditions, send message, and action for each transition. The Reverse selection simply reverses

the direction of the transition and the Delete option removes the transition. Remaining options

are not used in this research.

 150

Figure 68 Dummy State

Figure 69 Transition Menu

 151

Figure 70 depicts the completed state diagram. It should be noted that the send(message) event

triggers the transition form the Wait state to State2. It is an automatic transition from State2 to

the Wait state.

Figure 70 Completed Dynamic Model

 152

APPENDIX D REACTIVE STYLE OPERATOR DEFINITION

The operator definition defined in Appendix B is followed throughout this appendix.

IO_Interface::send(msg: message)
pre: --none
post: MessageInterface.send(msg)

IO_Interface::getPercept()
pre: --none
post: Sensor.getPercept()

IO_Interface::executeOp(name:String, params:String)
pre: --none
post: Effector.executeOp(name, params)

IO_Interface::execute(name:String, loc:String, command:String)
pre: --none
post: ResourceInterface.execute(name:String, loc:String, command:String)

MessageInterface::receiveMsg(msg: message)
pre: --none
post: IO_Interface.Controller.msgCheckRules(msg)

Sensor::receivePercept(per: OclAny)
pre: --none
post: IO_Interface.Controller.perceptCheckRules(per)

Effector::executeOp(opname:String, params:String)
--verifies the precondition of the operator is true
pre: (ops.name).precondition
post: (ops.name).postcondition

Controller::msgCheckRules(msg: message)
pre: rules->exists(x:Rule | x.precondition=true)
post: RuleContainer.executeRule(rules->select(x:Rule | x.precondition=true))

RuleContainer::executeRule(rule: Rule)
pre: --none
post: rule.postcondition

 153

VITA

First Lieutenant David J. Robinson was born on 30 October 1969 in Lancaster, New

Hampshire. He graduated from White Mountain Regional High School in Whitefield, New

Hampshire in June 1988. He served in the Air Force’s enlisted force from October 1988 to

August 1992. He completed his undergraduate studies at the University of Connecticut with a

Bachelor of Science degree in Computer Science and Engineering. He was commissioned

through the Detachment 115 Air Force Reserve Officer Training Corps (AFROTC) in August

1996.

Lieutenant Robinson’s first assignment was at Cannon AFB, New Mexico as a

Communications and Computer Systems Operator in January 1989. As an officer, his first

assignment was at HQ AIA, Kelly AFB where he served as a C4I Systems Engineer in September

1996. In July 1998, he entered the Graduate School of Engineering’s Computer Systems

Engineering program, Air Force Institute of Technology. Upon graduation, he will be assigned to

USSTRATCOM/J2 at Offutt AFB where he will be working in the Enterprise Architecture

Services Branch.

154

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of the collection of information, including suggestions for reducing this burden to
Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave
blank)

2. REPORT DATE
 March 2000

3. REPORT TYPE AND DATES COVERED
 Master’s Thesis

4. TITLE AND SUBTITLE

A COMPONENT BASED APPROACH TO AGENT SPECIFICATION

5. FUNDING NUMBERS

6. AUTHOR(S)

David J. Robinson, First Lieutenant, USAF

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 P Street, Building 640
WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT/GCS/ENG/00M-22

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
AFOSR/NM
Attn: Captain Freeman Alex Kilpatrick
801 North Randolph Street
Room 732 9-65
Arlington, VA 22203-1977

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

Maj Scott A. Deloach, ENG, DSN: 785-3636, ext 4622

12a. DISTRIBUTION / AVAILABILITY STATEMENT

 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

ABSTRACT (Maximum 200 Words)

With the size and complexity of software systems increasing, the overall design, specification, and verification of the structure of systems turns into a crucial concern
for software engineers. The Air Force, as well as all of industry, is currently faced with the problem of having to produce larger and more complex software systems
that run efficiently and reliably as well as being extensible and maintainable. The lack of a well-established notation upon which software engineers may agree has
made solving this problem even more difficult. The goal of this research was to develop a knowledge representation language that can be used to unambiguously
specify and design software systems in a verifiable, efficient, and understandable manner. To ensure maximum understandability and ease of use, the language was to
make use of both graphics and text to represent information.

The end result of this research was a component-based language that allows for the specification of software systems in a formal yet understandable manner. The
language was implemented in the agentTool software development environment.

14. SUBJECT TERMS
Agents, agentTool, Components, Connectors, Language, UML, OCL, Multi-agent Environment, Formal, Specification,
Representation, Architecture, Architectural Style

15. NUMBER OF PAGES
165

 16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

