SELECTING A SOFTWARE ENGINEERING
METHODOLOGY USING
MULTIOBJECTIVE DECISION ANALYSIS

THESIS

Scott A. O'Malley, First Lieutenant, USAF

AFIT/GCSENG/01M-08

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

SELECTING A SOFTWARE ENGINEERING METHODOLOGY

USING MULTIOBJECTIVE DECISION ANALY SIS

THESIS

Presented to the faculty of the Graduate School of Engineering and Management
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree of

Master of Science

Scott A. O'Malley, B. S.

First Lieutenant, USAF

March 2001

Approved for public release, distribution unlimited.

AFIT/GCS/ENG/0IM -08

The views expressed in this thesis are those of the author and do not reflect the official policy or position of

the United States Air Force, Department of Defense or United States Government.

AFIT/GCS/ENG/0IM -08

SELECTING A SOFTWARE ENGINEERING METHODOLOGY

USING MULTIOBJECTIVE DECISION ANALY SIS

THESIS

Scott A. O'Malley, B. S.
First Lieutenant, USAF

Approved:

_.l"
i’ i < - e

. P A i L T - ol i
Sag Scott A, Del.oach, Ph.D [hate
Chairman

-_,-""_.
T] b
Ly, Thormaas O, Hartrum hate
Cornamiiies: mesn ber
LA TS | J Fa bt

Capt 5ot M. Brown, Ph.D3 Jate

Commitiee member

ACKNOWLEDGMENTS

I would like to take this opportunity to express my most sincere appreciation to my faculty
advisor, Major Scott Del_oach, for his guidance and support throughout this endeavor. His experience and
insight kept me on the path to success, and his expectations forced me to set my goals high. | would also
like to express my appreciation to the other members of my thesis committee, Dr. Thomas Hartrum and

Captain Scott Brown, for their support throughout this process.

My biggest thanks goes to my wife, Angela, who has put up with me through the tribulations and
shared my joys at the completion. The last eighteen months have been by far some of the best in our time
together. | would also like to say thanks to my girls, who cannot read this yet, but someday may find this

work to beinspiration to pursue their own dreams!

Scott A. O’ Malley

TABLE OF CONTENTS

ACKNOWLEDGMENTS ...ttt sess st bbb bbbt bbbt v
TABLE OF CONTENTS ..ottt sttt bbb bbbt Vv
TABLE OF FIGURES ...ttt ssss s sss s sss st ssss s ses s ss s s essssssssssssssssessssesssssssssssssssssesnssssnsees X1l
N = I AN o TP XV
|, INTRODUCTIONuicteiiuiietesteessestesesaeesseseesessessstesaesesseseeseseesessessasessesesteseasessaseasansasesasessessssensasessensesessessssensnsessnnsssensane 1
L1 MUIAGENT SYSLEMS ...ttt s a et a bt a et s e bbb s e st et es s s ses s nantetas 2
1.2 ProbIEM SEBEEMIENL.......cc.curieeirieeireteieteet sttt eess b ea bbb bbbt b bbb en et 4
1.3 ProbIEM ETQDOTELION........coieeiieeieeeiets ettt bbbttt bbbt 5
1.3.1 DECISION IM@KINGecueeeereiiiseereicnesr ettt r et e bt a bt e b bt s e bt e R b et ne b st nen s 5
1.3.1.1 DeSign SPace and RUIEScc.ciiuiiciesieiceete ettt sttt st ae st besaese et e e ae b eseabenene e 6

1.3.1.2 Multiobjective DECISION ANBIYSISciiriireriereirerieiee sttt n e enens 7

1.3.2 Software ENgineering PalradigMSccuciiieiiiieesieisesiee sttt st sttt sa s saese st e e sesaesesbaeeseee 7

I I @ o 1= o @ = g 1= o USSR 8

1.3.2.2 COMPONENE-WEIE........c.eeuiriuirtieeeerteestess st st et se et se st se et b e se e st e e e e ere s e e st e b e neeae e b et e s e ne e st e b e e enenr e st are e ene e 8

S I Y (= 0| @ 1= 01 = o TSSOSO 9

1.4 SCOPE OF RESEAICR......ecviiiecietriecte sttt s e a et s e st s e sn s et en s ansnsnennntnse 9
1.5 APPrOBCH OVEIVIEWouieaieenctreat ettt bbb 10
1.6 TINESIS OVEIVIEW ...ttt sss et s bt e s e s s s e an b e b se s st e e s s e e e e nnb bt se e et et eennansessennsntes 10
[1. PROBLEM APPROACHcoouvettumiressssiesessssaesessssessssssessssssssessesssse s s bbbk 12
b8 111 oo [8Tox o] 100U OO OT U U T TTT 12
2.2 MENOA SEIECHION ...ttt bbb bbbt 12
220G T I T2 o] o o o o OO 14
2.3.1 DeCiSION ANAYSIS TOOI DESION......ueuireieiiirieieiierieiesee ettt n st ne bt esn et neen s anas 15
2.3.1.1 DENiNg the Value HIEraIChYccocicuiiieiicicec ettt s 16

2.3.1.2 Specifying Evaluation MeasuresS and SCAIESc.cccoeieirinieiiirrieieeseseiee et 19

2.3.1.3 Building the Multiobjective Value FUNCLION...........oirieee e 20

2.3.1.4 Developing a Software ANAYSIS TOOL.........cuiiriieeiirieiei ettt 22

2.3.2 Application of DeCiSIoN ANAlYSIS TOOL.........cciiiiiiiiieeieee ettt s 23

2. 3.3 RESUIT ANBIYSIS ...ttt et b et R et s e R Rt e Rt n Rt r e 23

2.4 SUMIMAIY oottt 24
[T1. DESIGN ...ouiuiuteetreeueeeeseseaseessesesese b s esese e se s se et e st s s e s se e b £ s e b b e e R b A e e b b £ 4 e AR b e e e AR A e n bbbt ne et s s 26
20 I 011 T [0 Tox o) o VOO 26
3.2 Developing the DeCiSiON ANAlYSIS TOO ..o 26
I = T8 T=N o 1T = oSSR 26

3.2.2 Evauation Considerations, Measures and ObJECHIVEScoviirieireiiirieie et ssesens 32
3221 MANAQEMENT ISSUES ...ttt ettt sttt b e e e e e e e s e e s e e bt eseeaeeaeese e s e s e neesbenbesbesreeseennennens 34

3.2.2.1.1 Cost of Acquiring Methodology and SUPPOIt TOOIS.........cccvereririerierrieeesse e 35

3.2.2.1.2 Organizational BUSINESS PraCliCeSccuririeirieiiriereeisie ettt 38

3.2.2.1.3 MethOdoIOgY MELUIILYcvcveiieieicrisieieesiree ettt 44

3.2.2.1.4 Integration of Reusable COMPONENTS..........ccccoviieiiririeiieiee e 46

3.2.2.2 ProjECt REQUITEMENES ..ottt s et n et 48

3.2.2.2.1 Legacy SyStem INLEGIatioN........cveirueerieiriesieisieeeeseessteseesesaesesteseesesse e ssesaesessesessesaesessaseesas 49

3.2.2.2.2 DIStIDULION ..ottt 51

32223 ENVITONMENT ...cviiiiiiicicieee ettt 52

3.2.2.2.4 Agility @nd RODUSENESS........coiuiuiriiirierieiesie ettt st ae st e be st s a e b enas 55

3.2.2.2.5 Dynamic Structure and SCAlabilitycoeeririeiiireeerreee e 58

3.2.2.2.6 INLETACHIONveiiieeceire ettt 59

3.2.3 Building the MultiohjECHIVE FUNCLION.........oiiieieiriieieireeie st 61
3.2.3.1 Single Dimensional Value FUNCLIONS............coririiiiineneecsie et 62

3.2.3. 1.1 LiNEAI FUNCLIONS ...ttt 63

3.2.3. 1.2 EXPONeNtial FUNCLIONS.......ccociiieuiiieieti ettt sttt n e bannenas 63

B I V< T (TSRS 65

3.2.3.3 MUItIODJECHIVE FUNCLION ...ttt sttt se s aesesbe e enan 66

3.2.4 Developing a Software IMplemMENtBLIONceiirreiiireeer e 66

3.2.4.1 Applying the DECISION TOO!ceiuiiriiieiirieiriesee sttt et st be et be e be e ba e enas 67

3.2.4.2 Automation of DeCISION ANAYSIS TOOL.......c.ccurrieuiirrieieiresiete sttt 67

LB SUMIMAIY .t bbb bbb bbb bbb bbb 68
IV. DECISION ANALY SISAPPLICATION ...ccictiiteisteseeteseeesteseesessesesseseesestesessessesessesessessesessensssensesessensssessesessensssessessssenes 69
g 11 o 1FTox A o] PP 69
4.2 DecCision ANalysisS APPliCaLiON PIOCESS........cciceririrrerireresieinisessssesssessssssesessssssssesssssssssssssssssssssssessssssssssssssnseses 69
4.2.1 DeterMiNiNG WEIGNES......ceeiieieierieee ettt et eae e e e bese e s st e e e aeseeseebeseebe s ese s eneeseasesessensasesseneasensnnens 69

4.2.2 Rating EVAlUGLION IMEASUIESccveuiriiieiesietisieeete st e st esesae e steseesestesesbessesesbesessessesesbansesessesessansesessensssensesens 70

4.2.3 Computing MultiohjECtIVE FUNCHION.......c.oieii ettt ene s 70

4.2.4 MethOUOIOGY SEIECHIONc.vtviieireeieiciesiei ettt b et b bttt b et e e bt e bbb enens 70

4.3 Software Engineering Methodol0gy AITEMNELIVES.........c.ocrririnet s 71
4.4 Applications of the Decision ANAYSIS TOO ..o sns 71
4.4.1 Rating CONSIAEIGIIONS.ccueiveuiriirieriiteiesestestseseesesaesesteseesesse st aseseesesteseasesseseasaseasessesessassesessesessensesessensssensasens 72
4.4.1.1 Cost of Acquiring Methodology and SUPPOrt TOOIS.cccrereerieririereereerese e 72

4.4.1.2 Organi zational BUSINESS PraCliCES.........eueuiierieeeiirireeieiresi ettt 74

4.4.1.3 MethOdOIOQY MEBEUIILYueveuiiieeieireeeete ettt ettt b ettt b e ene e 75

4.4.1.4 ReUSADIE COMPONENES.......cvviueireeteiiirteieseresseseseseseese e st se st sese s s e b et se b bt se st b et s ebeb et seebesene s neens 76
4.4.1.5L.egacy SyStEM INEEGIELION.ccciirieerieeeteeeeeie ettt b et et st ne b et b neene e 76

A4 1.6 DISIIIOULION. ...ttt b bbbt et n e nn e 77

417 ENVITONITIENE ...utvititiiitiieiettitieiesttseeses s seesesesseesesessbesesessbeses et e sesebebesebessbebebebebebebebebebebebebenenebeberebebererenas 78

4.4.1.8 Agility 8N RODUSINESS......ocveieireereiiresieecresieieese et 79

4.4.1.9 Dynamic Structure and SCalability..........cciveiiierieiieeiesiee e e 79

I L0 g1 (= = ot (o o 1SSV 80

4.4.2 Software RequireMent Case SEUdIESccveivieieiieicesee ettt ae s b ssete b e s esenneneas 81
4.4.2.1 Case 1: CONMENE SEBICN.....ccviveiiereeretrere ettt 81

4.4.2.1.1 Weighting the Evaluation CONSIAErationS............cccurrueriirriereninesieieeseseeeess e 81

4.4.2.1.2 Rating the Evaluation CONSIAEratioNS.........c..cociuiiririeirieeeie e 85

4.4.2.1.3 Calculating the Multiobjective Value FUNCLIONSccoivrieieineiecrniecese e 86

Vii

4.4.2.1.4 Determining the BeSt AItEINELIVEc.co e 87

4.4.2.2 Case 2: Weather MONItOriNg SEaION..........c.coueeieieeieerie et 87

4.4.2.2.1 Weighting the Evaluation CONSIAEratioNnS............cccrriereernierenineseeeeseseeesessse e 88

4.4.2.2.2 Rating the Evaluation CONSIAEratioNS............ccciveiiririeinieiee st 91

4.4.2.2.3 Calculating the Multiobjective Value FUNCLIONScooevrieeineneieseneeeesre e 92

4.4.2.2.4 Determining the Best AILEINALIVEcc.cvviiiicicicceece e 93

4.4.2.3 Case 3. CryPLaNalYSiS.coveveeeuerireereiiresee sttt b et r bbbt n et n e nn e 93

4.4.2.3.1 Weighting the Evaluation CONSIAErations............ccccuvueirierieirieiseseeesieseseseeessesessesaesesseseenas 94

4.4.2.3.2 Rating the Evaluation CONSIAEratioNS..........c.ceiueeirireeceieceie et 98

4.4.2.3.3 Calculating the Multiobjective Value FUNCLIONScocoevieenineieicrrecesie e 98

4.4.2.3.4 Determining the BESt AITErNALIVEcouoiririieee e 99

4.4.2.4 Case 4: Inventory TraCKing SYSIEMc.coieirieieiieseie ettt 100

4.4.2.4.1 Weighting the Evaluation CONSIAerations.............ccerueererererieirieneseseeese s sese e 101

4.4.2.4.2 Rating the Evaluation CoNSIAErations.............coeueerreeenineiieieiresieeses s 104

4.4.2.4.3 Calculating the Multiobjective Value FUNCLIONScccveiiieiieecccce e 104

4.4.2.4.4 Determining the BeSt AItEINELIVEccoveiiirieerreeese e 105

4.5 ANalysiS Of the ASSUMPLIONS.....c.ccciieireccre sttt a et a st b s s ae s s s anantes 105
4.6 DECISION VATUBLONocvieiicereitietie ettt ettt 109
S N 0110 0= Y TR 113
V. CONCLUSIONS AND FUTURE WORKccecietertetisteeeteseesesteeesesassesseessesssssssesessssssessesessensesessessssessssessensesessensssenes 114
5.1 CONCIUSIONSvuieruieraereeserseses ettt s bbb s bbbt 114
B2 FULUIE WWOTK ...ttt bbb E bbb £ bbbt et bt s 115
5.2.1 BaSISTON DECISION ...ttt es et es s e bbb bbb bbb bbb bbb bbb bbb neenas 115

LA U 1< ok LV YOS 116

5.2.3 QUANTITALIVE DEIAL......cueiviuieiiiieiieiesiei sttt e e e b e st e e et e e esesaese s b e e e sesbeseese s e s e ebeseese s esessensesessenensensens 116

5.3 SUMIMEIY .ttt e bbb 117
APPENDIX A. BACKGROUNDccitiiettrtetteteietesaeestesestessesestessssestessstessessssaseasessessesasessessesessassessssasessessesessasessessssessans 119
AL OVEIVIBI ...ttt ses s s bbb £ e s s b bbb bbbt 119
A.2 MUltiagent SYSLEM PrOPEITIEScccceveirieririsietsesesssssessssee s sessssssssssssesss s sessesssssssssssssssssssssssesssssssessssssnses 119

viii

Y B T T a1 o T 119

A2 2 ENVITONMENES ..ottt ettt ne st r et e e st ne R st e s e et e ren e e neen e nesner et nes 120

A 2.3 ProbIEM DOMEINS.c.oiiiieiiiiiieteeesie ettt b et s b bt b sttt st bbbt e bt e s bt s 120

AL 2.4 BNEFIES ..ttt bt h e e R e Rt A e R e Rt R e bRt b et he et e Rt b et aenbeneas 122
AL25 PrINCIPIES. ...ttt e e E bRt e Rt r s 122

A.3 Software Engineering ParadigMScccvirieiniiccreee ettt sss st ssss s ses st ssssssssssssssssesnes 122
A.3.1 ObjeCt-Oriented Paratigmcccuciiiiieiieiciesiei ettt sttt e bt et e e ebe b eseebaeesesbaneas 123
A.3.2 Object-Oriented MethOAOIOGIEScvruirieiriiieierie ettt b e et be st b e sbeneas 126
A.3.3 ComPOoNENt-Ware ParatigiMc.cerrieuiiriiieiiire ettt bttt et 127
A.3.4 Component-Ware MetNOUOIOGIESc.eiueiriirieiirieirie ettt e et b et b et b e 129
A.3.5 AGENt-Oriented Paratigmceiririeeiieen ettt 129
A.3.6 Agent-Oriented MethOOIOGIES..........covruirieirieieierie ettt sttt 130
A.3.7 Paradigm COMPAITSONScucreirereiirireereireireree st see et s e b st s b s e e s s e s e bt se s b e st aeneer e e e neb e s 131

A.4 Agent-Oriented Problems and PitfallS..........cccccceirscseesee et sas s 133
A.4.1 Agent-Oriented PrODIEMS.coiieiiiicicec ettt b et e st e e be b esesba e esesbaneas 133
A4.2 AGENt-OreNnted PItFallScoiiieeee ettt b e 134

ALS REBIEH WOTKcooeeeeceeceeie st 136
A.5.1 Jennings and Wooldridge' s Work on Agent-Oriented Software ENgineering...........ccocoveeevneeerneneenens 136
A.5.2 MESSAGE: Methodology for Engineering Systems of Software AGENES.........cccccovvveeieveeicceseseesenens 137
A.5.3 Methodology Selection for Developing Real-Time SYSIEMS.........ccvriireerneereieneee e 138

A.6 DeCiSION-MaKiNG FramEWOIKSccceieiiiiciesiees sttt st st s s senaes 139
A.6.1DeSIGN SPACE ANU RUIES ...ttt bttt bbbt et 140
A.6.2 MUltiobjeCtive DECISION ANBIYSIS.....ceiiiiieirtiieiirte sttt ettt st b et b et b e bt be e seeneneas 142
ALB.2.1 TAXONOMY ...ttt st se et r et r e s e e st s e e e e st s e e e e e e st ne e e r e ne e st ne e e e b e neenene e e ereneenis 142
A.6.2.2ValUE HIEIAIChIES ... 144

A.6.2.2.1 Desirable Properties of Value HIierarchies..........ooeeciicienneenecen e 146

A.B.2.2. 1.1 COMPIELENESS......icveeeitiieteiteeete ettt sttt et e st sa e s b e st e s s essste s esesbenssbesaenesrensereseenis 146

A.6.2.2.1.2 NONTEAUNABNCYeeueeieeieieiniesieie ettt sttt e e e et e e e st se e e sae e e e seeseeneseeneeneseenis 146

A.6.2.2.1.3 DECOMPOSADI LY ..uveveivirieiiiteietisiee ettt e bt e et e e enesre e ebesaenis 147

AB.2.2.1.8 OPEIADIILY......oeeeoeeeeeee oo eessesee s sseeeeee e ssssseeeee e 147

ALB.2.2.1.5 SMEII SIZE...ceieeeeee et bbbt b e et e et e 147

A.6.2.2.2 Uses Of VAlUE HIErarChi€S ..ot 147

A.B.2.3 EVAUBLION MEBSUIEScoviieiiieiciisie ettt 148

A.6.2.4 Types of Evaluation MEBSUIE SCAIEScueiririeieiiesieieessie et 148

A.6.2.4.1.1 Natural Or CONSITUCIED........c.cveveiiririeieiereieieieie ettt bbb nbenas 148

A.B.2.4.1.2 DITECE OF PIOXY ...eouevriuiireereiisisseteisesiesei s st s e sae st se et s e nne e n s 149

A.6.2.4.2 Developing Evaluation MEASUre SCAlES..........ccvveerieieienieisieiee ettt 149

ALB.2.5 AITEINEBLIVES.......cveieeceeces ettt eer et 150

A.6.2.6 MUItIODJECHIVE VAIUE ANAIYSIS ...ttt 150

A.6.2.6.1 Multiobjective Value FUNCLION ..ot e 150

A.6.2.6.2 SPreadshEet ANAIYSIS ..ot 152

AT SUMIMEIY oottt ettt e e e b e st e £ et e £ b et se b e s e e e e b et e b e b et ne b e se e st s b ebe e st nbanens 152
APPENDIX B. METHODOLOGY SELECTION CRITERIA SURVEYcooiciieiieeteesee et ese s et ss s sssessssesenens 154
B L SUINVEY .ottt bbbt bbb b £ bbb bbb bbb A b bR bbb bbb bbb bbb bbbt 154
B.2 RESPONSES.......cuiuiieiirieieieteieie ittt ettt bbbt bbbt bbb bbbt bbb bbb bbb bbbk bbb bbb bbbt bbb bbb bbb b bt ts 159
APPENDIX C. SENSITIVITY ANALYSES.. .ottt eietereetesteieetesesesteeetessssestesessesssssssesssssssssessessssessesessessssessssessensssessessssenes 174
CLLCBSE SHUAY L ...ttt ettt b et s e b b e s s e e et b b £ £ R b e e Ae b e et s e bt e e b et et e e s e b et rennaetas 174
CL2 CBSE SHUAY 2 ...ttt ettt bbb st b 4R b e e s b E £t b £ e et b A et e b b £ b b et ee bt eb bt s 177
(O 0= IS {0 |V T TR 179
LR == S {0 | TR 182

APPENDIX D. SOFTWARE ENGINEERING METHODOLOGY DECISION ANALYSISTOOL (SEM-DAT) AND DATA

ANALYZER USER SIMANUAL ..vvueerieeesseeessssessssessesssssssssssssssssssssssssssssssssssessssessssesssssssssssssssssessssesssessssssssssssessssessssees 185
[200 11 oo [FTox 1 o o OO ST 185
D2 INSLAH AL ON. ...ttt s b bbbt b sttt 185
DB FEBLUIES.......oeeceererecie ittt ettt et e bR E £ b et b b s bbbt Rt 186
2 20 0 I = S 186
D.3.2 STEP 2 et h e bt e b h e h e e e e R Rt R e R R e eRe e R e e R e e e e R e R e nRe Rt R e e Reene e e e nenenea 186

D33 STEP 3.ttt R R R R e R R R R Rt R st R e e Rt r e r e r e r e 187

DLBA STEP 4 ..ttt bbbt h R e e R R e R AR R e eRe e R e e R e e e e R e Re Rt Rt nReeReeRe e e e nenenea 187
D35 STEP 5 ..ovovotttieeeeeeesssssssssss s sssssssssss s 187
D.BI0 RATING. ... bbbttt e b e R e Rt Rt e R e e Rt e b e e s e e s b e b e nbesb e nbenbeebees e e e e s e nenea 188
D.3.7 DA ANAIYZEN. ..ottt bR R R R Rt 188
D .4 DEIMONSITALION.....ovrvrvrerererseeseseeseeseeseses s bbb bbb 188
APPENDIX E. SOFTWARE DEVELOPMENT QUESTIONNAIREcuetueeressreseessessseessessseessesssssssesssssssesssesssessssssesssnes 195
E.1 Content Search System Analysis and Design ModelS— MaSE..........cccovrrnnnnnncseinneeesesess s 195
E.2 Content Search System Analysis and Design ModelS— BOOCK...........ccverrenicnecnicneenseeesee s 210
E.3 Software Devel 0pment QUESLTIONNEITE.........cvucuieeeiereteeesiresersese s ssess s ses s sssssss st esssssssessssesssans 229
E.4 Questionnaire Results (Tabulated SUMIMAIY)......cccccremmeninnieeieiessesssssssssssssssesesssssssssssssesesssssssesssesssesesees 231
BIBLIOGRAPHY ...ueuuuueeuseussesssessesssesseesssesssesssesssesssesssesssesssesssesssesssesssesssesssesssesssesssessassssesssesssesssesssesssesssesssesssessessneses 233
T2 I N 236

Xi

TABLE OF FIGURES

FIGURE 1: A SIMPLE DESIGN SPACEccieututttteieteieteteietete ettt et s b sess b sess s se bbb s sssesesesssesesesssesesesasesesesasesssssssesenns 6
FIGURE 2: FACTORS FOR DECISION TECHNIQUE SELECTION......cuetttetrerertreresesssesesesssesesesssssesssssssssssssssssssssssesssssssesens 14
FIGURE 3: PROBLEM APPROACH.cctettteteteteteeetetsssesesssssesesssssesesssssssssssssessnsas 15
FIGURE 4: DECISION ANALYSIS TOOL DEVELOPMENT ...coiuititeirireeisisesesssssssesssssssssssssssesssssssessssssssssssssssssssssssssssssnsnnas 15
FIGURE 5: EXAMPLE OF A VALUE HIERARCHY FOR METHODOLOGY SELECTION.....cccceurereureerrereneaseesseenessesensasens 18
FIGURE 6: EXAMPLE OF AN EVALUATION M EASURE WORKSHEETcvrutuererienesesessesessessesesssessssesssssessesssessssesenses 20
FIGURE 7: SOFTWARE ANALYSISTOOL INTERFACE EXAMPLE......ccocs ittt sesessssneens 22
FIGURE 8: VALIDATION IMETRICS.....cuctttetttetrereetetetseetstsssesestsssssessas 23
FIGURE 9: PROPOSED EVALUATION CONSIDERATION RATINGS......cceeurirerereriseresestsesesesesesesesesesesesssssesesssssesesssenenens 30
FIGURE 10: AVERAGE RATING FOR PROPOSED EVALUATION CONSIDERATIONS.....ccceureeureetrereeesesesesasssesensanens 30
FIGURE 11: WEIGHTING PARTITION. .. .tttttititstetetsssesssrsssesssssssssssssssssssssssessnsnsns 31
FIGURE 12: METHODOLOGY SELECTION VALUE HIERARCHYooviiiucirireieerersesessiessesesse s ssesssssessesssessssensanses 33
FIGURE 13: COST OF A CQUIRING METHODOLOGY AND SUPPORT TOOLSW ORKSHEETccvcvuvurerererirererereserenens 38
FIGURE 14: ORGANIZATIONAL BUSINESS PRACTICES WORKSHEETccouvuriririreresiseresesisesesesssesesssssesesesssssesesssesenens 43
FIGURE 15: METHODOLOGY MATURITY WORKSHEETeutueurtrireetsisesesesisesesssssesesesssesesesssssessssssssssssssssssssssssssssssssneas 46
FIGURE 16: REUSABLE COMPONENTS W ORKSHEETccctuetrtriturteereessasesessssessesessssssssensssssesessssssssesssssesssnsssssssesassas 48
FIGURE 17: LEGACY SYSTEM INTEGRATION WORKSHEETc.ceueureeueureretestessesesssessesessssssesessssssssesssssssssssssssssesassas 50
FIGURE 18: DISTRIBUTION WORKSHEETctuteeteetuesessesesssessssessssssssesssessssesssssessssesssesssssasssssssssssessssesssssesssssessssensssses 53
FIGURE 19: ENVIRONMENT WORKSHEETceuetttstrtetstreresestsesesesssssesssssssessnsas 55
FIGURE 20: AGILITY AND ROBUSTNESS W ORKSHEETcueurtrtstreresestreresesssesesssens 57
FIGURE 21: DYNAMIC STRUCTURE AND SCALABILITY WORKSHEETc.eetitrireresireresesesesesesssesesesssesesesssssesesssesenens 59
FIGURE 22: INTERACTION WORKSHEETc.cotutuetrereeuetresesseessssesssssesseessssssesssssessssesssesssssssssssssesssssssssnssssesssnssssessenssnsas 62
FIGURE 23: NORMALIZED EXPONENTIAL CONSTANTS [18]cuiuruiirinierinireeiseieiseiseseeseseesesssessesess s sssessessssssseans 65
FIGURE 24: INDEX IMAPPING.....cctutueuetretaesessesesssesessesssessesesssesessessssssssessssssssesssssessssesssesssssasssssssssssessssessssesssssessssesseses 66
FIGURE 25: COST OF A CQUIRING METHODOLOGY AND SUPPORT TOOLS WORKSHEET SUMMARYccccvvenne 73

Xii

FIGURE 26: ORGANIZATIONAL BUSINESS PRACTICES WORKSHEET SUMMARY.coeiueireesrerssressssessessessesesannes 75

FIGURE 27:M ETHODOLOGY MATURITY SUMMARY w....cotuurrerresrersseesesseessesssesssesssssssesssesssesssesssesssesssesssesssessssssesssees 76
FIGURE 28: REUSABLE COMPONENTS WORKSHEET SUMMARYcvurumeeeerreneersesnesesssesessssssssssssssssesssssssssessssesens 76
FIGURE 29: LEGACY SYSTEM INTEGRATION WORKSHEET SUMMARYcoreuieiurneeeersesssssssssssssssssssssssssssesssssesens 77
FIGURE 30: DISTRIBUTION WORKSHEET SUMMARYcuvcuuueresseeseessessesssesssesssesssesssesssesssesssesssesssesssesssssssesssssssesssnes 78
FIGURE 31: ENVIRONMENT WORKSHEET SUMMARY ..c.cuuutueemnrsseessesssessesssesssesssssssesssesssesssesssesssesssesssssssessssssesssnes 78
FIGURE 32: AGILITY AND ROBUSTNESS WORKSHEET SUMMARY w...ccoueumieressersseesessseessessessesssssssesssssssessssssesssens 79
FIGURE 33: DYNAMIC STRUCTURE AND SCALABILITY WORKSHEET SUMMARYovvueereieneneesnenseessessessessnens 80
FIGURE 34: INTERACTION WORKSHEET SUMMARYccturremeereerresseeseesesssessessssssseessssssssesssssessssssssessssssssessssssesens 80
FIGURE 35: CONTENT SEARCH SYSTEM REQUIREMENTS.....cutueureeeenessesssesesssssesssessessessssssessssssssssssssssssssssssssesens 82
FIGURE 36: CONTENT SEARCH WEIGHTING SUMMARYc.oremuetremseeseessesssesssessssssesssesssesssesssesssesssesssssssessssssnsssnes 85
FIGURE 37: SINGLE DIMENSIONAL VALUE FUNCTION FITNESS VALUES CASEL......vcniueneeneeeeeeneeseessenseessessees 86
FIGURE 38: WEATHER MONITORING STATION REQUIREMENTS [2]cuuuereerrereeseneeessessseesessseessessesssesssessessnes 88
FIGURE 39: CONTENT SEARCH WEIGHTING SUMMARYccoureumririesreressesesssesssesssssssesssesssesssesssesssesssesssssssessssssessnees 91
FIGURE 40: SINGLE DIMENSIONAL VALUE FUNCTION FITNESS VALUES CASE 2......ovueeereereeeeereeeesseesessessseseeens 2
FIGURE 41: CRYPTANALY SIS REQUIREMENTS [2] ...uutuueieeereeseeretseesseesessesssessssssssessessssssessessssssesssssssssessssssessessssssesens 9%
FIGURE 42: CONTENT SEARCH WEIGHTING SUMMARYc.oreuuerresseeseessesssesssesssesssesssesssesssessesssesssssssssssesssnsssessanes 98
FIGURE 43: SINGLE DIMENSIONAL VALUE FUNCTION FITNESS VALUES CASE 3.....ccnineeneeeeeneeseessessesssesenees 98
FIGURE 44: INVENTORY TRACKING SYSTEM REQUIREMENTS [2]ccuieuriiemerireesensnessesisssssesssessesssesssesssesssenes 100
FIGURE 45: INVENTORY TRACKING SYSTEM WEIGHTING SUMMARYcovieumiiemeneemsesisssesssesssesssessesssssenes 103
FIGURE 46: SINGLE DIMENSIONAL VALUE FUNCTION FITNESS VALUES CASE 4......coveueeerrereieeereeseesneessenneens 104
FIGURE 47: CASE STUDY MULTIOBJIECTIVE FITNESS VALUESccviurtureeeeeneereeseesetssesessesssssssssssssssssssssssssssssssnes 106
FIGURE 48: COMPOSITE PERCENTAGES OF MANAGEMENT AND TECHNICAL CONSIDERATIONS....c.crvereenees 106
FIGURE 49: SENSITIVITY ANALY SIS EXAMPLEcotuuuuueemessseesesssessesssessssssesssesssssssessssssssssssssesssssssessssssssssssssseses 107
FIGURE 50: WEIGHTS AND CRITICAL POINT SUMMARYcurteumumeemsemseesesssesssesssssssesssssssesssssssesssssssesssssssessssssseses 110
FIGURE 51: CONTENT SEARCH DEVELOPMENT METRICSccuuuuiemrerieesessessesssssssesssessesssssssesssssssesssssssesssssssenes 111
FIGURE 52: ORIGIN OF OBJECT -ORIENTED METHODOLOGIES [25]ceviveeerrenerreeereseeseseesssesssesmssssssssesessesesneans 126

xiii

FIGURE 53: DEVELOPMENT OF UML [25]ccotiuuieimeiieenesiseesesssesssesssesssesssesssesssssssssssssssesssssssesssssssesssssssesssssssenes 127
FIGURE 54: A SIMPLE DESIGN SPACE......cuutuuteuesteessesiessesssesssesssssssessssssse st s ssssssss st s sssssssesssssssesssssssessssssseses 140
FIGURE 55: FIVE PHASES TO STRATEGIC DECISION MAKING [18]ceevieierrenerreeereesneseesesesssesessesssssesessesesneans 142
FIGURE 56: VALUE HIERARCHY FOR EMPLOYMENT OPTIONS [18]cuuruueeeeeemeeneesesneeseissesseesessssssesssessssesnsens 145
FIGURE 57: EVALUATION CONSIDERATIONS FOR EVALUATION OF JOBS.....ccuuutremseseessesseessessesssesssssssessssseses 145
FIGURE 58: SEM-DAT WELCOME SCREEN.....ccutuuteuuerseessessesssesssesssesssssssesssesssesssssssesssssssesssssssessssssesssssssessssssseses 188
FIGURE 59: SEM-DAT STEP L SCREENotuuteuerteessesieesesssessesssesssesssssssesssesssesssssssesssssssesesssssesssssssesssssssessssssseses 189
FIGURE 60: SEM-DAT STEP 2 SCREENouuuteumereeessesseessesssessesssssssesssssssesssssssesssssssesssssssesssssssesssssssesssssssessssssseses 190
FIGURE 61: SEM-DAT STEP 3 SCREENcceetttiteteteteieteteteieiete ettt sesste e bess bbb s bbb sssebesesssebesesesebesesesesesesesesesesnes 190
FIGURE 62: SEM-DAT STEP 4 SCREENccetttutueteteteteteteteaeeetesesstetesssstetesssssesesssssesesesssesesesasesesesssesesesesesesesesaseseses 191
FIGURE 63: SEM-DAT STEP 5 SCREENccetttuiueieieteteieieieisieteies ettt bbb bbbt be b essb b b s bbb bbb sesesesesesaes 191
FIGURE 64: SEM-DAT RATINGS SCREENotuuueuuteusesseesessessesssesssessssssesssesssesssssssessssssssssssssessssssesssssssessssssseses 192
FIGURE 65: DATA ANALYZER DATA INPUT SCREEN......cctuuteueuieesessessesssessesssssssesssssssesssssssesssssssesssssssessssssseses 193
FIGURE 66: DATA ANALYZER DATA EVALUATION SCREEN.......otuuuitemersessessssessesssssssesssssssesssessesssssssessssssseses 193
FIGURE 67: DATA ANALYZER CHARTS SCREEN.......cturueerrereseeseeseessesssssessesssssssssssssssssssssssssssssessesssssssssssssssnssnes 194

Xiv

AFIT/GCSENG/01M -08

ABSTRACT

With the emergence of agent-oriented software engineering methodologies, software developers
have a new set of tools to solve complex software requirements. One problem software developers face is
to determine which methodol ogy is the best approach to take to developing a solution. A number of factors
go into the decision process. This thesis defines a decision making process that can be used by a software
engineer to determine whether or not a software engineering approach is an appropriate system
development strategy. This decision analysis process allows the software engineer to classify and

evaluate a set of methodol ogies while specifically considering the software requirement at hand.

The decision-making process is developed on a multiobjective decision analysis technique. This
type of technique is necessary as there are a number of different, and sometimes conflicting, criterions.
The set of criteria used to base the decision was derived from literature sources and validated by an opinion
survey conducted to members of the software engineering community. After developing the decision-

making framework, a number of case studies are examined.

XV

[THIS PAGE LEFT INTENTIONALLY BLANK]

SELECTING A SOFTWARE ENGINEERING METHODOLOGY

USING MULTIOBJECTIVE DECISION ANALY SIS

|. Introduction

The Air Force is changing the way it leverages its information technology through a strategy
called “One Air Force...One Network” B3]. Information superiority, a key factor to success in the 21%
century, is clearly delineated by visionary documents such as Joint Vision 2020, and Air Force 2025 [17,
35]. Information superiority provides the ability to control and exploit information in a way that ensures
decision dominance; that is, the ability to make smarter decisions faster than the enemy. The strategy is
based on leveraging the advantages of current and future information technologies.

The technological advances in information systems have made information technology one of the
military’s greatest force multipliers. The ability to rapidly disseminate large amounts of data across
geographically separated command centers allows commanders to make timely decisions in an ever-
changing environment. As the ability to rapidly disseminate information increases, the amount of
information available to decision makers is also increasing dramatically. It is imperative that technology
advances to ensure that the information available is a benefit to leaders and not a hindrance due to volume.
The size and complexity of such a worldwide network will necessitate formal and rigorous approaches to

ensuring the entire system will be interoperable and secure.

The Department of Defense, through the Defense Advanced Research Project Agency (DARPA),
is investigating the use of agent-based systems as a technology for maximizing the benefit of the
information resources, while trying to reduce the strain placed on other resources, namely manpower and
time [8]. The current focus has been on integrating client/server information systems together to provide
decision support capabilities to the military and national leaders. Agent-based systems are a promising

technology in this regard, as they offer benefits such as integrating legacy systems with newly devel oped

components, handling errors gracefully, moving tasks that involve simple reasoning but require a large
amount of computation to the agent to alow the human more time for complex decision making, and

allowing a synergistic collaboration between users and software agents.

As agent-based technology emerges, the question of how to apply this advancing field is raised.
Through the Air Force Office of Scientific Research (AFOSR), the Air Force is investing in the
development of agent-based technology to improve command and control support. Developing agents,
which can be used to gather and synthesize data as well as cooperate with other agents to solve problems, is

just one area on which AFOSR intelligent agent research is focused.

Current AFOSR sponsored research efforts at AFIT have involved defining a methodology, called
Multiagent System Engineering (MaSE), for designing, implementing and verifying multiagent systems
[20, 32, 39]. MaSE is an extension of object-oriented software design methodol ogies, where an agent is the
basic building block of a system. The agent is an abstraction that encompasses many of the characteristics
of a multiagent system. While developing this methodology, AFIT researchers have aso developed
agentTool, a multiagent system development tool that implements the MaSE methodology. Currently, the
methodology is based on the assumption that an agent-oriented system is to be developed versus a

traditional system [39].

This research examines the decision-making process, which leads to the decision to use a specific
methodology, such as MaSE, to develop potential software projects. Agent system technology offers a
number of advances over conventional software systems for the military’s information sharing/decision
support domain. Understanding these capabilities is central piece to deciding whether or not the
technology is appropriate to particular problems. The next section presents a foundation of agent

technology information.

1.1 Multiagent Systems

The Air Force's challenge to create a seamless network to ensure information superiority

introduces an extremely complex operating environment. Decisions regarding network connectivity and

data storage are just a couple of the hardware factors in the task. The development of software around the

hardware resources is another critical piece to the success of “One Network...One Air Force.”

Multiagent systems are an attractive solution to the software problems. A multiagent systemis
comprised of many heterogeneous, or different, agents. An agent is defined as a computer system that is
situated in an environment and is capable of autonomous action in the environment in order to meet its
goals [40]. Agents are characterized as being autonomous, pro-active, reactive and sociable. Autonomy is
the ability to act without outside intervention, as well as having control over internal state and behavior.
Pro-activity is the ability to exhibit goal-directed behavior by initiating actions that work toward satisfying
agoal. Reactivity isthe ability to perceive the environment and respond to changes in the environment in
order to achieve agoal. Finally, social ability isthe ability to interact with other agents in order to achieve

agoal. These properties allow agent systemsto be flexible problem solvers.

Designers of the Air Force's global network must determine the type of environment the system
will support. By considering two different environments—closed and open—properties of agent behavior
can better be evaluated. In a closed system environment, the system designers know exactly what type of
agents will exist. For the most part the agents will be cooperative, that is, the agents will work together
toward a common goal. In an open system environment, agents are likely to meet both cooperative agents
and competitive agents. Competitive agents are self-interested; they have their own set of goals, which may
be in conflict with the overall goal of the system. Self-interested agents will assist with the group’s
problems, usually at some cost, which is negotiated prior to performing any computation. For an agent to
work within an open system, the agent also must know how to handle communications with agents that
were unknown to the system designer when the agent was developed [9].

The global nature of the “one network” concept typifies the problem domains that multiagent
system approaches are suited to solve. That is, the problem domains generally have an inherent form of
distribution; that is, knowledge, capability, information, and expertise are all resources that can be
distributed throughout the system [3]. Three examples of problem domains with inherent distribution are

distributed situation assessment, distributed resource scheduling and planning, and distributed expert

systems [23]. MaSE and other agent-oriented software engineering methods are well suited for dealing
with distribution in software requirement problems.

By building systems that involve multiple agents, the system should realize benefits such as speed-
up due to concurrent processing, less communications bandwidth requirements as information gathering is
performed at the source and not remotely, and increased reliability since there is not a single point of
failure. Other benefits include increased responsiveness due to processing and sensing being performed at

the source and simplified system development, since each agent is modular [23].

1.2 Problem Statement

A number of methodologies exist for building multiagent systems, once the decision to use a
multiagent design is made [11]. Like MaSE, these methodol ogies provide no guidance as to which types of
software problems the methodology is suited. The academic community, as well as industry, is still trying

to determine which problems call for a multiagent approach [15, 24].

Jennings and Wooldridge have written many papers on agent-oriented software engineering in
which they provide “intellectua justification” [13,15] for the validity of the agent-oriented techniques.
Their justification, however, comes from a qualitative analysis of how well the technique addresses the
principles that allow software engineering techniques to deal with complex problems proposed by Booch:
abstraction, decomposition, and hierarchy [2, 15]. They leave “understanding of the situations in which

agent solutions are appropriate” asan outstanding issue [15].

In 1999, the European Institute for Research and Strategic Studies in Telecommunications
(EURESCOM) began a project to explore the use of agent technologies within the European
telecommunications industry. One of the project’s three objectives is to “define guidance for the
identification of application areas where an agent-based approach is better suited than other approaches’
[24]. Below are the five guidelines the consortium has promoted that are intended to help the developer in

deciding whether or not an agent-oriented approach is appropriate [24]:

1 An agent-oriented approach is beneficial in situations where complex/diverse types of

communication are required.

2. An agent-oriented approach is beneficial when the system must perform well in
situations where it is not practical/possible to specify its behavior on a caseby-case

basis.

3. An agent-oriented approach is beneficial in situations involving negotiation, co-

operation and competition among different entities.
4, An agent-oriented approach is beneficial when the system must act autonomously.

5. An agent-oriented approach is beneficial when the system is expected to be expanded

or modified or when the purpose of the system is expected to change.

These guidelines are a beginning to determining whether or not an agent-oriented approach is well
suited to the problem. However, based on these guidelines alone, there is still no clear answer as to
whether or not the approach is appropriate. The problem this research seeks to solve is to define a decision
making process that can be used by a software engineer to determine whether or not an agent-oriented

softwar e engineering approach is an appropriate system devel opment strategy.

1.3 Problem Elaboration

With the problem statement in mind, additional topics require explanation. First, “define a
decision making process’ indicates that a working knowledge of decision theory is needed. Then,
“determine whether or not an agent-oriented software engineering approach is an appropriate system
development strategy’ requires not only an understanding of agent-oriented software engineering methods
but other software engineering techniques as well. This section provides information on both of these

topics.

1.3.1 Decison Making

A goal of this research is to specify a decision-making process for determining an appropriate
software engineering technique. Clearly, the decision to select one methodology over another is a difficult
task where many trade-offs must be made. As such, a multidimensional technique for decision-making is

required.

1.3.1.1 Design Space and Rules

The intention of the Design Space and Rules methodology is to assist new engineersin making the
correct choice in design, as would an experienced software engineer [21]. This technique is the foundation
for a decision-making process for software engineers when trying to determine which design options will
provide a good solution to a given requirements statement. The design space is a multidimensional space
for classifying systems. Each dimension of the design space represents different structural and functional
characteristics of the system. Structural dimensions represent characteristics that pertain to the techniques
that can be employed, whereas the functional dimension captures the impact of the decisions. As
correlations between different dimensions are discovered, rules can be generated to assist in the decision
process. The rules are functions that map one dimension to another. By establishing a set of rules, trade-

offs between dimensions can be evaluated.

An example of two dimensions is response time (functional) and interprocess synchronization
(structural). A point in the design space then determines adesign. This small design space is illustrated

below inFigure 1 [21].

Fast o

Response Time Med Y

| ¢ *

|
Message Semaphores Monitors Rendezvous

Interprocess synchronizatior
Figure 1: A Smple Design Space
A correlation that can be drawn from the simple design space in Figure 1 is the relationship
between interprocess synchronization and response time. If the specification required a highly responsive
system, then messaging or semaphores would be better design choices that monitors or rendezvous.
Another functional dimension that the “Interprocess Synchronization” may be plotted against is
complexity. The space may show that messaging and semaphores are “very complex.” The software

engineer is now required to balance the complexity of the system with the responsiveness. By testing

existing systems against the design space and rules, the degree of agreement—that is how the actual

implementation compares to the design predictions—can be measured.

1.3.1.2 Multiobjective Decison Analysis

The field of Operations Research began looking at scientific approaches to decision making during
World War 1l [6]. In the past several decades, increased awareness of the need to identify and consider
many objectives simultaneously has led to research expanding the systematic procedures for making
decisions based on a single criterion. From this field of study comes multiobjective decision analysis.
Multiobjective decision analysis is based on a utility assessment framework, where alternatives are
compared based on a set of the problems characteristics called evaluation considerations A scoreis
calculated for the individual evaluation considerations, which are then combined in order to derive an
overall score of utility, or satisfaction. When combining the evaluation considerations’ scores, a weighting
factor is used to express the decision maker’s rating of importance for the characteristic. The scores and
weights are combined by a multiobjective value function. The multiobjective value function returns a
fitness rating for an alternative. When compared, the alternative with the highest score is an optimal
solution if the definition of optimal is relaxed to be “one that maximizes a decision maker’s utility (or

satisfaction)” [16].

1.3.2 Softwar e Engineering Paradigms

Over the last four decades, software has become an important piece of information systems.
During this time, software engineering paradigms have been designed as methodologies for creating good
software in a reasonable amount of time and at a reasonable cost. These paradigms are generally layered
approaches to devel oping solutions from a customer’ s non-technical description of what the system must be
capable of doing. |EEE defines software engineering as

(1) The application of a systematic, disciplined, quantifiable approach to the

development, operation, and maintenance of software; that is, the application of

engineering to software. (2) The study of approachesasin (1). [10]

Following a disciplined approach to creating software is the best way to ensure quality softwareis
produced. Three such approaches are discussed below, as they are examples of emerging approaches to
software engineering. The three paradigms are the object-oriented paradigm, the component-ware

approach, and agent-oriented software engineering.

1.3.2.1 Object-Oriented

Of the three paradigms presented, object-oriented is the oldest. Object-orientation deals with the
complexity of large software problems through the concepts of decomposition, abstraction, and hierarchy.
Object-oriented software engineering assists the software engineer with the task of addressing the concepts
of modern software engineering: information hiding, data abstraction, encapsulation, and concurrency.
These concepts are not easily handled with the structured analysis techniques developed prior to object-
orientation. Object-orientation also promotes the concept of software reusability. As the functions and
attributes of the entity are encapsulated within the object, the object is easily migrated to other systems for
reuse. An object-oriented application is a closer representation of the real world than a functional
application. The ability to better understand the mapping of the real world to the software abstraction
greatly improves the users confidence in the system. Additionally, the ability to understand the code is
greatly enhanced by object-orientation, which in turn leads to better maintenance and improved
modifiability. Since objects provide a certain level of data abstraction and information hiding, the
underlying functionality of the object can remain the same, but the implementation can easily be changed to

provide improved performance or additional functionality.

1.3.2.2 Component-ware

The component-ware paradigm is an attempt to maximize software reuse. Components are
defined to be “physical, replaceable parts of a system that packages implementation and provides the
readlization of a set of interfaces’ [19]. Conponents usually perform a single function and are treated as
"black boxes" B4]. The original creation of components can come from any software engineering
technique, such as object-oriented or structured analysis. Internally, the method of storing dataisirrelevant

to the user. Any information that is maintained by the component is only accessible by prescribed

operations provided by the component. The versatility of components is, therefore, great. The driving
purpose behind developing and using components is software reuse. Systems are built by combining
components. This component composition requires connecting interfaces. Components developed in an
object-oriented method may provide for inheritance, thus allowing the system to make use of the methods
within the component. Functionally developed components make use of parameterized function calls. In
some instances, a scripting language may be needed to act as the component glue [37]. When a
requirement arises for a new system, it is unlikely that a complete system meeting all of the requirements
will be able to be generated. The Unified Modeling Language has been expanded to include
representations for components. In many of the object-oriented methodologies that have expanded to

include the incorporation of components, the decision to use acomponent is left to the design phase [19].

1.3.2.3 Agent-Oriented

Agent-oriented software engineering is an emerging paradigm based on the object-oriented
paradigm. Like the object-oriented paradigm, the agent-oriented paradigm is designed to reduce the
complexity through decomposition, abstraction and hierarchy. As expected, the primitive building block in
the agent-oriented paradigm is an agent. Agents are more expressive than objects. Every agent is
autonomous, having control over its own internal state and behavior and having well-defined boundaries
and interfaces. By adopting an agent view of the world, it is apparent that most problems require multiple
agents to represent some decentralized nature of the problem, multiple control centers, or multiple goals
[42]. One difference between agents and objects is their interaction techniques. Objects interact with one
another through method invocation, whereas agents communicate through a high-level agent
communication language (ACL). ACLs alow the interactions to be conducted at the knowledge level. By
using an ACL, agents do not need to know anything about the structure of other agents. The only

requirement is that the agents know how to pass and accept messages from other agents.

1.4 Scope of Research

To better define this problem it will be necessary to focus the research on a limited number of

software engineering techniques. Of course, those techniques should be mainstream in order to provide

enough information regarding their potential benefits as well as their pitfalls. For the development of
agent-oriented software, the MaSE methodology will be used. On the other hand, a general object-oriented
methodology using the Unified Modeling Language will be used for the object-oriented and component-

ware software development.

1.5 Approach Overview

The remainder of this thesis describes a systematic approach to determining an appropriate

software engineering methodol ogy for a given software problem. The steps taken are summarized bel ow:

1 Determine a decision-making process — This process is the framework by which the
software engineer determines an appropriate technique to develop a given software

problem.

2. Define a decision analysis tool — With the process selected, the definition of a tool based

on the processis needed to evaluate different alternatives.

3. Apply tool to software problems — The tool is applied to a number of requirement
specifications. Additionally, one of the requirements is developed using the two highest

rated methodologiesin order to collect datato validate the decision.

4, Analyze programs — The developed programs are compared based on a set of
predetermined software metrics. Based on these metrics, a correlation is made between

the actual software results and the results of the decision analysistool.

1.6 ThesisOverview

Chapter |1 describes the approach taken to define a strategic decision making approach to problem
analysis. Chapter Il provides a decision analysis tool that can be used to determine the fitness of a
multiagent system solution. Chapter IV provides a demonstration of the decision analysis on a number of
systems. In addition to the application of the tool on the system specification, results of metrics collected

during the development of one of the specifications are analyzed. Chapter V closes the thesis with

10

conclusions and future work. Additional support material is provided in the appendices. Appendix A isa
literature review providing greater detail on many topics discussed throughout the thesis. Appendices B
and C contain results of a survey conducted to validate the selection of factors used in the decision-making
process, and sensitivity analyses on data collected on a set of use cases, respectively. Appendix D is a
user’s manual for a software application developed to implement the decision analysis process. Appendix
E is a collection of methodology by-products and the results of a questionnaire used for the validation of

the decision analysistool.

11

[1. Problem Approach

2.1 Introduction

A complex problem that software engineers encounter is the choice between engineering
approaches. There are many software methodologies that software engineers can use to develop solutions
to complex software problems. If quantifiable data that could be used to compare the development of
similar projects existed, the data could be used to base decisions on which methodology to choose.
Unfortunately that data does not exist. Leaving fewer quantifiable reasons, the engineer relies on
subjective criteria to select one methodology over another, such as persona preference or expertise,
management, etc. One alternative isto use the most familiar method without considering other alternatives.
There is some credence to this approach since the organization understands this approach asit isused in the
day-to-day business of software development. The argument to this choice, however, isthat there may be a

better way of solving the problem, as one tool does not generally fit every problem.

This chapter describes an approach to developing a tool for assisting a decision maker with the
selection of the best alternative among many “good” alternatives that exist. The problems that the software
engineer will face will generally have many different, and possibly conflicting, objectives; the output of
this tool is not to report a definitive answer to the question of which software paradigm to use, but rather to

provide an indication of good methodology candidates.

2.2 Method Selection

As described in Chapter 1, the intent of this research is to specify a decision-making process for
determining an appropriate software engineering approach. When faced with the choice of selecting an
appropriate methodology, many factors effect the decision. Clearly, it is a difficult task where many trade-
offs must be made. The challenge of balancing conflicting objectives and analyzing trade-offs between
different characteristics is key to making a good decision. Multidimensional decision techniques provide

the systematic procedure for handling the many facets of the methodology selection problem.

12

The main focus of research into decision-making techniques comes from the field of Operations
Research; in fact, Operations Research was developed as a scientific approach to decision-making in
military scenarios during World War 11 [6]. Some of the mathematical frameworks that have come out of
this field of research are linear programming, inventory control, dynamic programming, Bayesian analysis,

and simulation techniques[6].

Although many systematic procedures and mathematical frameworks for decision making exist,
two techniques—one that was developed from a software architecture point of view, and the other a more
traditional Operations Research technique—were explored during background research. The first
technique, Design Spaces and Rules, was developed as a tool to provide software engineers architectural
design guidance [21]. This focus on design phase issues takes functional requirements of the project and
maps them to structural design choices. For example, a functional requirement for data storage could
include a database management system or a flat text file as the structural realizations for the system.
Correlating the different structural/functional mappings makes up design rules. The ability to objectively
specify design rules would be dependent on the availability of performance data. Given appropriate data,
this technique would be able to generate atool for the problem of selecting what type of system to design,
i.e. object-oriented or agent-oriented, but this decision would be based on mainly performance issues of

certain design choices.

Determining an appropriate methodology based on the predicted performance of the software,
however, does not really address the issue with regard to the methodology. Referring back to the data
storage example, the type of methodology selected has no true bearing on the appropriate implementation.
The real question for the methodology is how does it handle the representation of data storage, and is it
handled in such away that it is clear to the system designer? So, even if the data required to quantify these
performance issues did exist, the decision maker would be disregarding many other factors vital to the

decision.

This technique is also absent of any type of mathematical framework to back up any decision

made by the tool. Again, had a large set of data been available and uncertainty factored in, it might be

13

possible to present a convincing argument. This data is not available, however, to argue the results

effectively.

The second approach explored was Multiobjective Decision Analysis. Multiobjective Decision
Analysis, an operations research technique, is derived from the utility assessment framework. For a
problem like methodology selection, in which a finite set of alternatives is evaluated, utility assessment is
considered superior to other mathematical frameworks such as mathematical programming [6]. Based

heavily on decision theory, the technique does not require its users to know decision theory.

Unlike the Design Space and Rules technique, Multiobjective Decision Analysis allows the
decision-maker to take issues other than performance into account, such as the impact that the decision will
have on the current set of business rules. A summary of the factors that impacted the choice of a strategic
decision-making technique is given in Figure 2. With these considerations in mind, Multiobjective

Decision Analysiswas selected for this research.

Factor Design Space Mulljtérc():?sjiec()::ve
and Rules .
Analysis
Handling Multiple Criteria & =
Mathematical Framework &
Flexible et &
Large Body of Reference Available &

Figure 2: Factorsfor Decision Technique Selection

2.3 The Approach

To make use of the Multiobjective Decision Analysis approach to decision making, many details
of the problem at hand had to be specified. Figure 3 depicts the approach taken to solve the paradigm

selection problem in the general form.

14

Design a Decision
Analysis Tool

A

Apply Decision

Analysis Tool to
Problem

v
Analyze Results of
Decision Analysis

Tool Application

Figure 3: Problem Approach

2.3.1 Decision Analysis Tool Design

After selecting a decision analysis technique, the next step was to develop a decision analysis tool
to assist the decision maker. There are a number of distinct steps that go into creating a decision analysis
tool. Thetool itself is realized through software; the use of a software package allows for repeatability and
accuracy. The design of the decision analysistool for this problem is discussed in Chapter I11. The general

stepstaken are discussed below. Figure 4 shows the processthat isfollowed in creating thistool.

Value Hierarchy

1. Define Vaue Hierarchy

4
m 2. Specify Evaluation Measure
Scales

v, X, 2w % 2w %% 3. Build Multiobjective Function

LU LI Impiementation

5% _"_I 4. Develop aSoftware

Figure 4: Decision Analysis Tool Development

15

2.3.1.1 Defining the Value Hierar chy

The first step in developing a decision analysis tool is defining a value hierarchy. A value
hierarchy, which is a value structure that captures the objectives of the decision, is used to capture the
factors that are important to the decision. This step is also one of the most critical steps in the process,
because it specifies the issues that the alternatives must address in order to be viable solutions. If the value

hierarchy is not complete, the decision maker will be making a decision that may ignore vital information.

The value hierarchy provides a graphical depiction of the evaluation considerations relevant to the
decision. As the name suggests, a value hierarchy is organized in such a way that the evaluation
considerations near the root of the tree are made up of the evaluation considerations that are its
descendants. Formalizing the value hierarchy provides the decision-maker with a model representation of
the factors going into the decision. Thisis beneficial to the decision-maker, who may have to explain or

defend the decision to other interested parties.

The value hierarchy captures the factors of the decision that are important to the decision maker.
Since this work is proposing a decision analysis tool that can be used for general software engineering
methodology selection problems, the values, or considerations, must be determined for the general
problem. The considerations selected were determined, first, from characterizations in current literature,
and, then, validated by a survey of software engineering practitioners in academics, industry, and

government.

Existing work in classifying software methods has described three major areas of characterization
[5]. This classification scheme has been applied to the problem of selecting software engineering
methodologies for the development of systems in the real-time system problem domain [38]. The process
involves determining what a method is, what a method does, and what issues the method addresses. The

three areas of classification are:

1 Technical Characteristics — This category looks at classifying the technical

characteristics of the software development through the three stages of development

16

(specification, design, and implementation). The characteristics of the software problem
that are dealt with during the specification—or analysis—phase relate to the behavioral

and functional views of the problem. These views are carried through to the other stages
of the system development. During the design phase, the behavioral and functional views
are mapped into the behavioral and functional characteristics of the function. Effective
methods allow for smooth transition across these stages and allow the ability to trace

functional and behavioral characteristics through all stages of development.

Management Characteristics — It is important to consider the support that a method
provides to management when evaluating different methods. The characterization should
consider how well the method deals with the typical management and project issues such
as estimating, planning and review. The characterization should also look at how the
method is related to the needs and processes that exist within the organization.
Management practices are often difficult to change and, therefore, identifying potential

changesis an important factor in adopting a new methodology [5].

Usage Characteristics — Capturing and describing the characteristics of the method that
will affect its use by an organization is also an important factor h evaluating and
comparing methodologies. These characteristics include the basis for the methodol ogy,
the availability of training, and the availability of tool support. This characterization is
important in understanding the magnitude of change involved with selection of a

methodol ogy.

With these characteristics in mind, a set of values was developed for the methodology selection

problem. Rephrasing the initial problem of selecting an appropriate methodology for a particular software

project, the root of the value hierarchy is the question “what is a good software engineering methodol ogy

that my organization can use to reduce the development costs and produce a quality product?’ This

guestion is at the heart of almost every software engineering paradigm and guides most of the current

research in Software Engineering.

17

From this question, two distinct evaluation considerations can be identified. The first is the costs
associated with the new methodology and the second is the quality, or how well the methodology can
provide for the specific issues of the software problem. Costs, in this context, include not only monetary
impact but also other types of impact on the organization and its existing processes. The three
characteristics of software methods relate to these evaluation considerations. The management and usage
characteristics belong to the area of management issues, where issues such as costs and the effects that the
methodology has on the organization are key. Technical characteristics, those that deal with the functional,
behavioral and structural view of the problem, reflect the quality evaluation consideration, project

requirements. Thislayer of evaluation considerationsis, next, refined.

These refined values were presented in a survey to software engineering professionals. The
survey reguested that the professionals provide their expert opinion on the relevance of the considerations
being proposed. Figure 5 shows a partial example of the value hierarchy developed for the methodol ogy

selection problem.

—— Cost of Methodology
Management Component Reuse
I ssues
—— Process
What isagood
software engineering
method that my
organization can use to
reduce development
costs and produce
quality products? —— Functional Reguirements
Project h
Requirements Structural Requirements

— Behaviora Requirements

Figure 5: Example of a Value Hierarchy for Methodology Selection

18

In addition to specifying the evaluation considerations, objectives are determined. With most
evaluation considerations, one will either attempt to maximize or minimize the consideration. Maximizing
is used in the case where the alternative is a benefit to the evaluation consideration; on the other hand,
minimizing is used where the evaluation consideration has a negative impact due to the aternative. With
regard to the three evaluation considerations shown in Figure 5, the “cost of methodology” would have the

objective of minimizing costs.

2.3.1.2 Specifying Evaluation M easures and Scales

The next step in developing the decision analysis tool is to specify evaluation measures—the scale
for measuring the degree of attainment—for each evaluation consideration. Evaluation measures provide a
quantifiable value that is used to compare the degree of attainment between aternatives for a particular
evaluation consideration. Developing accurate evaluation measuresis also an important step in this process
as they provide the basis for the decision. Evaluation measures must accurately and precisely capture how
well the alternative achieves the consideration or they will not provide a valid comparison between the

alternatives.

The next challenge is to develop scales that properly quantify the evaluation measure. A
combination of scales may be developed. Natural, direct scales should be used when possible. Scales are
considered natural when the measurement is widely accepted by the general audience. A direct scaleis
one in which the measurement precisely reflects the degree of attainment. As an example, “expenses in
dollars’ naturally and directly measure the attainment of an evaluation consideration, such as the “cost of
acquiring software development tools.” When thisis not possible, however, constructed scales, or a scale
that is developed for a particular problem, can be used. Through these techniques, different aspects of the
problem can be addressed in the most natural way, allowing for well -founded decisions. In order to support

more controversial scales, evidence from research as well as from the survey should be provided.

Figure 6 is an example of an evaluation measure worksheet that corresponds to the evaluation

consideration, “cost of acquiring tools,” in the value hierarchy shown in Figure 5. The worksheet provides

19

a list of questions, or focus points, that the decision maker uses to develop a rating, or score, for the
evaluation consideration. For successful application of the worksheets, each alternative being considered

must be evaluated on the same focus points.

EVALUATION CONSIDERATION: Cost of Tool Support
OBJECTIVE: Minimize cost

Cost Factor Cost

The cost of the software development tool(s)

The cost of maintenance on the product for the expected duration of use

The cost to train personnel to use the tool(s)

The cost to install the tool(s)

The cost of additional hardware required by the specific tool(s)

The cost of additional software required by the specific tool(s)

TOTAL

Figure 6: Example of an Evaluation Measure Worksheet

2.3.1.3 Building the Multiobjective Value Function

Each evaluation measure scale is a single dimensional value function for the particular aspect of
the decision. Building a multiobjective value function from each of these evaluation measures is the next
step in building a decision analysis tool. The multiobjective value function is a combination of the single
dimensional value functions. It is an additive function that applies weights to each of the single
dimensional value functions. As the tool is meant to be applicable to a wide spectrum of problems,
specifying the weights in advance with no knowledge of the problem domain or the users’ requirements of
the system would be premature. However, by setting the weights for each individual problem, the general
tool becomes more accurate for the specific problem. Determining the weights of each evaluation
consideration is a decision that the software engineer must make based on the problem at hand. Below isa
technique for determining weights [18].

1 Consider the evaluation considerations and place them in order of successively increasing

value increments.

2. Quantitatively scale each of these value increments as a multiple of the next least

important eval uation consideration. Evaluation considerations that have the same level of

20

importance are given value increments of 1. Otherwise, the value increment assigned

should be anumber greater than 1.

3. Solve for the smallest value increment by setting the total of all the incrementsto 1.

4, Use the results of Step 3 to determine the weightsfor all the evaluation measures.

The benefit of setting the value increment in step 2 to equal 1 for any number of evaluation
considerations that have been determined to be of an equivalent level of importance establishes tiers of
importance. This allows the decision maker to classify a group of evaluation considerations together for
reasons such as criticality to the decision. The decision maker is able to make every consideration its own

tier, which is the most general application of this procedure.

As an empirical example, suppose there are three evaluation measures—Cost of Acquiring
Methodology, Cost of Tools and Component Reusability. Rating the evaluation measures based on the
relative importance the decision maker determines the order of importance to be, in increasing value,
Component Reusability, Cost of Acquiring Methodology and Cost of Tools. Now suppose that the software
engineer determines the importance Cost of Acquiring Methodology is 1.5 times the importance of Cost of
Tools. Also, Component Reusability is 1.25 times more important than Cost of Acquiring Methodology.

Thatis,

w Costof AcquiringMethodology = 157w Cost of Tools

W ComponentReusability = 1.25 ? W cogt of Acquiring Methodology = 1.25 ? 1.5W cogt of Tools

Setting the sum of the weightsto 1,

l=w Cost of Acquiring Methodology + W Cost of Tools + W Component Reusability

= (1-5 ? WCostofTooIs) + W Cost of Tools + (1-25 ? (1-5 ? WCostofTooIs))

=W cogtof Tools (1 + 1.5+ (1.257 1.5))

Hence,

W costofTools = (1 + 1.5+ (1.25 2 1.5)) = 0.23

W Cost of AcquiringMethodology = 1.57? 0.23=0.35

21

W Component Reusability = 1257157 0.23=0.43

Due to round off error, the weights in this case do not equal 1, so a minor adjustment to ws is
made. This example gives the following weightS Weog of Tools = 0.22, Weost of Acquiring Methodology = 0.35 and

Wcomponent Reusability = 0.43.

2.3.1.4 Developing a Software Analysis T ool

The final step in developing the decision analysis tool is to leverage the computational power of a
computer. By developing a software implementation, the user will be spared the agony of solving the
single dimensional value functions and the multiobjective value function. Additionally, analysis techniques
can be applied by varying the weights used in the multiobjective value function. The software analysiswill
allow for the user to see graphically the impact the different factors will have on the problem based on the
selected weight. The software implementation is a combination of a Java application and a Microsoft Excel

workbook. An example of thetool’ sinterface, the criteria selection dialog, is shown inFigure 7.

[L.- Loiteae Ergineseng Wefsdnlsgy Decion Analy iz Tosl - SEM-DAT v01 [0l =] I

|
! weieome Ste 1 | eten 2| s 3] Sen 4 | et | Pans |

Sulect Cocibwrim ...

Pasuhle Critehia Balerkxd Crikana:

Crgantzational Business Pracioss |Costof Acganng Naihodalogy and Euppi
waiabill of Reusstle Companeris e .| CASIAon

Wath calngy Waknty _‘J EmAranment

Lagary 2ystam kiteg dtion sty and Fbusiiass

Conamic Sruchre and Scabhikty
Imar eeion

Goin Sep T]

Figure 7: Software Analysis Tool Interface Example

22

2.3.2 Application of Decision Analysis Tool

The tool provides afitness value for each of the alternatives that can be used to compare software
engineering approaches. The application of the decision analysis tool is based on the software engineer
completing the evaluation measure worksheets for each evaluation considerations relevant to the
requirements specification. Additionally, the software engineer must determine the weights of each of the

evaluation considerations, which gives the decision maker the ability to customize the tool to the problem.

2.3.3 Reault Analysis

Guidelines are available to assist the decision-maker based on particular characteristics of the
problem domain, but the weights are really assumptions set by the decision-maker in order to capture the
relative importance of each evaluation consideration for the particular problem. Techniques, such as
sensitivity analysis, provide the decision-maker with the ability to test the weighting assumptions by

varying the values of the weights.

The sensitivity analysis provides the decision-maker with the ability to visualize the variability in
the decision made by the tool if the weights were assigned different values. Another area that needs to be
analyzed pertains to how well the methodologies are represented by the evaluation considerations. In order
to validate the decision the tool provides, one of the case studies described in Chapter IV was implemented
using the two highest-rated methodologies. Two sets of data were collected on the implementations. First,
metrics were collected during each phase of the engineering process. The metrics selected for data
collection focus on the productivity of the software engineer [1]. The metrics selected with a description of

the measurement are shown inFigure 8.

Metric Description

Modeling Effort Measures the number of labor hours spent within the analysis,
design, and implementation phases of the software development

Size Measures the source lines of code (SLOC), and the number of
components or classes developed

Complexity Measures the cyclomatic complexity of the implementation

Size/Effort Ratio Composed of Modeling Effort and Size, provides a productivity
measurement

Figure 8: Validation Metrics

23

The second set of data collected on implementation was in the form of a questionnaire, which was
presented to a group of students in a graduate software engineering course. The course, “Software
Evolution,” focuses on the post-production phase of software engineering including topics such as software
maintenance, programming understanding, reverse and re-engineering, and designing systems for
maintenance. Via the questionnaire, the students were asked to identify a number of technical issues
related to the software requirement. In order to answer the questions, each student received a set of
analysis and design models produced by following one of two methodologies. The data collected from the
guestionnaire was used to validate the methodology’s ability to represent the technical issues of the

problem.

24 Summary

This chapter addresses an approach to determining an appropriate software engineering paradigm
for a particular problem. This process consists of three phases. Before beginning, it is vital to understand
the problem of selecting a software engineering paradigm. There are a number of approaches that can be
taken, where each offers some benefit to the software engineer. Understanding the differences in
approachesisvital to determining criteriathat can be used to base adecision. Thisunderstanding led to the
selection of the Multiobjective Decision Analysistechnique. Thefirst phase of the approach isto develop a
method for making a decision based on decision theory. For this particular approach, multiobjective
decision analysis is the heart of the process. By following the steps to building a decision analysis tool, an
examination into the criteria to base the decision is made. After establishing this set of criteria, the next
step is to determine valid evaluation measures to quantify the alternative. Determining a fitness function
made up of the many individual evaluation measures is the next step that provides a way to evaluate
aternatives over all objectives. The final step in this portion of the approach is to automate the process

through a computerized implementation, which allows for fast variation analysis.

Following development of the decision analysis tool, the second phase in the approach is to apply
the tool to software problems. This step is required to validate the tool’ s performance and is conducted on

a set of software problem case studies. The final phase is to analyze the results of the metrics collected on

24

the development of the system and to provide feedback on the accuracy of the paradigm suggested by the

decision analysistool.

Next, Chapter |11 discusses the development of the decision analysis tool described above. The

specifics of the value hierarchy and evaluation measures are developed as the basis for the decision analysis

tool.

25

[11. Design

3.1 Introduction

When faced with making a decision, a decision maker is in a better position to explain and defend
the decision by using a strategic decision-making technique. Chapter Il presents one framework that may

be used for developing adecision analysistool.

Software developers are faced with a great number of alternative software engineering
methodologies. The differences between the methodologies can be vast. Some methods are well detailed
specifically describing the activities of the tasks in the methodology, while others provide guidance and

still others barely address certain issues[5].

In addition to the level of detail, the methodology must also take into account real-world
constraints of the particular software problem. The way methodologies handle these constraints that limit
the problem solution space often limits the approaches that can be taken to transform the requirements into
an acceptable problem solution. In this chapter, the framework that is described in Chapter Il is applied to
the problem of selecting an appropriate software engineering methodology by measuring the constraints the

methodology places on the solution.

3.2 Developing the Decision Analysis Tool

The challenge of building a decision analysis tool for determining an appropriate software
engineering methodology is not in the mechanics. The challenge is capturing the details that are important
to the software engineer that must make the decision about what methodology is appropriate. Figure 4
provides an overview of the steps taken to develop thetool. Thefirst step in the processisto define avalue

hierarchy.

3.2.1 Value Hierarchy

Capturing the values of the decision maker in a value hierarchy is the first, and one of the most

difficult steps in developing a decision analysis tool. Based on the three areas for characterizing software

26

methodol ogies—technical, management, and usage—two major evaluation considerations were derived.

Those evaluation considerations are the “Management Issues’ and “Project Requirements’ as discussed in

Chapter 1. These categories were further broken down into more specific evaluation considerations. The

initial set of considerations was:

0 Management Issues

o

Cost of Acquiring the Methodology — The costs involved with adopting the
methodology for use. Factors that impact this category include the costs
incurred by sending personnel to available training, the purchase of reference
material, etc.

Cost of Acquiring Support Tools — The costs incurred by purchasing tools that
support the methodology. The tools include CASE tools as well as
programming development tools. Additionally, the cost of fctors such as
additional hardware/software to operate the tools, maintenance costs for the

tools, and training, should be included.

Availability of Reusable Components — The incorporation of previously
developed software into a new system reduces the overall design,
implementation, and testing phases for software development. This category is
used to measure the methodology’'s ability to incorporate predefined
componentsinto the system.

Effects on Organizational Business Practices — This factor measures the impact
the adoption of a methodology will have on the existing business practices of the
organization. The business practice includes ideas such as tracking devel opment

progress through milestones, reports, and customer interactions.

Compliance with Standards— An aternatives ability to meet standards, whether
local to the organization or outside the organization such as nationa or

international, is the factor measured in this category.

Traceability of Changes— This category measures the methodology’s support to

trace changes throughout the development lifecycle.

27

0 Project Requirements

0 Legacy System Integration — The support for the integration of legacy systems

with the new project requirement is measured in this category.

o Distribution — The ability to support the modeling of distributed aspects of the

problem isthe focus of this category.

o0 Environment — This category is used to measure the methodology’s support of
developing software systems for environments that have heterogeneous

hardware or software.

o Dynamic System Structure — The methodology’s ability to develop software
capable of handling the introduction and removal of system components in a
manner that is not detrimental to the users of the system is considered in this

category.

0 Interaction — This category determines the methodology’s ability to handle the
interaction between system-level components as well as entities outside the

system such as human users and other systems.

0 Scalahility — This category measures the methodology’s ability to develop
software capable of handling the introduction and removal of system-level

resources while minimizing the impact on users.

0 Agility and Robustness — The focus of this category is to measure the
methodology’s ability to create flexible software systems that will be resilient to

dynamic changes in the environment.

Though these considerations were devel oped from a number of literature sources, the compiled list
was presented to software engineering professionals in academia, industry, and government through a
survey questionnaire on the Internet [24, 36]. In order to increase survey participation, an announcement
was distributed to software engineering professionals through electronic mail lists maintained by the Object
Management Group (OMG), University of Maryland Agent Web, and the Software Engineering Research
Network at the University of Calgary. In addition to these broadcast mailings, announcements requesting

participation were placed on related, moderated newsgroups—comp.ai and comp.software-eng. Finaly,

28

requests were sent directly to a number of respected academics, researchers, and industry leaders. A copy

of the survey that was on the Internet isin Section B.1 of Appendix B.

The period for response collection was set at three weeks. Over that period, thirty-three valid
responses were collected. The responses are available in Section B.2 of Appendix B. The survey began
with some basic demographic questions in order to develop a profile of the responders. Of the thirty-three
responders, twenty-two people indicated that they were associated with the academic community, three
responders were associated with government organizations, and eight were associated with the
industrial/commercial sector. As for experience, seventeen indicated 1-5 years of experience in their field.
Nine responders categorized themselves as having 510 years of experience, and seven responders

indicated over 10 years of exp erience.

The survey also collected the opinions of the responders on the importance of the evaluation
consideration that have been proposed for the decision as well as their thoughts on the suggested factors,
the relative weighting of the management and technical categories, and additional possible factors. Asfor
the evaluation considerations proposed, the responders were asked to rate the considerations on a scale of
zero to four. Additionally, responders could leave considerations “not rated”. The results of this portion of
the survey are in the stacked bar chart in Figure 9. This chart shows the number of scores—NR, 0, 1, 2, 3,
or 4—each factor received.

The set of scores each factor received indicates that the responders believed the technical issues
are more important that the management issues. Figure 10 shows the average scores each of the
considerations received. Again, based on this view of the data, it is clear that the responders felt more
emphasis should be on the technical issues of the problem, rather than the issues related to the management

factor of the decision.

29

Rating Distribution

25

15 A

Number of Responses

10

<«———— Management Issues

|

|

Technical Issues

-

Meth Tool

Rating

Meth

Reuse

Org

= S ol || [

Stan

Chan Leg Dis Env Str Int Sca Agi
Evaluation Considerations

Scores OnrE@p 03 0p @3 Oy

Figure 9: Proposed Evaluation Consideration Ratings

Tool

Reuse

Org

Average Rating

Stan Chan Leg Dis Env Str Int Sca Agi

Evaluation Consideration

Figure 10: Average Rating for Proposed Evaluation Considerations

30

The survey also asked whether basing the weights for the evaluation considerations relative to
only the other considerations in the same issues category was more appropriate than determining weights
relative to al of the considerations. The majority of responses were to determine weights relative to al of
the considerations. Most responders did provide an opinion on the total weight each of the major issues.
Like the trend seen in Figure 10, fourteen responders felt that the technical issues should impact the
decision more than the management issues. On the other hand, five responders felt that the management
issues should weigh more on the decision. Three responders indicated that both sets of issues should have
an equal weight. The remaining responders did not specify a particular partitioning. Figure 9 shows the

data gathered from this particular question.

Management Issues Technical Issues Number of Responses
10 90 2
25 75 1
30 70 2
33 66 1
35 65 3
40 60 3
45 55 2
50 50 3
60 40 2
75 25 3

No Partition 11

Figure 11: Weighting Partition

Finally, the survey posed the question: what important factors are missing? Several alternatives
were suggested for the cost category. Responders indicated that other factors would have more
significance to the problem such as a cost/benefit ratio, cost savings, and productivity gains, because the
benefit of the new methodology, if it were great enough, would mitigate any impact that the initial cost
would have. Other management factors suggested—availability of tools and experience base—would be
appropriate to evaluate the maturity of the methodology. Considerations in this area included the
availability of tools as opposed to just the cost, and the experience base of the methodology. Though

requested, no suggestions for technical issues were submitted.

31

Based on the research and the survey results, several changes were made to the list of proposed
evaluation considerations. Similar categories, like Dynamic Structure and Scalability, were combined to
form a single category, as were Organizational Practices, Compliance with Standards, and Effects of
Change; and the Cost of Acquiring the Methodology and Tools. Methodology Maturity was added to the
list in order to capture that aspect of the decision. The complete value hierarchy is shown in Figure 12. In
addition to specifying the evaluation considerations, other factors such as objectives, goals and evaluation
measures are required to fully define the values of the decision maker. The next section looks at these
other factors while further developing the evaluation measures that are used to evaluate the different

aternatives.

3.2.2 Evaluation Considerations, M easur es and Obj ectives

This section looks at the further decomposition of the two major evaluation considerations, as well
as describing the other factors that are important in the decision making process, i.e., the objectives of each
of the categories and the definition of the evaluation measures that is used to rate each alternative with
respect to the consideration. For each evaluation consideration, a set of related measurement questions, or
focus points, is provided to ascertain the degree of attainment the methodology has for the particular

consideration.

By using the focus points to measure the level of attainment the methodology achieves for a given
consideration, it is necessary to use a constructed scale for rating the alternatives. In other selection type
problems, such as the methodology selection for real-time systems (see Section A.5.3) the focus points are
answered simply yes or no [38]. Unfortunately, the focus points tend to be subjective. As such, it is
difficult to analyze and compare methodologies at this level of granularity. In order to derive a more
refined rating, the evaluation considerations are measured using a zero-to-four rating system with one

exception.

32

Cost of Acquiring

Methodology & Tool Support
—— Component Reuse
—— Methodology Maturit
Management %y Y
Issues
Organizational Business
Practices
Wheat is agood — Enterprise Integration
software engineering
method that my
organization can use to
reduce development
costs and produce
quality products? — Distribution
— Environment
Project ||
Requirements

— Dynamic Structure & Scalability

— Interaction

— Augility and Robustness

Figure 12: Methodology Selection Value Hierarchy

The zero-to-four rating system is a five-point scale used for each focus point. Compared to the
methodology selection for developing real-time systems approach, a score of zero represents a“no” and a
score of four representsa“yes.” This scale also allows three intermediate levels of achievement, giving the

decision-maker the ability to credit methodologies that recognize the issue and provide some level of

33

support for the issue. As this technique does nothing to reduce the level of subjectivity on which the
aternative’s rating is based, the decision-maker must be careful to use the same level of scrutiny for each
aternative analyzed. In order to assist the decision-maker and to attempt to standardize ratings, guidance

for rating each focus point isincluded in the discussion of the evaluation considerations.

3.2.2.1 Management | ssues

The first category of evaluation considerations is based on the management and usage
characterizations of ®ftware methodologies. Using the phrase “management issues’ to cover these
characteristics, the evaluation considerations under this branch of the value tree focus on the issues related

to using a methodol ogy to develop software.

One evaluation consideration of the management issues sub-tree, the Cost of Acquiring
Methodology and Support Tools, focuses on the costs associated with selecting a new methodology. Costs
that an organization will be faced with include acquiring software tools for project development, reference
material and personnel training. The impact of the cost of a methodology could be a significant factor in
the decision, particularly if the organization is made up of “experts’ with regard to one alternative and

“novices’ with regard to another.

Another evaluation consideration of the management issues sub-tree, Organizational Business
Practices, is the impact the methodology will have on the current business practices of the organization.
An organization is in a much better position to make estimates regarding software projects based on the
experience of previous software projects [31]. Following a well-defined process is also an underlying idea
of improvement processes such as the Capability Maturity Model (CMM). For an organization that is
meeting CMM requirements, management would likely prefer a methodology that would allow the

organization to continue to meet those requirements.

In the next four sections, the lowest level of evaluation considerations for management issues is

explored. Each of the evaluation considerations is discussed with regard to the objective of the

34

consideration as well as the criteria-based questions that the decision-maker will use to evaluate

alternatives.

3.2.2.1.1 Cost of Acquiring Methodology and Support Tools

A software engineering methodology is an investment that an organization makes in order to
ensure quality products. The use of the methodology affords the organization a repeatable process on
which estimates can be made for future projects. The process, however, depends upon the knowledge and
experience of the software professionals to make reasonable assumptions for project estimation. When
faced with the decision of selecting a new methodology, the decision-maker must take into account the

financial impact to the organization in order to adopt the methodology.

To properly use a methodology, education and training are key aspects that must be explored.
Academic institutions approach the instruction of software engineering in many different ways. For the
most part, the focus is not on specific methodologies, but rather the underpinnings of several
methodologies, which give students a broader exposure to various software engineering techniques [22].
Additionally, experience is a major factor in producing software, as not every problem has a textbook
solution. Software engineering is a balance of art and science Bl]. Providing the training for the
organization’s software developers is required to ensure the science, where as practice is required to perfect
the art. The two focus points in this category are intended to help the decision maker evaluate the financial

impact on the organization if a methodology is selected.

1. The cost to train personnel to use the methodology — There are many options available to an
organization in order to provide training to its employees. Some managers may decide to send
their software professionals to training programs, while others may develop in-house training
classes. In either case, there are costsinvolved. The most obvious cost isthat of an actual training
class or seminar. There are other factorsinvolved. For example, the organization must fund travel
expenses for employees to attend training classes that are not within the local area. Manpower is

also lost on current, existing projects when people are sent away to training.

35

2. The cost of additional reference material on the methodology — Sending personnel to training
classes is an important step in properly learning the methodology, but another area that the
organization needs to consider is additional reference material for the employees. The costs of
additional reference material may include textbooks, professional journal/magazine subscriptions,
and computer-based training as an example. As regards the computer-based training, it is
important to combine cost items in one category, if the computer-based training software is the
preferred solution for personnel training, then it should not be included in this rating. If on the
other hand, the computer-based training software is supplemental to another training program, it is

appropriate to include it in this category.

In addition to acquiring the methodology, the organization incurs csts from the acquisition of
software support tools. Software developers gain many benefits from tool support of the methodology.
The tool ensures the information required for each representation is collected and the rules of the method
are enforced. Without such support, the designer must ensure each representation fulfills the requirements
of the models. Additionally, tools can provide automated analysis of models to ensure correctness.
Automated tools can also provide transformation support between different models and phases of the

methodology [5].

The focus of this evaluation consideration is to compare the cost of purchasing similar tools for
the alternative methodologies. Like the previous evaluation consideration, the ®sts of acquiring tools
could be rated in many different ways. Costs can be recorded based on the actual amount at purchase time,

or they can be normalized over a*“ per project” range. Details of the focus points are below.

3. The cost of the software develgpment tool(s) — This factor looks at the costs for the tools that
directly support the methodology. In order to make a valid comparison, the tools must support the
same phases of development. This can be done by using a normalized cost for the support
development tool, which can be derived by dividing the cost of the tool by the number of

development phases the methodology supports.

36

4. The cost of maintenance on the product for the expected duration of use — After purchasing
the software, it may require contracted maintenance. The maintenance contract should be
purchased as required, but all alternatives should have a similar plan. In the event that similar
options are not available, the decision maker should estimate the potential cost a maintenance

event would cost the organization.

5. The cost to train personnel to use the tool(s) — Like educating the organization on how to use

the methodology, training for how to use the tool should also be considered.

6. The cost to install the tool(s) — Installing the tools on the organization’s systems is also a
factor to consider when determining the cost of the tool. Many options are available to
organizations for the distribution of software. The particular option as well as labor costs should

be considered.

7. The cost of additional hardware required by the specific tool(s) — In the event that the tools
require a hardware platform that the organization does not have, the new system would need to be

purchased.

8. The cost of additional software required by the specific tool(s) — Likewise, atool may require
a specific type of software to be running, such as an operating system, in order to operate. Unless

the software is available, the tool isunusable.

When evaluating a set of alternatives, it is important to compare them using the same set of
factors. In cases where options for training are available for one methodology but not another, the decision
maker needs to determine if a similar option would achieve the same objective or if it iS necessary to
develop in-housetraining. For example, a training seminar may be available for one methodology, but not
another. An alternative would be to contract with an “expert” in the methodology to develop a course.
Another important issue when comparing methodologies in this category is normalization. One way to

normalize the costs is to determine a “per person” value. An aternative normalization would be “per

37

project.” Again, in order to make an accurate comparison, the same normalization must be used for al

alternatives.

The objective of this evaluation consideration is to minimize the cost of acquiring the
methodology and support tools. A summary of the factorsisin the evaluation consideration worksheet in
Figure 13. When completing the worksheet, the decision maker should use the normalized cost for each

focus point.

EVALUATION CONSIDERATION: Cost of Acquiring Methodology and Support Tools
OBJECTIVE: Minimize cost

Cost Factor Cost

The cost to train personnel to use the methodology

The cost of additional reference material on the methodology

The cost of the software development tool(s)

The cost of maintenance on the product for the expected duration of use

The cost to train personnel to use the tool(s)

The cost to install the tool(s)

The cost of additional hardware required by the specific tool(s)

The cost of additional software required by the specific tool(s)

TOTAL

Figure 13: Cost of Acquiring Methodology and Support Tools Worksheet

3.2.2.1.2 Organizational Business Practices

Developing software, like any product, requires more than just the methodology for software
engineering. Most organizations develop “in-house” standards and practices to which the software projects
adhere. Additional activities, such as planning, organizing and staffing, and project tracking and control,
are developed to manage costs and personnel [38]. These activities usually are developed from lessons
learned during past projects, so management is committed to the activities as they corrected the problems

encountered during previous project devel opments.

Management processes are usually time driven, as they are developed to estimate project time for
potential projects. As such, resources like manpower and money @n effect the time on the project.
Software development is generally event driven, where one phase begins after another ends [38]. With that
in mind, management establishes project milestones for developers to complete. Tracking the milestones

and deliverables allows for monitoring the progress of the development. The method should be able to

38

work within the project management framework. The following focus points are used to evaluate

aternatives with respect to the organization’ s process.

1. The method provides planning techniques that lead to milestone definitions and project plans
that are consistent with use of the method and the implementation language — This focus point is
used to measure the method’s ability to lend its models to the existing project management
framework. It will probably be necessary for both the project management framework and
methodology to be flexible, i.e. if the project management framework required five milestones
based on five phases of a methodology and an alternative methodology only has three phases,
either certain milestones can be removed or the methodology’ s phases could be broken down into
five steps. Additionally, the method should be judged to fit within the current management

process with major modifications to models.

Guidance:

4 - Methodology defines a macro- and micro-level development

process compatible with existing project management framework

2 - Methodology describes amicro-level development processthat can
be incorporated with the organizations macro-level project

management framework

0 - Methodology describes a set of models with no process

2. The method has analysis techniques that can be used during reviews or that can help you
gauge progress during development — The ability to perform analyses on the project during the
development can provide the ability to ensure consistency and completeness. Catching problems
early in the analysis and design are much less expensive to fix than during the implementation and

post-devel opment phases.

39

Guidance:

4 - Models are representational of the progress being made during
development
2 - Models are indirectly representational of the progress being made

(for example, by model versioning)
0 - Modelsare not representative of development progress

3. Representations are clear and easy enough to understand to be used for design reviews — A
variety of techniques are available for representing the models of the methodology. Some
representations, such as a graphical representation, are easier to understand by a larger audience
than others, like formal methods B8]. This focus point looks at the ability of using the
representations directly from the method in order to describe the characteristics of the proposed

system to other interested parties.

Guidance:

4 - Modelsarefamiliar and easy to understand
2 - Modelsare complex, but understandable

0 - Modelsareunfamiliar and complex

4, Ability to rapidly develop high-level design representations that can be analyzed to determine
the most feasible design approach — It is beneficial to be able to prove the feasibility of certain
requirements prior to implementing the entire solution. Likewise, evaluating different design

aternatives at ahigh-level can ensure the best approach is taken.
Guidance:

4 - High-level designscan berapidly developed for analysis

40

2 - High-level designs can be rapidly developed, but analysis

techniques are not defined
0 - Rapiddevelopment isnot available

5. The method helps partition the system into manageable pieces that can be given to
development team members — The ability to clearly delineate the phases of the methodology

allows for partitioning the project among different members of the development team.

Guidance:

4 - The set of models representing an entity will be independent of
each other

2 - The set of models will have dependencies, but subsets of the

model s can be partitioned

0 - The dependency of the models is high, making partitioning

difficult

Unless the organization is new, it is likely that there is some software development process in
place. As such, when faced with the decision to use a particular methodology, the methodology needsto be
able to be incorporated into that process. The representations of the methodology should be able to comply
with the applicable standards established by the process. Here is afocus point to consider when evaluating

alternatives based on their ability to comply with standards:

6. The method establishes and enforces well-defined representation standards for each view at
each stage of development — By establishing and enforcing “well-defined” representations, the
methodology is providing a degree of formality. The greater the degree of formality that the
representation has, the less obscure and open to interpretation the representation is. Furthermore,
having standards set for the representations allows for improved understanding of a project across

the organization [5].

41

Guidance:

4 - Syntax and semantics of the models are well -defined
2 - Syntax of modelsis well-defined
0 - Syntax and semantics are not well-defined

As projects progress through the phases of a software engineering methodology, it is inevitable
that changes will be made either by a reguirement change or a clarification from the customer. The
methods ability to handle the changes throughout the development process should be inherent, allowing the
designer to refine and enhance the design as well as evaluate design alternatives [5]. The following focus

point is provided for eval uating the methods capability for tracing changes.

7. The method provides hierarchical forms for all types of representations— With a hierarchical
form of representation, it is important that if a change is made, it is consistent throughout the
models. This factor measures the method's ability to allow changes at lower levels without
impacting the “big picture” with regard to the higher levels. Likewise, this factor measures the

method’ s ability to allow changes at the higher levels without impacting the lower levels.

Guidance:

4 - Low-level and high-level changes can be made without effecting

representations at other levels

2 - Low-level changes can be made without effecting the high-level

representations

0 - Changescannot beisolated

Using the zero-to-four rating scale, Figure 14 summarizes the focus points for this evaluation

consideration.

42

EVALUATION CONSIDERATION: Organizational Business Practices
OBJECTIVE: Maximize Rating

FACTOR RATING
The method provides planning techniques that lead to milestone definitions and project 01234
plans that are consistent with use of the method and the implementation language
4 - Methodology defines a macro- and micro-level development process compatible
with existing project management framework
2 - Methodology describes a micro-level development process that can be
incorporated with the organizations macro-level project management framework
0 - Methodology describes a set of models with no process
The method has analysis techniques that can be used during reviews or that can help 01234
you gauge progress during development
4 - Models are representational of the progress being made during development
2 - Models are indirectly representational of the progress being made (for example, by
model versioning)
0 - Models are not representative of development progress
Representations are clear and easy enough to understand to be used for design reviews [01234]
4 - Models are familiar and easy to understand
2 - Models are complex, but understandable
0 - Models are unfamiliar and complex
Ability to rapidly develop high-level design representations that can be analyzed to [01234]
determine the most feasible design approach
4 - High-level designs can be rapidly developed for analysis
2 - High-level designs can be rapidly developed, but analysis techniques are not
defined
0 - Rapid development is not available
The method helps partition the system into manageable pieces that can be given to 01234
development team members
4 - The set of models representing an entity will be independent of each other
2 - The set of models will have dependencies, but subsets of the models can be
partitioned
0 - The dependency of the models is high, making partitioning difficult
The method establishes and enforces well-defined representation standards for each [01234]
view at each stage of development
4 - Syntax and semantics of the models are well-defined
2 - Syntax of models is well-defined
0 - Syntax and semantics are not well-defined
The method provides hierarchical forms for all types of representations [01234]
4 - Low-level and high-level changes can be made without effecting representations at
other levels
2 - Low-level changes can be made without effecting the high-level representations
0 - Changes cannot be isolated
TOTAL 128

Figure 14: Organizational Business Practices Worksheet

43

3.2.2.1.3 Methodology M aturity

The maturity of the methodology is afactor that can play an i mportant part in the decision process.
M ethodol ogies become more mature as more software developers make use of them. In order to measure
the maturity of the methodology, the focus points attempt to derive the availability of support tools and of
published training and reference material. In addition to the availability of tools and reference material, the
number and type of systems that have been created with the paradigm indicate maturity of the
methodology. The fact that systems have been developed wsing the methodology provides some level of
validation that the methodology is successful. The following focus points are provided for evaluating

methodol ogy alternatives with regard to methodology maturity:

1. Support tools are available for the methodology — The availability of tools may vary greatly.
For those methodologies that are entrenched in mainstream industry, tools can span the
gambit of low-cost educational aids to high-cost industrial strength tools. The investment that
companies make within these tools indicates the acceptance of the methodology. On the other
side of the spectrum, new methodologies may have no tools designed to support them, or
those that do may be experimental, or developed to demonstrate concepts. Ratings in this
category hould indicate higher scores for methodologies with “industrial strength” tool

support, and lower scores for methodol ogies with “experimental” tool support.

Guidance;

4 - Multiplecommercialy developed tools are available

2 - Multiple academically developed research tools are available
0 - Supporttoolsarenot available

2. Training/reference material is available for the methodology — A review of available
literature on the methodology is also helpful for determining the maturity of the methodology.

The rating system in this case should score a methodology that has been published as a book,

44

higher than one that is published in journals or conference papers. There should also be some

discrimination against the type of publication when considering the methodol ogies.

Guidance:

4 - Published textbooks and training manuas, commercially

developed training seminars, or computer based training are

available

2 - Reference material has been published in journals and conference
proceedings

0 - Reference material may be limited to technical reports and white

papers, and training is not available

3. Systems developed with the methodology exist — The last focus point in this consideration
looks at the history of the methodologies use. A methodology that has been employed to
create industrial strength applications should be given a higher score than one that has only

been used to develop small demonstration projects.

Guidance:

4 - >500 Systems developed

2 - 50-200 Systems developed
0 - <5Systemsdeveloped

Figure 15 summarizes the methodology maturity evaluation consideration, and uses the zero-to-

four rating system for scoring alternatives.

45

EVALUATION CONSIDERATION: Methodology Maturity
OBJECTIVE: Maximize Rating

FACTOR RATING
Support tools are available for the methodology [01234]
4 - Multiple commercially developed tools are available
2 - Multiple academically developed research tools are available
0 - Support tools are not available
Training/reference material is available for the methodology [01234]
4 - Published textbooks and training manuals, commercially
developed training seminars, or computer based training are
available
2 - Reference material has been published in journals and
conference proceedings
0 - Reference material may be limited to technical reports and white
papers, and training is not available
Systems developed with the methodology exist [01234]
4 - >500 Systems developed
2 - 50-200 systems developed
0 - <5 Systems developed
TOTAL /12

Figure 15: Methodology Maturity Wor ksheet

3.2.2.1.4 Integration of Reusable Components

By using existing components, the devel opment of the system should be reduced as the component
is known to work appropriately and the time involved with tying the cormponent into the system would be
less than the time it would take to “redevelop” the component p]. Since it is desirable to reuse
components, they should only be reused when they assist in the development of the system. Component
reuse should not be considered too early in the development process, as the system developed may not
exhibit the operational characteristics desired by the customer. Below are the focus points to consider
when evaluating the methodology’ s support of comp onent reuse.

1. The method encourages separating reguirements into essential and negotiable classes, where

negotiable classes identify the opportunity for reuse —Not al components designed for reuse meet

the same operational characteristics. If arequirement is essential, it may not be possible to find a

component guaranteed to meet those operational characteristics, in that case, reuse is not possible.

46

The negotiable classes, on the other hand, do not have the strict requirement, so, there is room to
evaluate the tradeoffs between different components.

Guidance:

4 - Models differentiate between essential and negotiable classes and

representations are available for previously developed components

2 - Representations are available to incorporate componentsdevel oped

previously by this methodology

0 - Essentiad and negotiable classes are not differentiated and
representations for previously developed components do not exist
2. The method encourages designers to suggest alternatives provided by existing components to
negotiable requirements — The method’ s support of component reuse is more valuable if it allows
the evaluation of alternative design choices.

Guidance:

4 - Methodology suggests a spiral approach in which alternatives can

be integrated with system for evaluation

2 - Methodology suggests evaluation of alternatives, but decision

should be made before proceeding

0 - Methodology suggests no evaluation of design alternatives
As software reuse is a goal of most software engineering methodologies, it is important to look at
how well the alternative methods support reuse. The focus points are summarized in the worksheet shown

in Figure 16.

47

EVALUATION CONSIDERATION: Reusable Components
OBJECTIVE: Maximize Rating

FACTOR RATING
The method encourages separating requirements into essential and negotiable [01234]
classes, where negotiable classes identify the opportunity for reuse
4 - Models differentiate between essential and negotiable classes
and representations are available for previously developed
components
2 - Representations are available to incorporate components
developed previously by this methodology
0 - Essential and negotiable classes are not differentiated and
representations for previously developed components do not
exist
The method encourages designers to suggest alternatives provided by existing [01234]
components to negotiable requirements
4 - Methodology suggests a spiral approach in which alternatives
can be integrated with system for evaluation
2 - Methodology suggests evaluation of alternatives, but decision
should be made before proceeding
0 - Methodology suggests no evaluation of design alternatives
TOTAL /8

Figure 16: Reusable Components Wor ksheet

3.2.2.2 Project Requirements

The second category of evaluation considerations is based on the technical characterizations of
software methodologies. Using the phrase “project requirements’ to cover these characteristics, the
evaluation considerations under this branch of the value tree focus on the issues related to functional,

behavioral and structural aspects of the project to be devel oped.

The focus of these technical characteristics is derived from current literature with regard to the
issues that are important to the next generation of business-oriented information systems[36]. This domain
has many characteristics that are similar to other domains, particularly with regard to heterogeneous
environments, system integration, and geographic distribution of resources. Identifying the strengths and
weaknesses of the methodologies with regard to how well the method supports these considerations is key

to developing the system in a high quality, low cost manner.

48

3.2.2.2.1 Legacy System Integration

One of the major benefits of software is the ability to automate processes that are tedious and
repetitious to humans. At this point in time, many processes are automated, yet many are not due to the
complexity of the process or the inability of the organization to fund automation projects. Because of these
reasons, there tends to be a piecemeal development of projects to automate the organization’s processes.
When new projects arise, the ability to tie the product of the new project to existing software products has
emerged as agoal to be considered [36]. The purpose of the focus points for this evaluation consideration

isto rate the methodol ogies ability to tie the new system into the organization’ s related systems.

1. Methodology provides representationsto allow the incorporation of a legacy systemif it hasa
documented interface — Based on a documented interface for the legacy system, the methodology
should provide some form of representation to model it in the new system. This isimportant in
order to ensure communication between the systems is correct, as well as to ensure compatibility

issues with datatypes, etc., are handled properly.
Guidance:

4 - Representations model the legacy system from a structural,

functional, and behavioral aspect
2 - Representations capture the structural view of the legacy system
0 - Representationsto model legacy systems are not available

2. Methodology provides a representation for referencing legacy system functions/methods — If
the legacy system is directly compatible with the proposed system, this focus point evaluates how

well the methodology supports the incorporation of the legacy systems functionality.

49

Guidance:

4 - Legacy system is modeled as a white box system, allowing the
integration of interfacing methods as well as reuse of intermediate

methods

2 - Legacy system is modeled as a black box system, alowing the

integration of interfacing methods

0 - Representationsto model legacy system’s functions or methods are

not available

The factors of this category are rated on the zero-to-four scale. For this evaluation consideration,

the objectiveisto maximize the rating. A summary of the focus pointsisin the worksheet in Figure 17.

EVALUATION CONSIDERATION: Legacy System Integration
OBJECTIVE: Maximize Rating

FACTOR RATING
Methodology provides representations to allow the incorporation of a legacy (0123 4]
system if it has a documented interface
4 - Representations model the legacy system from a
structural, functional, and behavioral aspect
2 - Representations capture the structural view of the
legacy system
0 - Representations to model legacy systems are not
available
Methodology provides a representation for referencing legacy system [01234]
functions/methods
4 - Legacy system is modeled as a white box system,

allowing the integration of interfacing methods as well as
reuse of intermediate methods

2 - Legacy system is modeled as a black box system,
allowing the integration of interfacing methods
0 - Representations to model legacy system’s functions or
methods are not available
TOTAL /8

Figure 17: Legacy System Integration Worksheet

50

3.2.2.2.2 Distribution

Another fundamental requirement for complex software systems is distribution [36]. The exact
form of the distribution in the problem can vary. First, the requirement may require integrating information
or resources that are physically distributed among several systems [23, 38]. A different type of distribution
may come from a decision to distribute computation among several systems [15, 38]. In either case, the
ability to satisfy the requirement is aided by a methodology that provides representational support of
distributed elements, as it assists the developer in making decisions about the appropriate implementation

of the software system. For this evaluation consideration, the following focus points are provided.

1. The method provides a representation for specifying system network configuration — This
focus point assists the decision maker in evaluating the methodology’s ability to present the
potential impact of different system configurations. When rating this category, it should not be
simply a case of whether or not the representation is there, but how much detail is captured within

the representation.

Guidance:

4 - Advanced models are available that capture data such as processor

load, network latency, etc.

2 - Models are available that capture essential network configuration

data, processor type, nodes, addresses, etc.

0 - Network configuration models are not available

2. The method provides a representation for specifying deployment of entities throughout the
network — This focus point expands on the previous with regard to detail that is inherent to the
representation. Specifically, the ability to annotate the representation with the deployment of

software components is measured here.

51

Guidance:

4 - Modelsvisualy represent specific entities on network components
2 - Modelscorrelate entities to network components
0 - Representations not available

3. The method provides the ability to specify locations of resources throughout the system
network — Again, this focus point looks at a specific detail that is in the representation of the

system configuration: resources.

Guidance:

4 - Models visualy represent specific resources on network
components

2 - Modelscorrelate resources to network components

0 - Representations not available

The factors of this category are rated on the zero-to-four scale. For this evaluation consideration,

the objectiveisto maximize the rating. A summary of the focus pointsisin the worksheet in Figure 18.

3.2.2.2.3 Environment

The next requirement for complex systems is the ability to work within a heterogeneous hardware
and software environment. This evaluation consideration attempts to measure the methodology’ s support
for implementing system designs for multiple platforms. The ideal, of course, is to be able to have asingle
implementation that works on all required platforms, but this is not always possible. The ability to
minimize the amount of rework needed to port the code to available platforms is important & it reduces the
opportunity for the introduction of bugs [31]. Below are the proposed focus points for evaluating the

methodology’ s support of heterogeneous environments.

52

EVALUATION CONSIDERATION: Distribution
OBJECTIVE: Maximize Rating

FACTOR RATING
The method provides a representation for specifying system network [01234]
configuration
4 - Advanced models are available that capture data such
as processor load, network latency, etc.
2 - Models are available that capture essential network
configuration data, processor type, nodes, addresses,
etc.
0 - Network configuration models are not available
The method provides a representation for specifying deployment of entities
[01234]
throughout the network
4 - Models vsually represent specific entities on network
components
2 - Models correlate entities to network components
0 - Representations not available
The method provides the ability to specify locations of resources throughout the [01234]
system network
4 - Models visually represent specific resources on
network components
2 - Models correlate resources to network components
0 - Representations not available
TOTAL /12

Figure 18: Distribution Worksheet

1. The programming language for implementation is supported by the software/hardware

systems on which the program will be deployed — In general, a methodology is developed to work

theoretically, without a specific implementation language in mind. The representations in the

methodology may, however, translate more readily into a particular paradigm of programming

languages, i.e. object-oriented methodologies are realized more appropriately in an object-oriented

language like C++ rather than a procedural language such as Pascal.

Guidance:

4 - Language is supported by software/hardware systems requiring no

specialized compilers/interpreters/translators

53

2 - Language is supported by software/hardware systems, but special

compilers/interpreters/emul ators are required for particular systems
0 - Languageisnot supported by software/hardware system

2. The methodology supports deployment modeling in which the engineer can easily determine
necessary changes in the case of system specific commands — When faced with developing
systems for heterogeneous environments, the ability to specify details of the system configuration
in deployment diagrams provides devel opers with vital information when considering issues such

as system specific commands, such as system callsto the operating system.
Guidance:

4 - Hardware and software environment and entities are visually

mapped onto system deployment diagrams
2 - Correlation between entities and systems exist
0 - System deployment is not modeled

3. The programming languages supported by the methodology for implementation requireslittle
additional time for compilation for each system type — Developing one version of the

implementation that can be used by all systems makes software maintenance | ess troublesome.

Guidance:

4 - Programming languages do not require specialized libraries for

particular systems

2 - Some sub-components require specialized libraries (for example

graphic components) for particular systems

0 - All componentsrequire specialized libraries

54

The factors of this category are rated on the zero-to-four scale. For this evaluation consideration,

the objectiveisto maximize the rating. A summary of the focus pointsisin the worksheet in Figure 19.

EVALUATION CONSIDERATION: Environment
OBJECTIVE: Maximize Rating

FACTOR RATING

The programming language for implementation is supported by the [01234]
software/hardware systems on which the program will be deployed

4 - Language is supported by software/hardware systems
requiring no specialized
compilers/interpreters/translators

2 - Language is supported by software/hardware systems,
but special compilers/interpreters/emulators are required
for particular systems

0 - Language is not supported by software/hardware
system

The methodology supports deployment modeling in which the engineer can [01234]
easily determine necessary changes in the case of system specific commands

4 - Hardware and software environment and entities are
visually mapped onto system deployment diagrams

2 - Correlation between entities and systems exist
0 - System deployment is not modeled
The programming languages supported by the methodology for implementation [01234]
requires little additional time for compilation for each system type
4 - Programming languages do not require specialized
libraries for particular systems
2 - Some sub-components require specialized libraries (for
example graphic components) for particular systems
0 - All components require specialized libraries
TOTAL 112

Figure 19: Environment Wor ksheet

3.2.2.2.4 Agility and Robustness

Another technical requirement of complex systems is fault tolerance, or robustness [36]. Most
project requirements require some level of robustness [38]. In fact, robustness considerations may dictate
the system architecture. To some degree the system should be fault tolerant at the system and sub-system
level so as to detect and recover from failures at any level, as well as minimize the impacts of the errors on
the working environment [36]. The aim of the focus points for this consideration is to measure the

methodology’ s support of developing agile and robust software.

55

1. The methodology’s representations provide the ability to model normal processing and
exception processing — This focus point considers the methodology’s ability to partition normal
processing events and exceptional events. By considering each type appropriately, the system can

be devel oped to operate correctly under both types of situations.

Guidance:

4 - Representations are available alowing normal and exceptional

processing to be differentiated
2 - Representations are available to model processing
0 - Representationsnot available

2. The method provides techniques to model dynamic system reconfiguration — The ability for a
system to continue providing services when certain system resources are added or deleted is an

important factor in robustness. This focus point examines whether or not the methodology

considers these issues.
Guidance:

4 - Behavior models show the instantiation of components based on

trigger events or non-triggered (pseudo random) events

2 - Behavior models (such as sequence diagrams) show the

instantiation of components based on trigger events
0 - Representations not available

3. The method provides techniques to analyze system performance for all configurations —
Analyzing and testing possible configurations of the system is an important area as it can prevent

problems that may not otherwise be found until implementation.

56

Guidance:

4 - Techniquesexist for analyzing static and dynamic configurations
2 - Techniguesexist for analyzing statically defined configuration
0 - Techniquenot available

The factors for agility and robustness are rated using the zero-to-four scale. For this evaluation
consideration, the objective isto maximize the rating. A summary of the focus pointsisin the worksheet in

Figure 20.

EVALUATION CONSIDERATION: Agility and Robustness
OBJECTIVE: Maximize Rating

FACTOR RATING
The methodology’s representations provide the ability to model normal [01234]
processing and exception processing

4 - Representations are available allowing normal and

exceptional processing to be differentiated

2 - Representations are available to model processing

0 - Representations not available
The method provides techniques to model dynamic system reconfiguration [01234]

4 - Behavior models show the instantiation of components

based on trigger events or non-triggered (pseudo
random) events

2 - Behavior models (such as sequence diagrams) show
the instantiation of components based on trigger events
0 - Representations not available
The method provides techniques to analyze system performance for all (0123 4]
configurations
4 - Techniques exist for analyzing static and dynamic
configurations
2 - Techniques exist for analyzing statically defined
configuration
0 - Technigue not available
TOTAL /12

Figure 20: Agility and Robustness Wor ksheet

57

3.2.2.2.5 Dynamic Structure and Scalability

The next functiona requirement of software projects deals with scalability. The focus points in

this category are directed at the methodology’ s support of designing systems that allow the incorporation of

additional resources and software components with minimal user disruption [36]. Dynamic integration is

beneficial to the user because the system does not “go down.” Additionally, an approach that supports this

characteristic is forward-looking, as the system may some day be a “legacy system” that needs to integrate

with a new system. A system designed with this in mind will have clear interfaces for integration. Below

are the focus points to rate this evaluation.

1. The methodology provides techniques for dynamic integration of new subsystems/resources
with minimal disruption to existing system — The ability to add new subsystems and resources
without disturbing normal operation is a factor important to those that are relying on the system.
The methodology that accounts for this through dynamic integration techniques reduces the

impact of fielding new system features.

Guidance:

4 - Techniquesfor adding resources/subsystem allow on-line updating

2 - Techniques for adding resources/subsystems require system to be
taken off-line

0 - Techniquenot available

2. The methodology provides techniques for the removal of existing subsystems/resources with
minimal disruption to remaining system — Just as adding subsystems and resources seamlessly,
techniques within the methodology for the removal of these entities are also important, asit allows

system operation, at perhaps a degraded state.

58

Guidance:

4 - Techniques for removing resources/subsystem allow on-line
updating
2 - Techniques for removing resources/subsystems require system to

be taken off-line

0 - Techniquenot available

The factors of this category are rated on the zero-to-four scale. For this evaluation consideration,

the objectiveisto maximize therating. A summary of the focus pointsisin the worksheet in Figure 21.

EVALUATION CONSIDERATION: Dynamic Structure and Scalability
OBJECTIVE: Maximize Rating

FACTOR RATING
The methodology provides techniques for dynamic integration of new [01234]
subsystems/resources with minimal disruption to existing system
4 - Techniques for adding resources/subsystem allow on-
line updating
2 - Techniques for adding resources/subsystems require
system to be taken off-line
0 - Technigue not available
The methodology provides techniques for the removal of existing [01234]
subsystems/resources with minimal disruption to remaining system
4 - Techniques for removing resources/subsystem allow on-
line updating
2 - Techniques for removing resources/subsystems require
system to be taken off-line
0 - Technique not available
TOTAL /8

Figure 21: Dynamic Structure and Scalability Worksheet

3.2.2.2.6 Interaction

The fina technical evaluation consideration is interaction. Interaction deals with the products

ability to deal with the human user. Human interface is an important piece of any software, and one that is

most likely to change in order to satisfy the user [38]. The focus points in this category are directed at the

59

methodology’s ability to deal with human factors as well as it's support of architecturally separating the

user interface components.

1. The method provides representations that allow the user to visualize the user interface — The
interface of the system is likely to be the most important component of the system to the end-user.

As such, the ability to prototype the interface allows the end-user to accurately define the

expectations at an early stage.

Guidance:

4 - Representationsexist for visualizing user interfaces

2 - Representations exist for identifying interface components
0 - Representationsnot available

2. The method models and assists in predicting the information processing and decision-making
demands placed on the user — Models showing the expected data processing and pointing out
where the user will need to provide input is an important step, as it will allow the developer to
design a system that will be well-balanced between dependencies on the user and on the system
processing. With this type of information, system designers are able to load processors equally to

ensure no one processor is a bottleneck to the entire system.
Guidance:

4 - Models for representing user interaction comprehensively defines

reguirements on user

2 - Models are available (such as behavior models) for representing

user interaction

0 - Representationsnot available

60

3. The method promotes the partitioning of user interface processing from other processing —
User interfaces are components of a system that may require changing for reasons none other than
aesthetics. For this reason, a methodology promoting the partitioning of the interface from other

processes will ensure a system that is not tied to itsinterface.
Guidance:

4 - Method enforces the separation of user interface components from

other processing

2 - Method suggests separation of user interface components from

other processing
0 - Method does not promote partitioning of user interface processing

The factors of this category are rated on the zero-to-four scale. For this evaluation consideration,

the objectiveisto maximize the rating. A summary of the focus point isin the worksheet in Figure 22.

3.2.3 Building the M ultiobjective Function

With the evaluation measures established, it is possible to build a multiobjective function. The
multiobjective function is a normalized additive function that combines the proportional values of each of
the fitness values for a particular consideration. The individual rating for each evaluation consideration is
used to calculate a value using a single dimensional value function. This value is then multiplied by a
weighting factor, which is determined by the decision-maker to represent the importance of the factor in the
decision. The single dimensional objective factors and guidelines for determining weights are explored

below.

61

EVALUATION CONSIDERATION: Interaction
OBJECTIVE: Maximize Rating

FACTOR RATING
The method provides representations that allow the user to visualize the user
, [01234]
interface

4 - Representations exist for visualizing user interfaces

2 - Representations exist for identifying interface

components

0 - Representations not available

The method models and assists in predicting the information processing and
- . [01234]

decision-making demands placed on the user

4 - Models for representing user interaction

comprehensively defines requirements on user

2 - Models are available (such as behavior models) for
representing user interaction

0 - Representations not available

The method promotes the partitioning of user interface processing from other [01234]
processing

4 - Method enforces the separation of user interface
components from other processing
2 - Method suggests separation of user interface
components from other processing
0 - Method does not promote partitioning of user interface
processing
TOTAL 12

Figure 22: Interaction Worksheet

3.2.3.1 Single Dimensional Value Functions

The single dimensional value function provides a fithess value for a single evaluation
consideration with regard to the alternative. In order for the multiobjective function to be normalized, the
single dimensional value function must meet two properties. First, the lowest value the single dimensional
function can return is zero. The second property is that the greatest value the function can return is one.
This research makes use of two types of functions: exponential functions for the evaluation considerations
that are of a continuous nature, and linear functions for those evaluation considerations that are discreet.
Additionally, the exponential function is able to model different levels of significance a particular score

may have. For example, in a monotonically decreasing exponential function, for one region of the function

62

the rating degrades very slowly, while in another region the rating degrades very quickly. The linear

functions apply auniform change in rating throughout the entire range.

3.2.3.1.1 Linear Functions

The evaluation considerations that use the zero-to-four rating scheme can be evaluated using a
linear function. There are two versions of the linear function. The first is for the evaluation considerations

with the objective of maximizing the rating. For these cases the functioniis:

X
X2
v ? max Rating?

all factorgni

(1)
where i is the evaluation consideration. The second function is for evaluation considerations with the

objective of minimizing the rating. In these cases, the function is:

X
vX?? 17
' ? max Rating?
all factorgni
(2

wherei is the evaluation consideration. All of the proposed evaluation considerations requiring the linear

function make use of the equation 1.

3.2.3.1.2 Exponential Functions

For evaluation considerations that can take on any range of values, the exponential function offers
asimple way of normalizing the rating [18]. The exponential curve also allows for relative value increases

for different ranges on the curve. The monotonically decreasing exponential functionis:

2 1?exp? High?x%/ 2%

? ? Infinit
V) ? 212 exp? High? Low? 27 Y
o High?x otherwise
3High? Low’

©)

63

As the exponential constant ?, approaches infinity, the function becomes linear. With the same constraint

on ?, the monotonically increasing exponential functionis:

rr r r
? 1?exp? x?Low:/ ?:

? ? Infinit
v »212exp? MHigh? Low? 27? g
o X?Low otherwise
3High? Low’

4

The evaluation consideration, Cost of Acquiring Methodology and Support Tools, is the only
consideration being proposed that requires the exponential formula. Asit has the objective of minimization
of cost, it requires the monotonically decreasing \ersion, equation 3. As this particular category is
comparing the relative costs of the methodology for the organization, the variables of the equation can be
determined based on this premise. Three variables, which the decision maker must provide, are required to
solve the equation. Consider High to be the absolute maximum value the organization is willing to invest
in the methodology. Next, consider Low to be the minimum value the organization will invest, probably
zero dollars. In order to determine ?, one more variable must be determined. Consider this variable to be
the target investment that the organization is willing to make. It is the midpoint of the function where
values to the left of the equation are more desirable than values to the right. This formulation limits the
penalties against an alternative if it has a cost that is below the target investment. On the other hand, the
penalty grows significantly faster for the alternatives that have costs greater than the target investment.

In order to calculate ?, the three values—target, high, and low—must be specified. With these

values, anormalized target, zy5, can be found by the equation:

*high ?target?
high?low? °°
(5)

With avalue determined for zy 5, a normalized exponential constant, R, can be found. Unfortunately a
closed form equation is not available for calculating R, so it can be determined by looking zy 5 up in Figure

23. Thus, ? iscalculated by:

64

? ? R?'high?low"
(6)

Now that ? is known, equation 3 can be completed.

25 R 75 R 25 R 75 R
0.00 - 0.25 0.410 0.50 Infinity 0.75 -0.410
0.01 0.014 0.26 0.435 0.51 -12.497 0.76 -0.387
0.02 0.029 0.27 0.462 0.52 -6.243 0.77 -0.365
0.03 0.043 0.28 0.491 0.53 -4.157 0.78 -0.344
0.04 0.058 0.29 0.522 0.54 -3.112 0.79 -.0324
0.06 0.072 0.30 0.555 0.55 -2.483 0.80 -0.305
0.06 0.087 0.31 0.592 0.56 -2.063 0.81 -0.287
0.07 0.101 0.32 0.632 0.57 -1.762 0.82 -0.269
0.08 0.115 0.33 0.677 0.58 -1.536 0.83 -0.252
0.09 0.130 0.34 0.726 0.59 -1.359 0.84 -0.236
0.10 0.144 0.35 0.782 0.60 -1.216 0.85 -0.220
0.11 0.159 0.36 0.845 0.61 -1.099 0.86 -0.204
0.12 0.174 0.37 0.917 0.62 -1.001 0.87 -0.189
0.13 0.189 0.38 1.001 0.63 -0.917 0.88 -0.174
0.14 0.204 0.39 1.099 0.64 -0.845 0.89 -0.159
0.15 0.220 0.40 1.216 0.65 -0.782 0.90 -0.144
0.16 0.236 041 1.359 0.66 -0.726 0.91 -0.130
0.17 0.252 0.42 1.536 0.67 -0.677 0.92 -0.115
0.18 0.269 0.43 1.762 0.68 -0.632 0.93 -0.101
0.19 0.287 0.44 2.063 0.69 -0.592 0.94 -0.087
0.20 0.305 0.45 2.483 0.70 -0.555 0.95 -0.072
0.21 0.324 0.46 3.112 0.71 -0.522 0.96 -0.058
0.22 0.344 0.47 4,157 0.72 -0.491 0.97 -0.043
0.23 0.365 0.48 6.243 0.73 -0.462 0.98 -0.029
0.24 0.387 0.49 12.497 0.74 -0.435 0.99 -0.014

Figure 23: Normalized Exponential Constants[18]

3.2.3.2 Weights

There are two issues that go into determining the weights for the evaluation considerations. The
first is developing a relative rating of importance based on the consideration. This section further explores
the evaluation considerations and provides some guidelines. The second issue, taking the relative weights

and normalizing the values for appropriate use with the tool, is covered in Section 4.2.1.

Determining the impact each evaluation consideration measure has on the problem has the greatest
effect on the choice the decision-maker must make. In an ideal world, the assessor would only be required

to rate a methodology once. That is, it is not likely that methodology is going to change, and if it does, it

65

should be evaluated as a new methodology. As such, the impact that the software project will have on the

decision lies with the importance of each consideration category.

3.2.3.3 Muultiobjective Function

With the details in place for determining the weights and scores for each evaluation consideration,
a multiobjective function can be formed. The multiobjective function for the methodology selection

problem isgiven by:

V(X) ’77 wv (Xi) wheri? costbusmatreuseentdisenvar dssjnt 0

The mapping of the index val ues to the evaluation consideration can be found in Figure 24.

Index Evaluation Consideration
Cost of Acquiring Methodology
cost
and Support Tools
bus Organizational Business Practices
mat Methodology Maturity
reuse Availability of Reusable Components
ent Enterprise Integration
dis Distribution
env Environment
ar Agility and Robustness
dss Dynamic Structure and Scalability
int Interaction

Figure 24: Index Mapping

3.2.4 Developing a Softwar e | mplementation

Developing the software implementation requires a process for the implementation to model, as
well as an implementation strategy. Section 3.2.4.1 outlines the process that was modeled by the

implementation described in Section 3.2.4.2.

66

3.2.4.1 Applying the Decision T ool

With the framework of the decision analysistool and the details determined, the tool is ready to be
used to provide a decision-maker with a fitness value for any number of methodology alternatives for a

particul ar software problem. The four distinct stepsin applying the decision analysistool are:
1. Determine the weights of the evaluation considerations
2. Score each methodology based on the answers to the focus points
3. Calculate the multiobjective function for each methodology
4. Select the methodology for software devel opment

Each of these steps is further explained in Chapter 1VV. Additionally, Chapter 1V provides examples of the

analysistool application on anumber of software requirements.

3.2.4.2 Automation of Decision Analysis Tool

In order to make the Decision Analysis Tool more useful to the decision maker, a software
implementation of the process was required. In addition to calculating a number of single dimension value
functions and the multiobjective function for each alternative, the ability to make a decision on an
appropriate software engineering methodology requires a number of calculations to test the sensitivity of
the assumptions the decision maker makes when specifying the weights for each of the evaluation

considerations.

The Decision Analysis Tool was implemented as a Java Applet. The applet alows for easy
distribution to a number of user platforms. It can be used by itself, or inserted into a web page. Using an
applet also alows for the implementation of a graphical user interface for data gathering and control of the
execution flow of the computations. Additionally, the tool can be executed as an application, allowing the

user to write datato disk for analysis by an auxiliary application.

67

The interface is designed around the steps described in Section 3.2.4.1, with each distinct step
being an individual panel in the applet. Though the analysis process discussed within Section 3.2.4.1 is
generalized for comparing any number of methodologies, the application is designed to analyze two
aternatives at atime. In order to rate the alternatives, the focus points in the worksheets in Figures 9-17
have been incorporated into the interface. 1n addition to the Java applet, a data analyzer was developed in a
Microsoft Excel Workbook. The data analyzer was designed to leverage the software packages graphing
functionality. A user’s manual for the installation and operation of the Software Engineering Methodology

Decision Analysis Tool and Data Analyzer is contained in Appendix D.

3.3 Summary

This chapter applied the decision-making framework, which was discussed in Chapter |1, to the
problem of selecting an appropriate software engineering methodology for a particular problem.
Beginning with a problem statement, a generalized value hierarchy was developed based on three areas of

methodol ogy characterizations.

After determining the evaluation considerations that make up the value hierarchy, the details of the
evaluation measures are defined. This research is using a set of criteria-based questions, or focus points,
which the decision-maker answers about each method, to determine arating for the category. These ratings
are used in single-dimensional objective functions that, when combined with the weights of the particular

category, are used to determine a multiobjective fitness value.

This chapter ends with a description of the process to apply the decision tool to software
methodology decision problems and a software implementation that was developed to automate the
calculations. Next, Chapter 1V expands the application process described in Section 3.2.4.1 and

demonstrates the application of the tool on different software problems.

68

V. Decision AnalysisApplication

4.1 Introduction

The first step in defining the decision making process for the Software Methodology Selection
problem was to select an appropriate framework as described in Chapter 1I. Next, in Chapter Il1, the
framework selected, in this case Multiobjective Decision Analysis, was developed into a Decision Analysis
Tool to include a value hierarchy based on the opinions of the members of the software engineering and
multiagent system communities, focus point rating systems for evaluation of the considerations in the value

hierarchy, and objective functions for comp uting ratings for comparison.

This chapter demonstrates the application of the Decision Analysis Tool. First, Section 4.2 refines
the application process defined in Section 3.2.4.1. Next, Section 4.3 describes the alternative
methodologies used for the demonstration. Several software requirements are analyzed step-by-step in
Section 4.4. Then, Section 4.5 describes the analysis conducted on the assumptions made during the

decision analysis.

4.2 Decision Analysis Application Process

This section refines the four-step process to application described in Section 3.2.4.1. The four
steps are: determine weights, rate evaluation measures, compute multiobjective function, and select a

methodol ogy for the software requirement problem.

4.2.1 Determining Weights

This phase of the application of the decision analysis tool is focused on transforming the weights,
which are relative to each other into weights that are normalized to total one. The first step is for the user
to determine which evaluation considerations are not important to the particular decision. The weights of
these considerations can be set to zero. The user, then, ranks the level importance of each evaluation

consideration. This step determines the level of importance each factor has on the decision by ordering the

69

considerations in successive level of importance. Next, the technique described in Section 2.3.1.3 is

applied to normalize the weights.

4.2.2 Rating Evaluation Measures

The next phase in applying the decision analysis tool is to rate the alternatives based on the
criteria-based questions developed for each evaluation consideration. Though many of the questions
require a qualitative rating, it is important to remember that multiple alternatives are being compared. To
the best of the decision-makers ability, the scores for each question should be relative to the other

alternatives.

4.2.3 Computing Multiobjective Function

The final phase in the application of the decision analysis tool is the computation of the
multiobjective function. The data gathered in the previous phases is the heart of this step. The derived
values for the weights and the ratings are used to generate a single normalized fitness value through

variable substitution.

4.2.4 Methodology Selection

After completing the steps of the decision analysis tool, the decision maker has a quantitative
rating on each of the alternative methodologies. These ratings are based on the methodology’ s fithess with
respect to each of the appropriate evaluation considerations as well as the decision maker’s biases on those
considerations through the weights. However, there is still an issue of tradeoffs involved with the

methodol ogies that may not be captured in the given framework.

As an example, take the issue of distribution. In a problem that does not involve distribution of
any sort, the decision maker would weight the category with a zero. Completing the decision analysis tool
may yield results that a particular agent-oriented approach rates higher than a particular object-oriented
approach. The tool was not able to capture the tradeoff that the agent-oriented approach develops the

problem the same way, whether it is distributed or not. The implementation of the agent-oriented approach

70

introduces a number of performance problems because of the overhead caused by the distributed

communication features inherent to the methodol ogy.

As tradeoffs such as this are evident in the decision-making problem, the decision maker must be
cognizant of the fact and attempt to weigh the impact into the decision. After all of the considerations are
made, the decision maker may then make a well-informed decision about which software engineering

methodology is appropriate for the software requirement.

4.3 Softwar e Engineering M ethodology Alter natives

In order to validate the Decision Analysis Tool, specific alternative software engineering
methodol ogies must be evaluated for a set of problems. Although alarge number of methodologies exist in
paradigms such as Object-Oriented, Agent-Oriented, Formal Methods, Functional Decomposition,
Component-ware, etc., three aternatives were evaluated for a set of four software requirement problems.
For the set of problems, MaSE, Booch's Object Oriented Analysis, and Design and Y ourdon’s Modern
Structured Analysis were selected as representative methodologies for agent-oriented, object-oriented, and
traditional software engineering, respectively [2, 39, 43]. These methodologies define models and
representations to deal with the analysis and design phases of software development. Additionally, CASE

tools exist to support each method.

4.4 Applications of the Decision Analysis Tool

Four example systems have been selected to demonstrate the application of the Decision Analysis
tool. These systems represent the following application domains: information systems, real-time systems,
and intelligent systems. The applications have been selected for their particular representation of a
particular methodology. As each was developed when different methodologies were popular, the tool

validates the decision to use the particul ar approach.

It is assumed that the software engineer is a member of a fledgling software development
organization in order to test the management issues of the problem. Also, it is assumed that the engineer

has been authorized $6,000 for the acquisition of methodology and tools.

71

4.4.1 Rating Consider ations

The second step in the process of applying the decision analysis tool is determining the scores for
each of the relevant evaluation considerations. This step will be completed out of order because each of the
case studies below will use this data. The three alternative methodologies selected in Section 4.2 will be
evaluated for all of the evaluation considerations. Under a normal application, only the relevant
considerations would be evaluated. The evaluation consideration ratings are determined by addressing the
focus points presented in Chapter 111. For this step, the appropriate worksheets from Figures 11 through 20
areused. The order of the rating is not important, so the considerations are rated in the order they are found
in Chapter 111. Cost of Acquiring Methodology and Support Tools is the first evaluation consideration

rated.

4.4.1.1 Cost of Acquiring M ethodology and Support Tools

Rating the Cost evaluation consideration first required some data gathering. As the responses for
this evaluation consideration require real costs for training classes, reference material, and such, several
resources were considered. Additionally, the tool support that was selected for MaSE and Booch—
agentTool and Rational Rose, respectively—were selected based on the availability to the author and the
price currently being charged. For the Y ourdon methodology, specific CASE tools were not available, so a
tool providing the same level of support as agentTool and Rose was selected. Prices reflect a single-user

license agreement. The summary of the costsis shown inFigure 25.

72

EVALUATION CONSIDERATION: Cost of Acquiring Methodology and Support Tools

OBJECTIVE: Minimize cost

FACTOR MaSE Booch Yourdon
RATING RATING RATING

The cost to train personnel to use the methodology $555 $535 $535

The cost of additional reference material on the 0 $30 $55

methodology

The cost of the software development tool(s) 0 $4290 $3995

The cost of maintenance on the product for the expected 0 0 0

duration of use

The cost to train personnel to use the tool(s) $1110 $574 $2000

The cost to install the tool(s) $25 $25 $25

The cost of additional hardware required by the specific 0 0 0

tool(s)

The cost of additional software required by the specific 0 0 0

tool(s)

TOTAL $1690 $5454 $6610

Maximum Allowable Expenditure $8000

Preferred Expenditure $6000

Minimum Allowable Expenditure 0

Figure 25: Cost of Acquiring Methodology and Support Tools Worksheet Summary

In addition to the data collected for the Cost, it is necessary to determine the value of ?. Based on

the formula given in Equations 5 and 6, zy5 isfirst needed to find R:

25 = (high—target) / (high—low)

= (8000 — 6000) / (8000 — 0)

=.25

Using the table in Figure 23, the value of R corresponding to zys = 0.25is 0.410. With the value

of R known, Equation 6 calculates ?:

? =Rx (high—low)

= 0.410 x (8000 0)

= 3280

With ?, high, and low, the exponential single dimensional value function in Equation 3 is used for

determining the fitness of the evaluation consideration.

73

From the data that is shown in Figure 25, the experimental MaSE is significantly less expensive
than the more mature and commercialy refined methodologies. A counterpoint to this detal is the
evaluation consideration Methodology Maturity. This evaluation consideration, in Section 4.3.1.3, scores

the methodol ogy that has been accepted by industry higher than the experimental alternatives.

4.4.1.2 Organizational Business Practices

The next evaluation consideration measured is Organizational Business Practices. Based on the
assumption made above, the evaluation consideration is rated as if a project management process existed
with the business practices of the fictional organization. Generally speaking, the three methodologies rate
similarly. They provide a well-defined methodology for the development of a software project, but the
Booch methodology specifically addresses software development from a micro- and macro-devel opment
level, hence the higher rating 2]. As for the availability of techniques to analyze the progress of the

development, none of the methodol ogies provide support.

Partitioning the development system is an area in which MaSE did not score as high as the other
methodologies because its components are very dependent upon communication protocols with other
components. This affects the ability to divide up the work in base units. MaSE does rate higher in the
ability to rapidly generate high-level representations for feasibility analysis. In fact, the tool support for
MaSE provides verification testing to ensure the design is free from communication deadlock. The other
focus points of this consideration rated the same for each consideration. The summary of the

methodologies’ ratings for this category is shown in Figure 26.

74

EVALUATION CONSIDERATION: Organizational Business Practices

OBJECTIVE: Maximize Rating

FACTOR MaSE Booch Yourdon
RATING [RATING | RATING

The method provides planning techniques that lead to

milestone definitions and project plans that are consistent 2 3 2

with use of the method and the implementation language

The method has analysis techniques that can be used

during reviews or that can help you gauge progress during 0 0 0

development

Representations are clear and easy enough to understand 3 3 3

to be used for design reviews

Ability to rapidly develop high-level design representations

that can be analyzed to determine the most feasible design 3 2 2

approach

The method helps partition the system into manageable 3 4 4

pieces that can be given to development team members

The method establishes and enforces well-defined

representation standards for each view at each stage of 4 4 4

development

The metho_d provides hierarchical forms for all types of 4 4 4

representations

TOTAL 19/28 20/28 19/28

Figure 26: Organizational Business Practices Worksheet Summary

4.4.1.3 Methodology M aturity

As noted above, the Methodology Maturity consideration is the counterpoint to the Cost

consideration. There are only a few examples of software that is used commercially but available at little

expense—Java comes to mind—so, for the most part, if a methodology and tools can be acquired for little

to nothing, it islikely that it isimmature. Industrial strength CASE tools, generally come with an industrial

strength price tag. Also, as a methodology becomes more mature, training and reference material for the

methodology are more expensive, as the training is being done by technology training academies and the

reference is in the form of books rather than just academic papers. In this case, MaSE rated lower than the

other alternatives because it is amethodology that is still being developed. The summary of the scoresisin

Figure 27.

75

EVALUATION CONSIDERATION: Methodology Maturity

OBJECTIVE: Maximize Rating

FACTOR MaSE Booch Yourdon
RATING [RATING | RATING

Support tools are available for the methodology 2 4 4

Training/reference material is available for the methodology 1 4 4

Systems developed with the methodology exist 1 4 4

TOTAL 4/12 12/12 12/12

Figure 27:Methodology Maturity Summary
4.4.1.4 Reusable Components

The final management evaluation consideration is Reusable Components. In this case, MaSE and

Booch allow for the incorporation of reusable components, though the support is greater in Booch. In fact,
the models used in later OMG versions of UML are derived from Booch’s module diagrams [25]. The
support MaSE provides is ambiguous as there is no differentiation between a developed component and a
newly designed component. Component reuse in structured analysis is more complicated. A system

designed in this paradigm is highly cohesive and coupled, making it difficult to separate any one subsystem

from the entire system. Figure 28 summarizes the ratings for Reusable Components.

EVALUATION CONSIDERATION: Reusable Components

OBJECTIVE: Maximize Rating

FACTOR MaSE Booch Yourdon
RATING [RATING | RATING

The method encourages separating requirements into

essential and negotiable classes, where negotiable classes 0 2 0

identify the opportunity for reuse

The method encourages designers to suggest alternatives

provided by existing components to negotiable 2 3 0

requirements

TOTAL 2/8 5/8 0/8

Figure 28: Reusable Components Worksheet Summary

4.4.1.5 Legacy System Integration

Legacy System Integration is the first technical consideration evaluated. Legacy Systems are
treated, for the most part, as reusable components, though components are more specific in functionality.
For an agent system, MaSE would represent the system with an agent wrapper that would be developed

specifically to interact with the legacy system. The rest of the new system would interact with the agent

76

wrapper. The Booch methodology, on the other hand, supports the legacy system integration, again,
through the module diagram. Due to the strong coupling and cohesion, the Y ourdon methodology makes
system integration difficult. Systems outside of the new system are represented as terminators in dataflow

diagrams[43]. The summary of the ratings for Legacy System Integration isin the worksheet in Figure 29.

EVALUATION CONSIDERATION: Legacy System Integration
OBJECTIVE: Maximize Rating

FACTOR MaSE Booch Yourdon
RATING RATING RATING

Methodology provides representations to allow the

incorporation of a legacy system if it has a documented 3 2 0
interface
Methodology provides a representation for referencing

; 2 2 1
legacy system functions/methods
TOTAL 5/8 4/8 1/8

Figure 29: Legacy System Integration Worksheet Summary
4.4.1.6 Distribution

Distribution is the next evaluation consideration scored. In this case, the MaSE methodology
clearly led the pack. Thisis in part because of the nature of agent systems. When developed, agents
interact with each other through a message passing system. As such, the agents are not coupled until a
communication needs to take place. There is no requirement for the agents to reside on the same systems.
Objects, on the other hand, have more stringent rules. The underpinnings of a message-based
communication system are not inherent to the object system. Both methodologies support the use of a
deployment diagram for specifying system configurations, but MaSE’ s diagram is used to specify the actual
location of the agents, where as the Booch version is used to map processing and resources. Yourdon's
support of distribution is vague. Again, terminators in the dataflow diagram can be distributed, but there is
not a specific representation that captures this type of information. Figure 30 summarizesthe scoresfor the

three methodol ogies with regard to support of distribution.

77

EVALUATION CONSIDERATION: Distribution

OBJECTIVE: Maximize Rating

FACTOR MaSE Booch Yourdon
RATING [RATING | RATING

The method provides a representation for specifying 3 2 1

system network configuration

The method provides a representation for specifying 4 2 0

deployment of entities throughout the network

The method provides the ability to specify locations of 2 > 0

resources throughout the system network

TOTAL 9/12 6/12 1/12

Figure 30: Distribution Worksheet Summary

4.4.1.7 Environment

The next factor in the decision is the Environment. In this case, all of the methodologies can be
transformed into an implementation programming language supported on the various platforms required by
the case studies. Object-oriented languages such as Java support the MaSE and Booch methods more
readily than the functional techniques like Yourdon. As Javais portable to different operating systems, the
methodologies score well. The deployment diagrams assist code developers in recognizing the potential

locations of the code, so it is possible to develop the system to handle any operating system it resides on.

The scores for Environment are captured in Figure 31.

EVALUATION CONSIDERATION: Environment
OBJECTIVE: Maximize Rating

FACTOR MaSE Booch Yourdon
RATING [RATING | RATING

The programming language for implementation is

supported by the software/hardware systems on which the 4 4 4

program will be deployed

The methodology supports deployment modeling in which

the engineer can easily determine necessary changes in 2 2 0

the case of system specific commands

The programming languages supported by the

methodology for implementation requires little additional 4 4 0

time for compilation for each system type

TOTAL 10/12 10/12 4/12

Figure 31: Environment Wor ksheet Summary

78

4.4.1.8 Agility and Robustness

Agility and Robustness is the next consideration rated. This is a category in which the agent-
oriented methodology rated higher than the other two methodologies. This is because the nature of the
agent system is to handle communication with agents that may not be known at design time. The behavior
models are able to represent expected exceptional behavior. The summary of the ratings for Agility and

RobustnessisinFigure 32,

EVALUATION CONSIDERATION: Agility and Robustness

OBJECTIVE: Maximize Rating

FACTOR MaSE Booch Yourdon
RATING [RATING | RATING

The methodology’s representations provide the ability to 3 3 2

model normal processing and exception processing

The method provides techniques to model dynamic system 2 0 0

reconfiguration

The method provides techniques to analyze system 0 0 0

performance for all configurations

TOTAL 5/12 3/12 2/12

Figure 32: Agility and Robustness Wor ksheet Summary
4.4.1.9 Dynamic Structure and Scalability

The next evaluation consideration scored is Dynamic Structure and Scalability. In this case the
agent- and object-oriented methodologies scored higher than the Yourdon. The reason the Yourdon
methodology scored so low, again, is related to the coupling and cohesion of functions. The other
methodol ogies, however, allow systems to be developed in ways such that resources can be added and
deleted without shutting the system down. MaSE, for example, uses the agent wrapper concept to interface
with resources throughout the system. In this case, the agent that corresponds with the resource wrapper
agents must learn about the existence of the wrapper agents. Some knowledge source must be available for
the initial communications to work. This may happen through an agent that acts as a registration authority,
brokers, or, in the case of closed systems, static reference to particular agents. Systems developed
following the Booch methodology can also be designed to accept lists of resources, perhaps at start-up or

during execution, in order to make dynamic connections. The summary of the Dynamic Structure and

Scalability consideration isin Figure 33.

79

EVALUATION CONSIDERATION: Dynamic Structure and Scalability

OBJECTIVE: Maximize Rating

FACTOR MaSE Booch Yourdon
RATING [RATING | RATING

The methodology provides techniques for dynamic

integration of new subsystems/resources with minimal 3 2 0

disruption to existing system

The methodology provides techniques for the removal of

existing subsystems/resources with minimal disruption to 3 3 0

remaining system

TOTAL 6/8 5/8 0/8

Figure 33: Dynamic Structure and Scalability Worksheet Summary
4.4.1.10 Interaction

For the Interaction evaluation consideration, the three alternatives rated similarly, though Booch
rated higher. The Booch methodology is the only one that specifically addressed the question of
developing a concept for the user interface as well as partitioning the user interface processing from the
other processing. All of the methodologies provide support in predicting the decision-making demands on
the user through the respective behavior models. The major difference between the three methodologies is
the extent to which the Booch method suggests partitioning. The Booch methodology promotes placing all
interface components in separate classes [2]. The Yourdon methodology suggests placing the interface
requirements in procedures, but these are generally coupled with the respective modules with which they
are used [43]. MaSE suggests modeling user roles separate from other roles in the system, but there is not

much guidance with regard to developing the interface as part of an agent’s set of internal components.

Thefinal summary of ratingsis shown inFigure 34.

EVALUATION CONSIDERATION: Interaction

OBJECTIVE: Maximize Rating

FACTOR MaSE Booch Yourdon
RATING [RATING | RATING

The method provides representations that allow the user to 0 2 0

visualize the user interface

The method models and assists in predicting the

information processing and decision-making demands 4 4 4

placed on the user

The method promotes the partitioning of user interface 2 4 2

processing from other processing

TOTAL 6/12 10/12 6/12

Figure 34: Interaction Worksheet Summary

80

4.4.2 Softwar e Requirement Case Studies

This section describes the four case studies evaluated for the application of the decision analysis

tool. In addition to information provided below for each case, the assumption in Section 4.4 also holds.

4.4.2.1 Casel: Content Search

The first software requirement example is for an information management system called Content
Search System; the requirement statement is shown in Figure 35. The concept of this system was originally
developed to compare the performance capabilities of dynamic and static multiagent systems [29]. In this
case, the system requirements are being used to compare the agent-oriented and object-oriented

methodologies.

The requirement of the system is to provide enterprise search capability to an organization of
networked users. The organization has determined that the most feasible data storage technique is to use
the large capacity hard drives on the personal computers and workstations within the organization, rather
than invest in a single shared data storage system. The only requirement of the system is to determine the
location of files that may have information a user requires. Systems are designated to belong to certain
functional areas, so users should be able to restrict the search to a single functional area. With these
requirementsin mind, the first step in selecting an appropriate methodology for development is determining

which factors are relevant to the decision and to weight them accordingly.

4.4.2.1.1 Weighting the Evaluation Consider ations

The first step in weighting the evaluation considerations is to determine which of the evaluation
considerations are relevant to the particular problem. Below are each of the categories and the analysis

decision made as to whether or not the consideration isrelevant.

0 Cost of Acquiring Methodology and Support Tools — Relevant. The approach to this
problem is that the software engineer is part of an organization that is looking to adopt

the methodology and supporting tools.

81

(o]

Organizational Business Practices — Relevant. Although the software engineer is the
only employee in the fledgling department, the engineer does have the responsibility of

providing project updates to other interested parties outside of the department.

Content Search System Requirements

Organization X is responsible for collecting vital data on a variety of subjects. A
business practice that the organization follows is teamwork, where information is shared
freely. The amount of information collected would necessitate a large data sorage area.
In order to reduce costs, the organization would like to make use of the fixed storage
devices in each employee’s local personal computer. This policy, however, makes it
difficult to share the information.

sour ces of information throughout the organization. Detailsinclude:

words or phrases

would suggest higher priority to more relevant documents

documents (no formatting)

the document, the name of the document, and the number of occurrences of the key words
or phrases

should be able to specify the particular functional areas that need to be examined

PCs running Windows operating systems and Unix workstations

The problem is to design a software system that will allow users to locate

Searching — The user must be able to search the documents for specified key

Reporting — The system should report the results of the search in an order that

Documents — The documents that are generated by the employees are simple text

Results — The information included in the results should include the location of

Scope — As there are many functional areas within the organization, the user

Environment — The computer environment that the employees’ use is a mix of

(o]

Figure 35: Content Search System Requirements

Methodology Maturity — Relevant. The decision to change to a new methodology will

require some degree of evidence that it will produce quality software.

Integration of Reusable Components— Irrelevant. A library of reusable componentsis not

available to the software engineer.

Legacy System Integration — Irrelevant. The system is not required to incorporate any

existing software systems.

82

o Distribution — Relevant. The users of the system will require access from different nodes
on the network. Likewise, the data that the users will require is stored on many hard

drives throughout the network.

0 Environment — Relevant. The environment of the network is a mixture of Sun

Workstations running Solaris OS and Personal Computers running Windows NT.

0 Agility and Robustness — Relevant. The users of the system will expect predictability and

reliability.

0 Dynamic Structure and Scalability — Relevant. The organization is growing and as new
employees are hired, the hardware systems they are given will need to be linked to the

software system for access and data storage.

0 Interaction — Relevant. The system must provide an interface for the user to submit

requests.

Following this coarse partitioning of the evaluation considerations, the next step is to refine the
ranking by determining each evaluation considerations level of importance. The most important level of
evaluation considerations consists of those that rate issues that are constraints of the software requirement
problem itself: distribution, environment, interaction and cost of methodology and support tools. The next
level of ranking is for the evaluation considerations that are important to the success of the project, but the
level of achievement may be negotiable. Agility and robustness and dynamic structure and scalability
have been assigned to this level. For this problem, organizational business practices and methodology
maturity considerations were placed in a third level, as a goal of the departments is to develop a well-

defined and repeatabl e software engineering process.

The next step in refinement is determining the relative weighting of each evaluation consideration
with regard to the next least important consideration. For the evaluation considerations in the same rank
tier, the relative weight is one. It is only necessary to determine the boundary relative weight, that is the

last consideration in the higher rank relative to the first consideration in the next lower rank. The

83

considerations selected are done so, more or less, from any ordering of the considerations. In this case, the
evaluation considerations have been ordered aphabetically, so interaction is compared to agility and
robustness, and dynamic structure and scalability is compared to organizational business practices. The
tier of evaluation considerations that measure the constraints of the problem was determined by the
decision maker to be twice as important as the lower rank. Likewise, the tier of negotiable considerations

was determined to be one and a quarter times important as the lowest tier.

With the relative weighting determined, the next step is to determine the normalized weights for
each evaluation consideration following the method described in Section 2.3.1.3. For illustration, the
algebraic calculations are shown below using the subscripts as defined in Figure 24.

Wma = Worg

Wss = 1.25? (Worg)

Wa =17 (Wyss) =17 (1.25? Worg)

Wint =27 (Wa) =272 (17 (1.25? Worg))

Weny =12 (Win) =12 (22 (12 (1.25 ? Worg)))

Wais =12 (Wenv) =172 (1?2 (22 (1?7 (1.25 ? Worg)))

Weost =12 (Wi =12 (12 (12 (22 (12 (1.25? Worg))))

Setting the sum of the weightsto 1,

1 = Worg + Wia + Wyss + War + Wing + Weny + Wais + Weost

= Worg + Worg + (1.25? Worg) + (1.25 2 Worg) + (2?2 (1?7 (1.25? Worg)))

+(2? (17 (1252 Worg))) + (272 (12 (1.25? Werg))) + (22 (1?7 (1.257? Worg)))
= Worg? (1+1+125+125+25+25+25+25)
= Worg ? (14.5)
Worg = 1/ 14.5 = 0.069

Hence,

84

Wing = 0.069

Wgss = 1.2572 (0.069) = 0.086
W, = 1?2 (0.086) = 0.086
Wing =22 (0.086) = 0.172
Weny =172 (0.172) = 0.172
Wgis =17 (0.172) = 0.172
Weost =12 (0.172) = 0.172

With the weights determined for the relevant evaluation considerations, the first step of the

decision-making processis complete. The results of this step are summarized in Figure 36.

Rank Evaluation Consideration Relative Weight Normalized Weight
1 Cost of Methodology & Support Tools 1 0.172
1 Distribution 1 0.172
1 Environment 1 0.172
1 Interaction 2 0.172
2 Agility and Robustness 1 0.086
2 Dynamic Structure and Scalability 1.25 0.086
3 Methodology Maturity 1 0.069
3 Organizational Business Practices 0.069

Figure 36: Content Search Weighting Summary
4.4.2.1.2 Rating the Evaluation Considerations

The next step of the decision analysis is to score the evaluation considerations. The focus points
are examined and scored for each of the evaluation considerations that have been determined to be relevant
in the weighting step. This step is documented in Section 4.3.1. The single dimensional value functions

for case 1 are summarized in Figure 37.

85

. . . SDVF Fitness — SDVF Fitness — SDVF Fitness —
Evaluation Consideration MaSE Booch Yourdon
Cost of Methodology & Support 0.937 0.591 0.378
Tools
Distribution 0.750 0.500 0.083
Environment 0.833 0.833 0.333
Interaction 0.500 0.833 0.500
Agility and Robustness 0.417 0.250 0.167
Dynamic Structure and Scalability 0.750 0.625 0

Methodology Maturity 0.333 1.000 1.000
Organizational Business Practices 0.679 0.714 0.679

Figure 37: Single Dimensional Value Function Fitness Values-Casel

4.4.2.1.3 Calculating the M ultiobj ective Value Functions
To complete the decision analysis of the content search example, the multiobjective value function
is calculated. To accomplish this step, the single dimensional value functions are multiplied by the
appropriate weight and summed. For the MaSE alternative, the multiobjective value is determined by:
VM aSE(X) = WcostVOOS(Xcost) + Worgvorg(xorg) +Wmathat(Xmat) + WdisVdis(Xdis)
+ Weanenv(Xenv) + WarVar(X’:\r) + stsVdss(des) + W ntVint(Xi nt)

= 0.172Veos(1690) + 0.069 Vo (19) + 0.069Vma(4) + 0.172 v f9)
+ 0.172 Ven(10) + 0.086 Vo (5) + 0.086 Ve 6) + 0.172 Vin(6)

= 0.161 + 0.047 + 0.023 + 0.129 + 0.143 + 0.036 + 0.065 + 0.086

0.689
The Booch aternativeis calculated to be:

VBooch(X) = Wcostvcos(xcost) + Worgvorg(xorg) + Wmathet(Xmet) + WdisVdis(Xdis)
+ Weanenv(Xenv) + WarVar(Xar) + stsVdsixdss) T Wi ntVint(Xi nt)

= 0.172V cost(5454) + 0.069 V org(20) + 0.069V re(12) + 0.172 v i(6)
+0.172 Ven(10) + 0.086 v (3) + 0.086 Vsy(5) + 0.172 Vi(10)

= 0.102 + 0.049 + 0.069 + 0.086 + 0.143 + 0.022 + 0.054 + 0.143

0.668

The Yourdon alternative is calculated to be:

86

VvourdodX) = WeostVeost(Xcost) + WorgVorg(Xorg) + WmaVmat(Xmat) + WaisVais(Xais)

+ WenyVenv(Xenv) + WarVar(Xar) + WassVdsdXdss) + WintVint(Xnt)

= 0.172Vcos(6610) + 0.069 V org(19) + 0.069V mg(12) + 0.172 v (1)
+0.172 Veny(4) + 0.086 v (2) + 0.086 v gsg0) + 0.172 Viry(6)

= 0.065 + 0.047 + 0.069 + 0.014 + 0.057 + 0.014 + 0 + 0.086

= 0.353
4.4.2.1.4 Determining the Best Alternative

Based on the above calculations and assumptions, the decision analysis tool has determined the
MaSE and Booch methodologies to be the better of than the Y ourdon methodology. With regard to the
MaSE and Booch methodologies, MaSE is rated 0.021 points higher than the Booch methodology.
Considering the small margin of difference between these two methodologies, the decision-maker is
advised to contemplate results of a sensitivity analysis. The sensitivity analysis tests the results by
systematically adjusting the weight of one evaluation consideration while maintaining the ratio of the

weights of the other evaluation considerations. The sensitivity analysisis documented in Section 4.5.

4.4.2.2 Case 2: Weather Monitoring Station

The second example system evaluated is a weather monitoring system. This system is a case
study for object-oriented development following the Booch methodology [2]. It is suggested that either
object-oriented or structured analysis are appropriate techniques for designing this system, but the problem
“lends itself well to an object-oriented architecture” [2]. In this case, the object-oriented approach is being

compared to a potential agent-oriented approach.

One interesting factor that sets this problem apart from the previous is the requirement for specific
data acquisition. Additional details on the system requirements include specific sampling rates of each of
the sensors. Managing this real-time data collection requirement is an important aspect of the problem. A

requirements statement for this problem isin Figure 38.

87

4.4.2.2.1 Weighting the Evaluation Consider ations

To begin selecting a methodology, the first step is weighing the evaluation considerations. To do
this, the relevant evaluation considerations need to be determined. Below are each of the categories and the

analysis decision made as to whether or not the consideration isrelevant.

Weather Monitoring Station Requirements

This system shall provide automatic monitoring of various weather conditions.
Specifically, it must measure:

- Wind speed and direction
- Temperature
- Barometric pressure
- Humidity
The system shall also provide the following derived measurements:
- Wind chill
- Dew point temperature
- Temperature trend
- Barometric pressuretrend

The system shall have a means of determining the current time and date, so that it can
report the highest and lowest values of any of the four primary measurements during the
previous 24 hour period.

The system shall have a display that continuously indicates all eight primary
and derived measurements, as well as the current time and date. Through the use of a
keypad, the user may direct the system to display the 24-hour high or low value of any
one primary measurement, together with the time of the reported value.

The system shall allow the user to calibrate its sensors against known values,
and to set the current time and date.

Figure 38: Weather Monitoring Station Requirements|[2]

0 Cost of Acquiring Methodology and Support Tools — Relevant. The approach to this
problem is that the software engineer is a part of an organization that is looking to adopt

the methodology and supporting tools.

88

o Organizational Business Practices — Relevant. Although the software engineer is the
only employee in the fledgling department, the engineer does have the responsibility of

providing project updates to other interested parties outside of the department.

0 Methodology Maturity — Relevant. The decision to change to a new methodology will

require some degree of evidence that it will produce quality software.

0 Integration of Reusable Components— Irrelevant. A library of reusable componentsis not

available to the software engineer.

0 Legacy System Integration — Irrelevant. The system is not required to incorporate any

existing software systems.

o Distribution — Irrelevant. Based on the requirements of this system, the sensors will use

memory shared with the system for the storing of sensory input.

o0 Environment — Irrelevant. The environment of the network is a single operating system

on asingle computer.
0 Agility and Robustness — Relevant. The users of the system will expect predictability and
reliability.

o0 Dynamic Structure and Scalability — Relevant. Though not directly specified, it would be
appropriate to create a system that would be easily modified to add additional sensor data

asthe system evolves.

0 Interaction — Relevant. The system must provide an interface for the user to submit

reguests for trend data, aswell asfor viewing the current set of conditions.

After the partitioning of the evaluation considerations, the next step is to further develop the
ranking by determining each evaluation considerations level of importance. The most important level of

evaluation considerations consists of those that rate issues that are constraints of the software requirement

89

problem itself: interaction. As the system is more dependent on the real-time acquisition of data, agility
and robustness will also be placed in this tier. The next level of ranking is for the evaluation considerations
that are important issues for the success of the project, but the level of achievement may be negotiable.
Dynamic structure and scalability has been assigned to this level. For this problem, organizational
business practices, methodology maturity, and cost of methodology and support tools considerations were
placed in a third tier, as a goal of the departments is to develop a well-defined and repeatable software

engineering process.

The next step in refinement is determining the relative weighting of each evaluation consideration
with regard to the next |least important consideration. In this case, the evaluation considerations have been
ordered alphabetically, so interaction is compared to dynamic structure and salability, and dynamic
structure and scalability is compared to organizational business practices. The tier of evaluation
considerations that measure the constraints of the problem was determined by the decision maker to be
twice as important as the lower rank. Likewise, the tier of negotiable considerations was determined to be

one and a quarter times important as the lowest tier.

After determining the relative weighting, the normalized weights for each evaluation consideration
must be determined following the method described in Section 2.3.1.3. For illustration, the algebraic
calculations are shown below using the subscripts as defined in Figure 24.

Wma = Worg

Weost = Wma = Worg

Wass = 1.257? (Worg)

Wint =27 (Wgss) =27 (1.25? Worg)

Wa =12 Weost) =172 (27 (1.252 Worg))

Setting the sum of the weightsto 1,

1 = Worg + Weost + Wmat + Wyss + Wint + Wy

90

Hence,

= Worg + Worg + Worg + (1.25? Worg) + (27 (1.25? Worg)) + (2 ? (1.25 ? Worg))

= Worg? (1+1+1+125+ 25+ 25)

= Worg ? (9.25)

Worg = 1/9.25 = 0.108

Wing = 0.108
Weost =12 (0.108) = 0.108
Wgss = 1.257 (0.108) = 0.135
Wine =22 (0.135) = 0.270

Wy = 172 (0.232) = 0.270

With the weights determined for the relevant evaluation considerations, the first step of the

decision-making process is complete. The results of this step are summarized in Figure 36.

Rank Evaluation Consideration Relative Weight Normalized Weight
1 Agility and Robustness 1 0.270
1 Interaction 2 0.270
2 Dynamic Structure and Scalability 1.25 0.135
3 Cost of Methodology & Support Tools 1 0.108
3 Methodology Maturity 1 0.108
3 Organizational Business Practices 0.108

Figure 39: Content Search Weighting Summary

4.4.2.2.2 Rating the Evaluation Considerations

The next step of the decision analysis is to score the evaluation considerations. The focus points

are examined and scored for each of the evaluation considerations that have been determined to be relevant

in the weighting step. This step is documented in Section 4.3.1. The single dimensional value functions

for case 2 are summarized in Figure 40.

91

. . . SDVF Fitness — SDVF Fitness — | SDVF Fitness —
Evaluation Consideration MaSE Booch Yourdon
Agility and Robustness 0.417 0.250 0.167

Interaction 0.500 0.833 0.500
Dynamic Structure and Scalability 0.750 0.625 0
Cost of Methodology & Support 0.936 0.591 0.378
Tools
Methodology Maturity 0.333 1.000 1.000
Organizational Business Practices 0.679 0.714 0.679

Figure 40: Single Dimensional Value Function Fitness Values-Case 2

4.4.2.2.3 Calculating the M ultiobj ective Value Functions
The final step is to calculate the multiobjective value function. To accomplish this step, the single
dimensional value functions are multiplied by the appropriate weight and summed. For the MaSE
alternative, the multiobjective value is determined by:
VM aSE(X) = WcosthosI(Xcost) + Worgvorg(xorg) + Wmatha(Xma) + WarVar(Xar)

+ WyssVdsd Xdss) + WintVint(Xint)

0.108 V (5(1690) + 0.108 Vr(19) + 0.108 V 1rg(4) + 0.27 v (5)

+ 0.135 Vge(6) + 0.27 Vin(6)

0.101 + 0.073 + 0.036 + 0.113 + 0.101 + 0.135

0.559

The Booch alternative is calcul ated to be:

VBooch(X) = Wcostvcos(xcost) + Worgvorg(xorg) + Wmathet(Xmet) + WaVar (Xar)
*+ WissVsd Xdss) + WintVint(Xint)
= 0.108 Vos(5454) + 0.108 Vr(20) + 0.108 V 1r(12) + 0.27 v (3)

+ 0.135 Vge(5) + 0.27 Ving(10)
= 0.064 + 0.077 + 0.108 + 0.068 + 0.084 + 0.225

= 0.626

92

The Yourdon alternativeis calculated to be:

VyourdorX) = WeostYcost(Xcost) + WorgVorg(Xorg) + WmaVmat(Xmat) + WarVar(Xa)
+ WassVdsdXdss) + WintVint(Xint)
= 0.108 v 5(6610) + 0.108 v or(19) + 0.108 v x(12) + 0.27 v4(2)

+ 0.135V4e(0) + 0.27 Ving6)
= 0.041 + 0.073 + 0.108 + 0.045 + 0 + 0.135

= 0.402
4.4.2.2.4 Determining the Best Alternative

Based on the above calculations and assumptions, the decision analysis tool has determined the
Booch methodology to be the better of the three approaches. The differences in scores, in this case, are
greater than in Case 1, but there is still important information to be gained by a sensitivity analysis. Again,

Section 4.5 describes the results of the sensitivity analysis on this case study.

4.4.2.3 Case 3. Cryptanalysis

The third case study evaluated is an intelligent system. The cryptanalysis system was used as a
case study by Booch to demonstrate the object-oriented architecture’s applicability in creating intelligent
problem solvers. The system specification is in Figure 41. For this system, a brute force approach would
be useless as there are 26! possible combinations if only one case of the alphabet is used [2]. Adding the

other case, numbers, and other symbols, ninety-nine symbols could be used!

The architecture suggested by Booch is a “Blackboard” architecture. The blackboard is an area
where autonomous knowledge sources can determine the state of the cryptogram and apply its specialized
knowledge. The blackboard keeps track of modifications and can institute rollbacks when necessary to

allow backtracking. This approach is compared to the possible use of an agent-oriented approach.

93

4.4.2.3.1 Weighting the Evaluation Consider ations

The first step in weighting the evaluation considerations is to determine which of the evaluation
considerations are relevant to the particular problem. Below are each of the categories and the analysis

decision made as to whether or not the consideration is relevant.

0 Cost of Acquiring Methodology and Support Tools — Relevant: the approach to this
problem is that the software engineer is a part of an organization that is looking to adopt

the methodol ogy and supporting tools.

o Organizational Business Practices— Relevant: although the software engineer isthe only
employee in the fledgling department, the engineer does have the responsibility of

providing project updates to other interested parties outside of the department.

0 Methodology Maturity — Relevant: the decision to change to a new methodology will

require some degree of evidence that it will produce quality software.

0 Integration of Reusable Components — Irrelevant: alibrary of reusable components is not

available to the software engineer.

0 Legacy System Integration — Irrelevant: the system is not required to incorporate any

existing software systems.

o Distribution — Relevant: translation components should be able to be placed on systems
throughout the network that best leverage the computing power for better algorithm

performance.

o Environment — Relevant: the environment of the network is a mixture of Sun
Workstations running Solaris OS and Personal Computers running Windows NT.
Translation components will be placed on systems that have the appropriate level of

computing power.

94

0 Agility and Robustness — Relevant: the users of the system will expect predictability and

reliability.

0 Dynamic Structure and Scalability — Relevant: the system needs to be able to incorporate

translation components as they become available.

0 Interaction — Relevant: at the very least, the system must be able to take an input file for

decryption, and provide the user with information regarding the potential translations.

Now that the evaluation considerations have been partitioned, the ranking must be refined by
determining the relative importance of each evaluation consideration. The most important level of
evaluation considerations consists of those that rate issues that are constraints of the software regquirement
problem itself: distribution, environment, and dynamic structure and scalability. The next level of ranking
is for the evaluation considerations that are important issues for the success of the project, but the level of
achievement may be negotiable. Agility and robustness, interaction, organizational business practices,

methodol ogy maturity, and cost of methodology and support tools have been assigned to thislower level.

The next step in refinement is determining the relative weighting of each evaluation consideration
with regard to the next least important consideration. In this case, the evaluation considerations have again
been ordered a phabetically, so interaction is compared to agility and robustness, and dynamic structure
and scalability is compared to organizational business practices. The tier of evaluation considerations that
measure the constraints of the problem was determined by the decision maker to be twice as important as
the lower rank. Likewise, the tier of negotiable considerations was determined to be one and a quarter

times important as the lowest tier.

95

Cryptanalysis Requirements

Cryptography “ embraces methods for rendering data unintelligible to unauthorized
parties.” Using cryptographic algorithms, messages (plaintext) may be transformed into
cryptograms (ciphertext) and back again.

One of the most basic kinds of cryptographic algorithms, employed since the
time of the Romans, is called a substitution cipher. With this cipher, every letter of the
plaintext alphabet is mapped to a different letter. For example, we might shift every
letter to its successor: A becomes B, B becomes C, Z wraps around to become A, and so
on. Thus, the plaintext

CLOSisan object-oriented programming language
may be enciphered to the cryptogram
DMPT jt bo pckfdu-psjfoufe gsphsbnnjoh mbohvbhf

Most often, the substitution of the letters is jumbled. For example, A becomes G, B
becomes J, and so on. As an example, consider the following cryptogram:

PDG TBCER CQ TCK AL SNGELCH QZBBR SBAJG

Hint: theletter C representsthe plaintext letter O.

It is a vastly simplifying assumption to know that only a substitution cipher was
employed to encode a plaintext message; nevertheless, deciphering the resulting
cryptogram is not an algorithmically trivial task. Deciphering sometimes requires trial
and error, wherein we make assumptions about a particular substitution and then
evaluate their implications. For example, we may start with the one- and two-letter
words in the cryptogram and hypothesize that they stand for common words such as |
and a, or it,in, is, of, or, and on. By substituting the other occurrences of these ciphered

letters, we may find hints for deciphering other words. For instance, if thereis a three-
letter word that starts with an o, the word might reasonably be one, our, or off.

We can also use our knowledge of spelling and grammar to attack a substitution
cipher. For example, an occurrence of double letters is not likely to represent the
sequence qg. Smilarly, we might try to expand a word ending with the letter g to the
suffix ing. At a higher level of abstraction, we might assume that the sequence of words
it isis more likely to occur than the sequence if is. Also, we might assume that the
structure of a sentence typically includes a noun and a verb. Thus, if our analysis has
identified a verb but no actor or agent, we might start a search for adjectives and nouns.

Sometimes we may have to backtrack. For example, we might have assumed
that a certain two-letter word was or, but if the substitution for the letter r causes

contradictions or blind alleysin other words, then we might have to try the word of or on

instead, and consequently undo other assumptions we had based upon this earlier
substitution.

This leads us to the requirement of our problem: devise a system that, given a

cryptogram, transforms it back to its original plaintext, assuming that only a simple
substitution cipher was employed.

Figure41: Cryptanalysis Requirements|[2]

96

With the relative weighting determined, the next step is to determine the normalized weights for

each evaluation consideration following the method described in Section 2.3.1.3. For illustration, the

algebraic calculations are shown below using the subscripts as defined in Figure 24.

Weost = Worg

Wint =1 ? Weost

Wy = 1?2 Wit =17 (Worg)

Wima = 1?2 (Wa) =12 (17 Worg)

Werny =22 (Wma) =27 (12 (1? Worg))
Wass =172 (Weny) =12 (272 (1?2 (1? Worg)))

Weis=17? (Was) =17 (1?2 (2?2 (1?2 (1? Worg))))

Setting the sum of the weightsto 1,

Hence,

1 = Weost + Worg + Wnat + Wass + War + Wint + Weny + Wais
= Worg *+ Worg + Worg + Worg + (27 Worg)
+(2? Worg) + (27 Worg) + (22 Worg)
S Worg? (1+1+1+1+1+2+2+2)
= Worg ? (11)

Worg = 1/ 11 = 0.091

Weost = Worg = 0.091
Wint =Weost = 0.091
Wg = Wine = 0.091

Wpa = Wg = 0.091

Weny =272 (0.091) = 0.182

97

Wyss = Weny = 0.182
Wyis = Wgss = 0.182
With the weights determined for the relevant evaluation considerations, the first step of the

decision-making process is complete. The results of this step are summarized in Figure 36.

Rank Evaluation Consideration Relative Weight Normalized Weight
1 Distribution 1 0.182
1 Dynamic Structure and Scalability 1 0.182
1 Environment 2 0.182
2 Cost of Methodology & Support Tools 1 0.091
2 Methodology Maturity 1 0.091
2 Agility and Robustness 1 0.091
2 Interaction 1 0.091
2 Organizational Business Practices 0.091

Figure 42: Content Search Weighting Summary
4.4.2.3.2 Rating the Evaluation Consider ations

The next step of the decision analysis is to score the evaluation considerations. The focus points
are examined and scored for each of the evaluation considerations that have been determined to be relevant
in the weighting step. This step is documented in Section 4.3.1. The single dimensional value functions

for case 3 are summarized in Figure 45.

. . . SDVF Fitness — SDVF Fitness — | SDVF Fitness —
Evaluation Consideration MaSE Booch Yourdon
Distribution 0.750 0.500 0.083
Dynamic Structure and Scalability 0.750 0.625 0

Environment 0.833 0.833 0.333
Cost of Meth(?r(il)(())llzgy & Support 0.936 0.591 0.378
Methodology Maturity 0.333 1.000 1.000
Agility and Robustness 0.417 0.250 0.167
Interaction 0.500 0.833 0.500
Organizational Business Practices 0.679 0.714 0.679

Figure 43: Single Dimensional Value Function Fitness Values-Case 3

4.4.2.3.3 Calculating the M ultiobjective Value Functions

The final step is to calculate the multiobjective value function. To accomplish this step, the single
dimensional value functions are multiplied by the appropriate weight and summed. For the MaSE

alternative, the multiobjective value is determined by:

98

VM aSE(X) = Wcostvoos(xcost) + Worgvorg(xorg) +Wmatha(Xma) + WdisVdis(Xdis)

+ WenyVerv(Xenv) + WarVar(Xar) + WassVdsdXdss) + WintVint(Xnt)

= 0.091 V cs(1690) + 0.091 V org(19) + 0.091v re(4) + 0.182 v59)
+ 0.182Ven(10) + 0.091 V4(5) + 0.182 Vys(6) + 0.091 Virg(6)

= 0.085+ 0.062 + 0.030 + 0.137 + 0.152 + 0.038 + 0.137 + 0.046

0.685

The Booch alternative is calculated to be:
VBooch(X) = WeostVcost(Xcost) + WorgVorg(Xorg) + WaisVais(Xdis) + WenvVen(Xew)
+ WaVa (Xa) + WaissVass(Xdss) + WintVind(Xint)

= 0.091 V cs(5454) + 0.091 V gr(20) + 0.091V e(12) + 0.182 v i (6)
+ 0.182Ven(10) + 0.091 v (3) + 0.182 vge(5) + 0.091 viry(10)

= 0.054 + 0.065 + 0.091 + 0.091 + 0.152 + 0.023 + 0.114 + 0.076

0.665

The Yourdon alternativeis calculated to be:
Vyourdon(X) = WeostV cost(Xcost) + WorgVorg(Xorg) + WaiisVais(Xdis) + WenvVer{ Xew)
+ WoVar (Xar) + WaissVass(Xdss) + WintVint(Xint)

= 0.091 V0(6610) + 0.091 V or(19) + 0.091V e(12) + 0.182 V1)
+ 0.182Ven(4) + 0.091 Vg (2) + 0.182 Vged0) + 0.091 Vi(6)

= 0.034 + 0.062 + 0.091 + 0.015 + 0.061 + 0.015 + 0 + 0.046

= 0.324
4.4.2.3.4 Determining the Best Alternative

Based on the above calculations and assumptions, the decision analysis tool has determined the
MaSE methodology to score higher than the other two approaches. Considering the nature of this problem,
a multiagent approach makes sense. In fact, Booch’s description of the problem is suggestive of software

agents[2]. Again, Section 4.5 contains the sensitivity analysis on this case study.

99

4.4.2.4 Case4: Inventory Tracking System

The fourth case study examined is another information management system. The Inventory
Tracking System provides the regional warehouse with control of inventory management, while it provides
a central headquarters with reporting capability. The requirements for the Inventory Tracking System are

in Figure 44.

I nventory Tracking System Requirements

As part of its expansion into several new and specialized markets, a mail order catalog company
has decided to establish a number of relatively autonomous regional warehouses. Each such
warehouse retains local responsibility for inventory management and order processing. To
target niche markets efficiently, each warehouse is tasked with maintaining inventory that is best
suited to the local market. The specific product line that each warehouse manages may differ
from region to region; furthermore, the product line managed by any one region tends to be
updated almost yearly to keep up with changing customer tastes. For reasons of economies of
scale, the parent company desires to have a common inventory- and order- tracking system
acrossall its warehouses.

The key functions of this systeminclude:
- Tracking inventory as it enters the warehouse, shipped from a variety of suppliers.

- Tracking orders as they are received from a central but remote telemarketing
organization; orders may also be received by mail, and are processed locally.

- Generating packing slips, used to direct warehouse personnel in assembling and then
shipping an order.

- Generating invoices and tracking accounts receivable.
- Generating supply requests and tracking accounts payable.

In addition to automati ng much of the warehouse’ s daily workflow, the system must provide a
general and open-ended reporting facility, so that the management team can track sales trends,
identify valued and problem customers and suppliers, and carry out special promotional
programs.

Figure 44: Inventory Tracking System Requirements|[2]

One of the significant differences between this system and the Content Search System is the
multiple levels of distribution. Functionality of the inventory management is distributed among many users
within the local system users. Data gathering is distributed amongst the many regional warehouses.
Another difference between this information system and the other discussed is the economy of scale issue.
The organization is attempting to reduce costs by developing a single system, which negates any impact on

the environment consideration.

100

4.4.2.4.1 Weighting the Evaluation Consider ations

Again, the first step in weighting the evaluation considerations is to determine which of the
evaluation considerations are relevant to the particular problem. Below are each of the categories and the

analysis decision made as to whether or not the consideration isrelevant.

0 Cost of Acquiring Methodology and Support Tools — Relevant: the approach to this
problem is that the software engineer is a part of an organization that is looking to adopt

the methodol ogy and supporting tools.

o Organizational Business Practices— Relevant: although the software engineer isthe only
employee in the fledgling department, the engineer does have the responsibility of

providing project updates to other interested parties outside of the department.

0 Methodology Maturity — Relevant: the decision to change to a new methodology will

require some degree of evidence that it will produce quality software.

0 Integration of Reusable Components — Irrelevant: alibrary of reusable components is not

available to the software engineer.

0 Legacy System Integration — Relevant: the system is incorporating existing software

systems for auxiliary functionality.

o Distribution — Relevant: the users of the system will require access from different nodes
on the network. Likewise, the data that the users will require is stored on many hard

drives throughout the network.
o0 Environment — Irrelevant: the environment of the network is homogeneous.

0 Agility and Robustness — Relevant: the users of the system will expect predictability and

reliability.

101

0 Dynamic Structure and Scalability — Irrelevant: the opportunity for incorporating

additional nodesin this system is not being considered.

0 Interaction — Relevant: the system must provide an interface for the user to manage

inventory aswell as retrieve reports.

Following this basic separation of the evaluation considerations, the next step is to develop the
ranking by determining each evaluation consideration’s level of importance. The most important level of
evaluation considerations consists of those that rate issues that are constraints of the software regquirement
problem itself: cost of methodology and support tools, distribution, and interaction. The next level of
ranking is for the evaluation considerations that are important issues for the success of the project, but the
level of achievement may be negotiable. Agility and robustness and legacy system integration have been
assigned to this level. For this problem, organizational business practices and methodology maturity

considerations were placed in athird tier.

The next step in refinement is determining the relative weighting of each evaluation consideration
with regard to the next least important consideration. In this case, as previously, the evaluation
considerations have been ordered alphabetically, so interaction is compared to agility and robustness, and
legacy system integration is compared to organizational business practices. The tier of evaluation
considerations that measure the constraints of the problem was determined by the decision maker to be
twice as important as the lower rank. Likewise, the tier of negotiable considerations was determined to be

one and a half timesimportant asthe lowest tier.

With the relative weighting determined, the next step is to determine the normalized weights for
each evaluation consideration following the method described in Section 2.3.1.3. For illustration, the
algebraic calculations are shown below using the subscripts as defined in Figure 24.

Worg = Wmat
Wigg =157 (Wma)

Wy =172 Wigg) =17 (1.5? Wina)

102

Wint=2? (Wa) =22 (1? (1.5? Wpa))
Wais=1? (Wing) =12 (2? (1? (1.25? Wna)))
Weost =12 (Wgis) =12 (1?2 (2? (1? (1.25? Wna)))

Setting the sum of theweightsto 1,

1 = Worg + Wi + Wieg + War + Wint + Weis + Weost

= Wingt + Winat + (1.5 2 Wingt) + (1.5 2 Winet) + (22 (12 (152 Wrwr)))

+(22 (12 (152 Wma))) + (22 (12 (1.5 2 W)
= Wpg? (1+1+15+1.5+3+3+3)
= Wing ? (14)
Wing = 1/14=0.071

Hence,

Worg= 0.071

Wieg = 1.5? (0.071) = 0.107
Wy = 1?2 (0.107) = 0.107
Wint =27 (0.107) = 0.214
Wais =17 (0.214) = 0.214

Weogt =17 (0.214) =0.214

With the weights determined for the relevant evaluation considerations, the first step of the

decision-making process is complete. The results of this step are summarized in Figure 36.

Rank Evaluation Consideration Relative Weight Normalized Weight
1 Cost of Methodology & Support Tools 1 0.214
1 Distribution 1 0.214
1 Interaction 2 0.214
2 Agility and Robustness 1 0.107
2 Legacy System Integration 1.5 0.107
3 Organizational Business Practices 1 0.071
3 Methodology Maturity 0.071

Figure 45: Inventory Tracking System Weighting Summary

103

4.4.2.4.2 Rating the Evaluation Consider ations

The next step of the decision analysis is to score the evaluation considerations. The focus points
are examined and scored for each of the evaluation considerations that have been determined to be relevant
in the weighting step. This step is documented in Section 4.3.1. The single dimensional value functions

for case 4 are summarized in Figure 46.

. : ; SDVF Fitness — SDVF Fitness — | SDVF Fitness —
Evaluation Consideration MaSE Booch Yourdon
Cost of Methodology & Support 0.936 0.591 0.378
Tools

Distribution 0.750 0.500 0.083
Interaction 0.500 0.833 0.500
Agility and Robustness 0.417 0.250 0.167
Legacy System Integration 0.417 0.333 0.083
Organizational Business Practices 0.679 0.714 0.679
Methodology Maturity 0.333 1.000 1.000

Figure 46: Single Dimensional Value Function Fitness Values-Case 4

4.4.2.4.3 Calculating the M ultiobjective Value Functions

The final step is to calculate the multiobjective value function. To accomplish this step, the single
dimensional value functions are multiplied by the appropriate weight and summed. For the MaSE
alternative, the multiobjective value is determined by:

VMase(X) = WeostVoost(Xcost) + WorgVorg(Xorg) + WmatVmat(XmMat) + WiegVieg(Xieg)
+ WaisVas(Xdis) + WarVar(Xar) + WintVirt(int)

= 0.214Vcos(1690) + 0.071 Vor(19) + 0.071V ma(4) + 0.107 v 1(5)
+0.214 Vi 9)+ 0.107 V4(5) + 0.214 Vin(6)

= 0.200 + 0.048 + 0.024 + 0.045 + 0.161 + 0.045 + 0.107

= 0.629

The Booch alternative is calcul ated to be:

VBooch(X) = WeostVeost(Xcost) + WorgVorg(Xorg) + WmatVma(Xma) + Wieg Vieg (X leg)

+ WaisVais(Xdis)+ WarVar(Xer) + WineVind(Xint)

104

0.214 V ¢s(5454) + 0.071 Vr(20) + 0.071V e(12) + 0.107 V 1g(4)
+0.214 vgi6) + 0.107 v(3) + 0.214 virg(10)

0.127 + 0.051 + 0.071 + 0.036 + 0.107 + 0.027 + 0.178

0.596

The Y ourdon alternative is calculated to be:
Vyourdon(X) = WeostVcost(Xcost) + WorgVorg(Xorg) + WmaVma(Xmat) + Wieg V Ieg(XIeg)
+ WisVais(Xdis) + WarVar(Xar) + WintVin(Xint)

= 0.214V0s(6610) + 0.071 Vo (19) + 0.071V(12) + 0.107 V 1o (1)
+0.214 Vi 1)+ 0.107 V4(2) + 0.214 vin(6)

= 0.081 + 0.048 + 0.071 + 0.009 + 0.018 + 0.018 + 0.107

0.352

4.4.2.4.4 Determining the Best Alternative

Based on the above calculations and assumptions, the decision analysis tool has determined the
MaSE methodology to score higher than the other two approaches. The problem domain of information
systems, such asthis one, is often used as an example of multiagent applications [36]. The differencein the
score of the MaSE and Booch methodologies is 0.033. It is reasonable to conclude that both approaches
are suitable, as Booch used the case study as an example for his textbook [2]. For more insight to the

decision, the sensitivity analysisis available in Section 4.5.

4.5 Analysisof the Assumptions

The two factors that determine the value of the multiobjective are the weights assigned to each
evaluation consideration and the score the alternatives receive for each evaluation consideration. Though
the ratings of each of the focus points are subjective, each rating was based on the experience of the
assessor and assumed to be accurate. The weights, on the other hand, are strictly based on the opinion that

one evaluation consideration is some quantity more than another.

105

In order to give the assessor a different perspective on the decision, sensitivity analyses have been
performed on each of the evaluation considerations relevant to the software requirement. These analyses
are examined for each of the case studies. These sensitivity analyses will focus on the areas where a slight
change in an evaluation consideration’s weight significantly changes the fitness score. Before beginning

the analysis, Figure 47 summarizesthe fitness scores the methodol ogies rated.

Case Study MaSE MFV Booch MFV Yourdon MFV
Content Search System 0.689 0.668 0.353
Weather Monitoring 0.559 0.626 0.402
Station
Cryptanalysis 0.685 0.665 0.324
Inventory Tracking 0.629 0.596 0.352
System

Figure 47: Case Study Multiobjective Fitness Values

The first analysis looks at the initial selection of weights. The process of selecting the relative
weights is designed to establish an intuitive relationship between evaluation considerations. The weights
are then normalized, generating the appropriate percentages of the whole. Figure 11 shows the results of
the survey discussed in Section 3.2 with regard to partitioning the weighting of the management and
technical evaluation considerations. The process used to determine the normalized weights produced
results within the range of suggestions. For each case study, the composite percentages of the management

and technical considerations are summarized in Figure 48.

Case Study Management Considerations Technical Considerations
Content Search System 31% 69%
Weather Monitoring Station 32% 68%
Cryptanalysis 27% 73%
Inventory Tracking System 36% 64%

Figure 48: Composite Percentages of Management and Technical Considerations

Using the Data Analyzer tool that has been developed to work with the output of the decision

analysis tool

implementation a full sensitivity analysis can be performed for all of evaluation

considerations. The analysis focuses on the most sensitive of the considerations with regard to the original
normalized weight in order to highlight the different possible results of the decision analysis tool. Thisis
done by evaluating the fitness of each methodology over a range of weights for a particular methodol ogy.

For the case studies evaluated here, the entire range of possible weight, O to 1, is calculated. In order to

106

ensure that the total normalized weight remains equal to 1, the considerations that are not being tested are
calculated to be proportional to the total weight minus the weight of the consideration being tested. This
method ensures that only the evaluation consideration being tested effects the rating. The decision is
considered sensitive if a small change to the weight produces a change. Recommendations for a defining a
“small change” are a change of 5% or up to 7% [16, 18]. Additionally, a recommendation for a decision is
less definitive when the ratio of sensitive considerations to the total number of considerations exceeds 33%

[18].

Detecting sensitivity relies on the identification of critical points. It is at this point that the weight
for the particular consideration changes the decision analysis tool’s preference. An example of the a
sensitivity analysis chart, the sensitivity analysis on Methodology Maturity for Case Study 2, isin Figure

49. Theentire set of sensitivity analysis charts can be found in Appendix C.

Sensitivity Analysis Results

1.200

1.000

0.800

MaSE
----Booch

0.600

Value

,,,,,,, Yourdin

0.400

0.278
0.200

0.000 —H—t+—t— "ttt ttt+t+t+t+t+t+++++++++++++t++t

0 0.25 0.5 0.75 1

Methodology Maturity Weight

Figure 49: Sensitivity Analysis Example

The sensitivity analysis in Figure 47 is annotated to point out the critical points in this particular

analysis. For example, this figure has three critical points. The first is when the weight for Methodology

107

Maturity is 0.009. When the weight is within the range 0 to 0.009, the MaSE methodology has the highest
multiobjective fitness value. The second critical point, at 0.278, is the weight that the Yourdin
methodology rates begins to rate higher than MaSE, however, it is still less than the Booch methodology.
The third critical point, 1.000, is where the Booch and Y ourdin methodologies intersect. It should be
noted, however, that if the weight of Methodology Maturity is set to 1.000, no other factors are playing into

the decision.

For all of the case studies, a set of evaluation considerations existed that any change in the weight
of the particular consideration would yield no different answer. Additionally, some of the considerations
would change the preference but only at a significant change. The critical points and original weights for
each of the case studies are shown in Figure 50. In the case that a consideration was not used in a particular
case study, “N/A” is entered under the original value and the critical point. For the considerations where
there was not acritical point, “-” is entered under the critical point column. Additionally, the amount of the
change needed to alter the original weight to the weight needed to switch preferences. Changes less than

and equal to 7% are highlighted.

The least sensitive decisions were made when considering Case Studies 2 and 4. Based on the
requirement statements for these two problems, the Booch and MaSE methodologies were selected
respectively. Case Study 1 and 3 each had a high degree of sensitivity. The decision analysis tool
recommended MaSE for both of these solutions, but the sensitivity analysis indicates that if the user's
weighting preferences were dlightly different, the Booch methodology would be the preference. In al
likelihood, either methodol ogy would satisfy the user’s needs. The decisions for Case Studies 2 and 4 were
much more resilient to change. In these cases, the recommended methodologies would provide the user

with the best support.

For the three case studies that were taken from Booch, the decision made at the time was that his
object-oriented methodology was better suited for handling complex software systems than the traditional
functional approach. This decision is validated in that the functional approach to software engineering,

Yourdin’s methodology, scored substantially lower for this set of considerations. Additionaly, the

108

development of agent-oriented methodologies, like MaSE, provides techniques that offer even more
support for many of the aspects of software requirements that make software complex. Section 4.6

provides further validation of the decision.

4.6 Decision Validation

In order to validate the decision analysis tool’s ability to report good results, Case Study 1 from
Section 4.4.2 was implemented using both the MaSE and Booch methodologies. When anayzed with the
decision analysis tool, the MaSE methodology’s multiobjective fithess value was calculated to be 68.9%
and the Booch methodology’s was 66.8%. The sensitivity analyses on the weights for this case study
revealed three evaluation considerations in which critical points were within 7% of the original weights.
The purpose of developing the software requirement was to validate the hypothesis that the MaSE

methodology is a*“better” choice for solving the Content Search problem.

During the development of the product, the set of metrics described in Figure 8 were collected.
The data collected is presented in Figure 51. Additionally, the products of the modeling are in Appendix E.
From the data collected, a few items stand out. First, it should be noted that unit testing was conducted
during the implementation phase, and several hours were spent implementing and testing the remote
method invocation used in the Booch approach. Next, the amount of code produced using the MaSE
approach includes code generated by the methodology’s CASE tool. This code implements a specific code
framework that has been developed to demonstrate the methodology B9]. This framework, called
AgentMOM, contributes to the cyclomatic complexity of the implementation of the agent conversation
state diagrams. A feature of the CASE tool is its ability to test the state diagrams prior to being
transformed for unvisited states and deadlock, so aspects of the cyclomatic complexity are verified prior to

code generation.

109

MaSE — MaSE — Booch —
Evaluation Booch Yourdin Yourdin Original | Change
Consideration Critical Critical Critical Weight (+/-)
Point Point Point
CASE 1
Cost 0.117 - - 0.172 0.056
Org 0.419 1.000 - 0.069 0.350
Leg N/A N/A N/A 0 N/A
Dis 0.094 - - 0.172 0.078
Env 1.000 - - 0.172 0.828
AR - - - 0.086 -
DSS - - - 0.086 -
Int 0.223 1.000 - 0.172 0.051
Mat 0.098 0.382 1.000 0.069 0.029
CASE 2
Cost 0.253 - - 0.108 0.145
Org - 1.000 - 0.108 0.892
Leg N/A N/A N/A 0 N/A
Dis N/A N/A N/A 0 N/A
Env N/A N/A N/A 0 N/A
AR 0.479 - - 0.270 0.209
DSS 0.437 - - 0.135 0.302
Int 0.087 1.000 - 0.270 0.083
Mat 0.009 0.278 1.000 0.108 0.099
CASE 3
Cost 0.033 - - 0.091 0.058
Org 0.422 1.000 - 0.091 0.331
Leg N/A N/A N/A N/A N/A
Dis 0.109 - - 0.182 0.073
Env 1.000 - - 0.182 0.818
AR - - - 0.091 -
DSS 0.022 - - 0.182 0.160
Int 0.143 1.000 - 0.091 0.052
Mat 0.118 0.410 1.000 0.091 0.027
CASE 4
Cost 0.132 - - 0.214 0.082
Org 0.515 1.000 - 0.071 0.444
Leg - - - 0.107 N/A
Dis 0.096 - - 0.214 0.118
Env N/A N/A N/A N/A N/A
AR - - - 0.107 -
DSS N/A N/A N/A N/A N/A
Int 0.285 1.000 - 0.214 0.071
Mat 0.115 0.344 1.000 0.071 0.044

Figure 50: Weights and Critical Point Summary

110

Metric MaSE Approach Booch Approach
Modeling Effort — Analysis | 4.83 labor hours 4.53 labor hours
Modeling Effort — Design 2.17 labor hours 4.08 labor hours
Modeling Effort — 8.17 labor hours 11.75 labor hours

Implementation
Size —SLOC 1252 638
Size — Classes 20 11
Cyclomatic Complexity 74 6
Size/Effort Ratio 153.2 SLOC/labor hour 54.3 SLOC/labor hour

Figure 51: Content Search Development Metrics

From this set of data, it is evident that the production of code is greatly enhanced by using MaSE
and its CASE tool. Though the complexity of the code is more significant than the code generated for the
Booch methodology, the design models can maintain the software in the MaSE methodology. The Booch

methodology and its CA SE tool did not provide a direct mapping into code.

In addition to collecting the metrics on the two implementations, the models were presented to a
group of graduate students in a software engineering program. Each student was presented one set of
models, either MaSE or Booch, and a questionnaire. The questionnaire, models, and a summary of student
responses are in Appendix E. The focus of the questionnaire was to determine the students’ ability to
describe certain technical issues that the methodology was required to address for this case study.
Additionally, the questionnaire measured the users ability to understand the models developed by using the
two methodologies. In order to generate the packets of models, models and data dictionaries were captured
from the respective CASE tools. To compare the packages, the MaSE package had twenty-two models and
a three-page data dictionary. The Booch package, on the other hand, had six models and a twelve-page

datadictionary.

The first set of questions the respondents answered was to their familiarity with methodologies
they were evaluating. Eight of the nine students reviewing the Booch models indicated that they were
familiar with the methodology, and five of those indicated that they had developed systems using the
methodology in the past. Only six of ten students ndicated that they were familiar with the MaSE
methodology, and of those, only five students had actually used the methodology for system development.

These results were not unexpected as MaSE is a recently defined agent-oriented methodology and Booch’s

111

object-oriented methodology is much more mature. Asked to identify other methodol ogies with which they
are familiar, the students indicated object-oriented techniques, functional decomposition techniques, and ad

hoc methods for devel oping software.

The next question was a general question about the respondents’ confidence that they understood
the models. Each was asked to rate his confidence on a scale of zero to four, with four indicating the
greatest confidence in understanding the system. On the average, the understanding rating for the students
evaluating the MaSE methodology was 3.2. The rating was 3.125 for the students evaluating the Booch
methodology. Seven of the eight students reviewing the Booch methodology were able to identify the
correct gatement of description for the system. Only two of the ten students reviewing the MaSE
methodology were able to select the correct statement; the other eight students selected the “nearly” correct

answer.

The next set of questions looked at a number of details in the models, including the identification
of legacy systems, reusable components, the network environment, and interface issues. The students
reviewing the Booch methodology were divided equally with regard to identifying a legacy system. Based
on the fact that there was not a legacy system incorporated in this system and the responses as to what the
legacy system could possibly be—answers given included the File Systemand the File Manager—the
naming convention was likely the reason for the misidentification. Only one student misidentified the

legacy system in the set of MaSE models.

Determining the network environment was the intention of several questions. ldentifying the
configuration of the network the system was being designed for is important information that needs to be
communicated to the developers. These questions measured the respondents’ ability to discover this
environment information. The group evaluating the MaSE example was able to more completely identify
the hardware and software system components in the models. With regard to the user interface, both

groups were able to identify the input and output of the systems as well as the options.

112

Based on the scoring included next to each question on the questionnaire in Appendix E, the
average scores are 25.5 for the MaSE group and 25.4 for the Booch group. Furthermore, by considering
the results for the students who were familiar and experienced with the respective methodology, the

average score for the MaSE group was 27.2 and for the Booch group was 25.1.

With regard to the data collected during the development of the Content Search system and the
guestionnaire, there are positives and negatives with each approach. Experienced developers have
demonstrated that the requirements of the system are best expressed and interpreted in the representations
of the MaSE methodology. This conclusion agrees with the results of the decision analysis tool for the

Content Search system as described in Section 4.4.2.

4.7 Summary

This chapter demonstrates how to apply the decision analysis tool by working through several
software requirement problems. Completing the four distinct steps of the decision analysis process ends
with assigning multiobjective values to the alternatives being compared and selecting an alternative. In
addition to completing the analysis process on the four problems, different techniques were demonstrated
for analyzing the sensitivity of the assumptions made in the first step of the process. By looking at the
different possible values assigned to the assumptions, conditions can be determined as to which

methodology is superior to another.

Chapter V provides a summary of the research by drawing conclusions on the data collected
throughout this chapter. Additionally, future areas of research are suggested as they apply specifically to

this research and the overall problem of selecting an appropriate methodology.

113

V. Conclusonsand Future Work

5.1 Conclusions

One of the major questions currently being discussed in the field of multiagent systems is, when
are multiagent systems appropriate to use? Throughout the current literature, statements such as, “if data
existed for real industrial strength applications, quantitatively based decisions could be made,” can be
found lamenting the problem. As that data does not exist, researchers are left to defend their decisions to
use a multiagent system approach with qualitative arguments that it is the next step in software evolution

and theoretical hypotheses that the MAS approach will produce higher quality software.

Researchers continue to attempt to tackle this question by providing intellectual—qualitative—
arguments, like Wooldridge and Jennings [14, 15, 41] or by developing “guidelines” for using MAS like
the MESSAGE project [24]. These approaches are beneficial and aid in the understanding of the problem,
but it is conjecture that has not been demonstrated. The work in this thesis looks at the problem from a

slightly different perspective.

In light of the fact that quantitative data does not exist to determine whether a MAS approach is
superior to a more traditional object-oriented or functional approach, the goal remains the sasme—develop a
high quality software product at the most reasonable cost. By looking at the problem from this perspective
the focus is kept on the heart of software development, that is the engineering. Developing software by
following awell-defined process is the best way to ensure that the ability to create quality software remains

constant.

Narrowing down the question of when to use a MASto when to use an agent-oriented software
engineering approach is the first step in grasping this problem. Redefining the problem in this way,
however, expands the task to include determining whether any type of software methodology is well suited

to solving a problem.

114

When taking on a software requirement problem, a software engineer must decide how to go about
solving that problem. Though the engineer may work in an organization that already has a well-defined
process for developing software systems, the status quo may not always be the best approach—otherwise
there would be no need for continued research in the software engineering field. To assist the decision-
maker, this thesis develops a decision analysis tool, based on a mathematical framework, to quantitatively
compare different methodology alternatives. In addition to developing a decision analysis tool that assists
software engineers with determining an appropriate methodology amongst many different paradigms, the

tool also provides a basis for comparing methodol ogies of the same paradigm.

5.2 Future Work

As agent-oriented methodologies continue to be developed, research will continue to look into the
guestion of when it is the best time to use these methodologies. A number of areas of research into the

question are needed. This section discusses afew of those areas asthey relate directly to thisresearch.

5.2.1 Basisfor Decision

Thefirst area of research suggested for future work considers the complexity of the decision that is
being made. The basis for making the decision is broad. In this thesis, ten evaluation considerations are
used to capture the differences between alternative methodologies. Though the decision to use the
particular considerations came from literature sources and were backed up by the opinions of members of
the multiagent system community, the farther the problem strays from those considerations, the less precise
the decision analysis tool becomes. It is not unreasonable to think that a software requirement problem
exists that would find many of the technical evaluation considerations irrelevant. In that case, the decision
would be made wholly on the management considerations. From the data collected in Chapter IV, the

alternative methodol ogies evaluated showed little variance in these eval uation considerations.

The flexibility of the tool allows for the integration of more evaluation considerations. Though it
becomes more time consuming with each evaluation consideration to be measured, the decision maker is

given the capability of selecting those considerations that are the most relevant to the problem at hand.

115

This flexibility allows for the potentia creation of a library of evaluation considerations, which would

enable the decision maker to customize the tool based on the particular problem.

5.2.2 Subjectivity

Another area where the evaluation considerations could be improved is to reduce the level of
subjectivity in the rating. In this case, only one evaluation consideration, Cost of Acquiring Methodology
and Support Tools, uses numbers from the physical world. Asit is not likely that the quantitative data will
exist in the near future, an alternative would be to conduct a research project that evaluates a large number

of existing methodol ogies to build a database of scores for the particular evaluation considerations.

Research conducted by an individual or team would create a standardized set of datafor rating the
alternatives. Additionally, having this major data collection step performed a priori, the decision-maker
would be able to include more considerations—from a potential evaluation consideration library—in the
decision with a much smaller time requirement. As the set of considerations is increased, the basis for the

consideration isimproved.

5.2.3 Quantitative Data

Another area for future research is the generation of quantitative data that compares the life cycles
of software projects developed via different methodologies. As shown in this thesis, small software
projects can be developed by different methodologies and the resulting systems compared. The challenge,
however, is to determine an appropriate method for collecting and comparing data on industrial-size
systems. |t is not the current practice of software development firms to simultaneously develop the same

project following different paradigms.

This technique has been practiced in the past, however, in other engineering fields. Casein point
is the Department of Defense’s acquisition program in place to develop a Joint Tactical Strike Fighter. In
this example, the U.S. Government is requiring fully operational prototypes before deciding which aircraft

will be chosen.

116

5.3 Summary

This thesis defines a process of objectively evaluating alternative software engineering
methodologies for a given software requirement. The challenge rests in the ability to transform subjective
opinions into a mathematical framework. The first step in this process, as described in Chapter 1, is
developing a clear understanding of the aspects of the problem like decision-making processes, software

engineering methodol ogies, and factors that are important to ageneral domain of software problems.

With a foundation of knowledge, the next step develops a process for achieving the hypothesis.
Chapter 11 begins with the selection of an appropriate decision-making framework. The framework is
further described throughout Chapter 11 and also includes the steps to develop the framework to fit the

software engineering methodol ogy selection problem.

The skeleton of the framework is refined throughout Chapter |11. Real values are incorporated into
the decision-making process via evaluation considerations such as the “Cost of Acquiring the Methodology
and Support Tools.” These objective numbers are combined with values from a subjective analysis of
other evaluation considerations like “Methodology Maturity” and “Legacy System Integration.” The
fitness values of each evaluation consideration are combined to form a single multiobjective fitness value

for the problem analysis.

Finally, Chapter 1V presents a set of demonstrations over a number of representative problems.
Validating the results of the decision analysistool isaproblem as difficult as creating the tool because once
again, the availability of good, objective data is not available. For this purpose, one of the case studies was
implemented following the two highest-ranking methodologies for comparison. The models, developed
during the analysis and design phases of the methodologies, were presented to a panel of evaluators who
were asked to determine the requirements of the system. Even this analysis demonstrated that comparing
metrics is a subjective task and impractical on large-scale systems as the investment in dually developing

systemsisunlikely.

117

The decision analysis tool achieves the goal of determining the fittest methodology from a set of
good candidates. Additionally, a basis for comparing methodologies within the same paradigm has been
formed. The framework provides the decision maker flexibility by allowing for the inclusion and exclusion
of specific evaluation considerations. Finally, even though the rating of criteria is highly subjective, the

process ensures that a rational e and repeatabl e process for making the decision has been followed.

118

Appendix A. Background

A.1Overview

Multiagent systems are a relatively new paradigm for solving complex, distributed-processing
software problems. By providing a new way of looking at the problem, agents offer a unique set of
advantages to help solve the problem. Agents also present a set of problems, which may require the
software engineer to make use of other techniques to build software solutions. The purpose of this
appendix isto provide a survey of background information on several topics crucial to the development of
this thesis. Section A.2 begins with an investigation of the characteristics of agent systems. Section A.3
compares and contrasts three major software engineering paradigms including the agent-oriented approach.
Next, Section A.4 surveys of the pitfalls and problems with multiagent systems and the agent-oriented
software engineering approach in general. Section A.5 discusses current research that is related to this

thesis. Finally, Section A.6 explores techniques for making decisions.

A.2Multiagent System Properties

Before multiagent systems can be fully explored, a common vernacular must be shared. Though
there are differing opinions of how certain terms should be defined, most definitions have some common
characteristics. This section begins with definitions of terms that have been used throughout the thesis.

Following the definitions, different properties and characteristics of multiagent systems will be explored.

A.2.1De€finitions

Below are anumber of termsthat are basic to the study of agent systems and artificial intelligence.
The source of these definitionsis[40].
Agent: A computer system that is situated in an environment and is capable of autonomous action in
the environment in order to meet its goals.

Autonomy: The ability to act without outside intervention. That is an agent has control over its

internal state and behavior.

119

Flexibility: With regard to agent intelligence, flexibility is comprised of reactivity, pro-activeness and
socia ability.
Intelligence: The ability to achieve goalsin aflexible and autonomous manner.

Pro-active: The ability to exhibit goal-directed behavior by initiating actions that work toward
satisfying agoal.
Reactive: The ability to perceive the environment and respond to changes in the environment in order

to achieveagoal.

Social Ability: The ability to interact with other agentsin order to achieve agoal.

A.2.2 Environments

The environment in which the agents exist is an important factor in agent properties. By
considering two different environments—closed and open—these properties can better be evaluated. In a
closed system environment, the system designers know exactly what type of agentswill exist. For the most
part the agents will be cooperative, that is, the agents will work together toward a common goa. In an
open system environment, agents are likely to meet both cooperative agents and competitive agents.
Competitive agents are self-interested; they have their own set of goals, which may be in conflict with the
overall goal of the system. Self-interested agents will assist with the groups problems, usually at some
cost, which is negotiated prior to performing any computation. For an agent to work within an open
system, the agent also must know how to handle communications with agents that were unknown to the

system designer when the agent was developed [9].

A.2.3Problem Domains

Problem domains that multiagent system approaches are suited to solve generally have an inherent
form of distribution; that is, knowledge, capability, information, and expertise are all resources that can be
distributed throughout the system [3]. Three examples of problem domains include distributed situation

assessment, distributed resource scheduling and planning, and distributed expert systems[23].

120

Distributive situation assessment, or distributed capability, deals with agents combining partial
information to solve complex problems. The information comes from separate areas so that a single agent
is not able to gather everything by itself. Multiple information gatherers must combine their information to
see the “big picture.” A distributed sensor network establishment is an example of distributed capability.
In a distributed sensor network establishment, a large area is monitored for, say, vehicle movement. The
areais too large for a single sensor, so the overall task of monitoring the area is distributed across several
agents. The information each sensor receives must be synthesized with the information fromthe other
sensors to completely track the vehicle movement [3].

The distributed resources scheduling and planning example deals with maintaining coordination
and conflict resolution over a set of resources. Generaly, in this type of system, an agent represents each
resource. The overall system goal is to maximize system output. Distributed delivery agents are an
example in this case. The planning or the execution of a plan can be distributed across many agents [3].
Additionally, the planning and the execution of the plan may be occurring simultaneously, and as the
environment changes the agents may be required to unexpectedly replan.

Distributed expert systems are the third example. This example aso deals with how multiple
agents collectively gather the information, however, in this case, each agent has some expertise to offer the
problem solution, and coordination of partial solutions is required [23]. Additionaly, expert systems may
betoo large or too expensive to replicate throughout the system [3].

Large-scale applications that have been developed such as ADEPT—a business process
management system—and ARCHON—an electricity transportation management system—have the
following characteristics [14]:

? Each agent makes use of a significant computational resource, such aUNIX process

? Agents are cooperative, generally maximizing a system goal over individual goals

? Agentsare heterogeneous in implementation

? Thesystem asawhole contains asmall number of agents

121

A.2.4Ben€fits

By building systems that involve multiple agents, the system should realize benefits such as speed
up due to concurrent processing, less communications bandwidth requirements as information gathering is
performed at the source and not remotely, and increased reliability since there is not a single point of
failure. Other benefits include increase responsiveness due to processing and sensing being performed at

the source, and easier system development as each agent is modular [23].

A.2.5Principles

When designing multiagent systems, Lesser points out a number of useful principles. First, the
ability to maximize all of the system goals is unrealistic [23]. The complexity involved in finding optimal
solutions for every agent, particularly when agents may have conflicting goals, is extreme. Instead, the
system should attempt to find a realistic solution within a reasonable amount of time using a reasonable
amount of resources. This is called satisficing a goal, as it is an acceptable answer generated within a
reasonable amount time. The second principle is the need for flexibility in problem solving. This
flexibility involves access to resources or other agents that are dynamically available. The ability to find
aternate problem solving capabilities allows the system to be a robust problem solver. The third principle
is the ability to exploit the organizational structure of the agent system. Computation needs to be
distributed equally across the organization, though the type of computation may be different. At the bottom
of the organization, the computation may involve low level functional processing, where at the higher level,

over-sight and coordination jobs may be executing [23].

A .3 Softwar e Engineering Paradigms

Over the last four decades, software has become an important piece of information systems.
During this time, software engineering paradigms have been designed as methodologies for creating good
software in a reasonable amount of time and at a reasonable cost. These paradigms are generally layered
approaches to devel oping solutions from a customer’ s non-technical description of what the system must be

capable of doing. |EEE defines software engineering as

122

(1) The application of a systematic, disciplined, quantifiable approach to the
development, operation, and maintenance of software; that is, the application of

engineering to software. (2) The study of approachesasin (1). [10]

With this definition of software engineering in mind, three modern paradigms are examined and
discussed: Object-Oriented, Component-ware, and Agent-Oriented. Each of the engineering paradigms
offers systematic approaches to, yet a different perspective of, the basic approach to building software. All
three approaches can make use of object-oriented programming languages, such as C++ and Java. In some
cases the differences the paradigms exhibit are quite substantial, and in others they are minor. Though the
paradigms are different, they are designed to assist humansin the complex task of software development.

The complex nature of software exhibits a number of consistent characteristics. Because these
characteristics are consistent over most software problems, software engineering provides techniques and
structures for handling these problems [31]. The first characteristic that complex problems exhibit is that
the problem generally takes the form of a hierarchy. The problem can be broken down into sub-problems
that when solved individually can be combined to solve the entire problem. A second characteristic of
complex problems is that the selection of the basic building blocks of the systems is arbitrary and based on
the designer's goals. A third characteristic is that the hierarchical form of the problem allows for quicker
development because intermediary forms of the solution are more stable. Finally, the fourth characteristic
isthe ability to distinguish between the communication among subsystems and those within the subsystem.

Again, each of the three paradigms addresses these four characteristics. The important thing to

remember, however, isthat all three of the paradigms are legitimate ways of solving software problems.

A.3.10bject-Oriented Paradigm

Before discussing the paradigm, it is imperative to understand what an object is. The term object
is one of the most loaded words in Computer Science. It kegan emerging simultaneously in different
circlesin the 1970's and still has many connotations [2]. Listed below are some of the derivative terms that

have become part of the computer science vernacular.

123

- Objects: Objects are @aomic entities that encapsulate identity, state and behavior P8].
Software objects can be thought of simplified abstractions that represent any real-world entity.
The properties of the world the object represent are generally the aspects of the entity that are
necessary to the user [25].

- Active Objects. Active objects have emerged in the field of object-oriented concurrent
programming. The concept of the active object is to merge the attributes and methods of an
object with an autonomous activity. Behaviorally, active objects act the same as objects; they
react only to method call and remain procedural [7].

- Distributed Objects: Distributed objects are described as “independent pieces of code that can
be accessed by remote clients via method invocation” [30]. In one sense they are components
(see section A.3.3 for more information on components). The language and compiler used to
build the distributed object are transparent to the user. The only requirement to use the object
is to know how to invoke the remote method. Additionally some concept of a service broker
must be established for clientsto find the distributed object.

Of the three paradigms presented, object-oriented is the oldest. Booch, an early advocate of
object-orientation, describes the complexity of industrial strength software systems as being beyond the
ability of a single person to fully comprehend [2]. He notes that experiments by psychologists indicate the
most an individual can simultaneously comprehend is about seven pieces of information. With these limits
in mind, Booch suggests the concepts of decomposition, abstraction, and hierarchy as ways of dealing with
the complexity.

Decomposition is a method of divide and conquer. It alows the designer to take a broad problem
and transform it into a set of sub-problems. Each of these sub-problems can be further refined
independently. Thus, decomposition allows the user to solve sub-problems that are manageable. Object-
oriented decomposition breaks the problem down into the objects. Techniques described by Pressman and
Muller suggest deriving objects from the nounsin the problem specification [25, 31].

Abstraction allows the user to remove many of the details from the objects, capturing only the

most significant. This also reduces the complexity and makes the problem more manageable for the

124

designer. Common analysis and design techniques are iterative and more detail is added as the problem
goes through successive iterations.

Hierarchy also plays an important role in making the problem less complex. The recognition of
hierarchical structure between objects increases the semantic content of the information. Capturing the
hierarchical structure between objects is not always easy, however, as each object may exhibit complex
behavior.

Object-oriented software engineering was designed to exploit the features of object-oriented
programming techniques. Objects, represented in languages such as C++ and Java, encapsulate al of the
details the object exhibits in the "real” world, or at least the details relevant to the problem. These details
include attributes—for example a person object might have the attributes name, age, and sex—as well as
actions the object can perform, called methods. Objects can represent physical objectsin the world, such as
people, cars, and rooms, but they can also represent abstract objects like a schedule.

Object-oriented software engineering assists the software engineer with the task of addressing the
concepts of modern software engineering: information hiding, data abstraction, encapsulation, and
concurrency. These concepts are not easily handled with the structured analysis techniques devel oped prior
to object-orientation. For example, the ability to encapsulate actions and attributes that belong to a
particular object provides a more semantically correct model than just a function. Likewise, it allows for
dealing with entities that are larger than sub-routines. This, in turn, allows for better management of the
complexity of the system. Object-orientation also promotes the concept of software reusability. As the
functions and attributes of the entity are encapsulated within the object, the object is easily migrated to
other systems for reuse. Incorporating an existing function is much more difficult as the function was
designed to fit within a specific task. An object-oriented application is a closer representation of the real
world than a functional application. The ability to better understand the mapping of the real world to the
software abstraction greatly improves the users confidence in the system. Additionally, the ability to
understand the code is greatly enhanced by objects-orientation, which in turn leads to better maintenance

and improved modifiability. Since objects provide a certain level of data abstraction and information

125

hiding, the underlying functionality of the object can remain the same, but the implementation can easily be

changed to provide improved performance or additional functionality.

A.3.20bject-Oriented M ethodologies

Over the past decade, object-oriented methodol ogies developed from two schools of thought. The
first, revolutionary, represents aradical change over the traditional methodologies, effectively rendering the
traditional methodologies obsolete. The second school of thought is synthesis. The synthesis point of view
sees object-orientation as an evolution of the conventional methodologies [4]. A number of researchers
developed analysis and design techniques for creating object-oriented software from both of these schools

of thought.

In all, gproximately fifty object-oriented methods emerged R5]. As these methods became
further developed, the differenced between the methods grew smaller. Figure 52 shows some of the key
elements that came from thiswork. In 1994, Rumbaugh and Booch began work on unifying their work into

asingle method. The Unified Method would come to bring these different models together and standardize

the notation.

Origin Element

Booch Categories and subsystems

Embley Singleton classes and composite objects
Fusion Operation descriptions, message numbering

Gamma, et al.

Frameworks, patterns and notes

Harel Statecharts

Jacobson Use Cases

Meyer Pre- and post-conditions

Odell Dynamic classification, emphasis on events
OMT Associations

Shlaer-Mellor Objects’ lifecycles

Wirfs-Brock Responsibilities and collaborations

Figure 52: Origin of Object-Oriented Methodologies [25]

126

The convergence of the notations was a difficult task, as many people had input to provide, After
the release of the Unified Method v0.8, more than a thousand detailed comments were returned to the
authors. The Unified Method underwent several substantial evolutions, which can be seen in Figure 53.

Theresult of this effort is now known as the Unified Modeling Language (UML).

UML 1.1

UML 1.0

|

public UML 0.9 & 0.91

feedback /‘

Unified Method 0.8

RN

UML Partners'
Expertise

Booch 93 OMT-2
/‘ \ OOSE
Other Methods Booch 91 OMT-1

Figure 53: Development of UML [25]

A.3.3Component-war e Paradigm

The component-ware paradigm is an attempt to maximize software reuse. Components are
defined by Szyperski to be binary units of independent software [37]. The term binary refers to the
component being executable. Components usually perform a single function and are treated as "black
boxes" B4]. A common analogy compares software components to integrated circuits. One major
difference between software and hardware is that software components have no limit to the number of
instances that can simultaneously exist.

The original creation of components can come from any software engineering technique, such as

object-oriented or structured analysis. Internally, the method of storing datais irrelevant to the user. Any

127

information that is maintained by the component is only accessible by prescribed methods provided by the
component. The versatility of components is, therefore, great. The driving purpose behind developing and
using componentsis software reuse.

In order to reuse the components, Szyperski introduces "contracts’ as a specification for the
component [37]. The contract describes the required input for the component and a guarantee on the
output. It is important to only rely on the contract for expected behavior, as future versions of the
component may not implement the component in the same way. The reuse of components is realized in
different ways. Components can provide a purely functional service, like a hardware component, where
some piece of information is passed to the component, which then evaluates, manipulates, or transforms the
information. The fact that the details of how the function actually works are hidden allows for the
component to be switched with other like-function components, which provide the same service, only
implemented differently. For example, a component that provides a list-sorting algorithm may be designed
to implement a selection sort algorithm. In afuture release of the component, the implementation may be a
quick sort algorithm. Since the requirement for input to either component is the same and the result will be
a sorted list, the actual implementation is a moot point to the system designer. That is not to say that there
are not other factors that go into component selection, as in the previous example, the quick sort algorithm
will likely have better performance than the selection sort algorithm, but the cost of the quick sort
algorithm may be prohibitive.

Another way components can be used is as objects that can be used for inheritance. The attributes
and the methods that a subclass inherits from the super-class component must be defined in the contract,
but the details do not. Examples of object components are Sun’s Java Beans [37]. Java Beans have been
developed for creating graphical interfaces. The details of how the Beans are displayed are completely
hidden from the user, yet the Bean can be extended to provide a more specific look.

Systems are built by combining components. This component compasition requires connecting
interfaces. Components developed in an object-oriented method may provide for inheritance, thus allowing

the system to make use of the methods within the component. Functionally developed components make

128

use of parameterized function calls. In some instances, a scripting language may be needed to act as the
component glue [37].

With regard to the three methods of dealing with complexity—abstraction, decomposition, and
hierarchy—component-ware systems generally make use of an anaysis and design methodology like
object-oriented or structural decomposition. As such, the component satisfies the level of abstraction
desired by the designer. Additionally, when a component is selected in the design phase, the problem has
been appropriately decomposed to the level that the component satisfies the goals of the subsystem.

Likewise, the component fits within the hierarchy of the system without having to provide further detail.

A.3.4Component-ware M ethodologies

It is not likely that one would be able to compose a system strictly from a library of components,
even if alarge library was available. As components are developed as “a physical, replaceable part of a
system” [19], the software developer must make use of other techniques to generate the non-component
portion of the software. The technique must be able to incorporate the component through the components

specified interfaces.

Inversion 1.3, the UML semantics has been expanded to include the modeling of components. By
expanding the UML semantics, a software engineer can follow the object-oriented methodology while

gaining the benefit of software reuse.

A.3.5Agent-Oriented Paradigm

Agent-oriented software engineering is an emerging paradigm based on the object-oriented
paradigm. Like the object-oriented paradigm, the agent-oriented paradigm is designed to reduce the
complexity through decomposition, abstraction and hierarchy. Jennings suggests using the term
organization, instead of hierarchy, however, as it is a more neutral term without connotations of control.
Though organizations can correspond to hierarchies, they can also correspond to peer groups, or anything

that fallswithin that spectrum [15].

129

As expected, the primitive building block in the agent-oriented paradigm is an agent. Agents are
more expressive than objects. Every agent is autonomous, having control over its own internal state and
behavior and having well-defined boundaries and interfaces. Other characteristics of agents include the
ability to exhibit flexible problem solving capability, fulfill a specific role, and exist in an environment
whereby they can detect changes through sensors and make changes through effectors.

By adopting an agent view of the world, it is apparent that most problems require multiple agents
to represent some decentralized nature of the problem, multiple control centers, or multiple goals[14]. One
difference between agents and objects is their interaction techniques. Objects interact with one another
through method invocation, whereas agents communicate through a high-level agent communication
language (ACL). ACLs allow the interactions to be conducted at the knowledge level. By using an ACL,
agents do not need to know anything about the structure of other agents. The only requirement is that the
agents know how to pass and accept messages from other agents.

In Section A.3.1, active objects and distributed objects were introduced. One characteristic that
differentiates these types of objects from agents is their communication technique. Both types of objects
are monolithic and rely on direct method invocation. Additionally, the agents can exhibit many behaviors
autonomously, where as an active object typically has a single behavior. Research has looked at extending

the active object notation in UML for agent analysis and design [7].

A.3.6 Agent-Oriented M ethodologies

Like object-orientation, agent-orientation can be viewed as a revolutionary or evolutionary step in
software engineering. In Iglesias et a.’s survey of methodologies, most agent-oriented methodologies are
extensions of the object-oriented and knowledge engineering methodologies fL1]. The reason most
methodologies are based on existing methodologies is because developers already know some of the
vocabulary and techniques. The parts of the methodology that do not apply are removed, and aspects that
are not addressed are added to the new methodol ogy.

Wooldridge, Jennings, and Kinney have developed an analysis and design methodology called

Gaia [42]. The MaSE methodology is also a complete analysis and design technique for developing agent

130

systems. These methodologies are intended to capture an agent’s flexible, autonomous behavior, the
interactions between agents, and the complexity of the agent system’s organizational structure. These
intentions are fulfilled by the methodologies’ modeling of system goal, the roles and behaviors that the

agents exhibit, and the communication protocols between the agents.

A.3.7Paradigm Comparisons

Research at AFIT by Robinson has already begun looking at agent assembly from a component
point of view [32]. This approach has much merit, as it is common for system designers to add features
through new system releases. To be able to add and remove agents from a system without having to
redesign the entire system allows for low cost reuse. Additionally, as long as the agent “contracts’ clearly
define the agents communication language and the services it provides, system composition becomes fairly

trivial, not requiring any type of component glue [37].

From Sections A.3.1 through A.3.4, it is clear that there are many similarities between the agent-
oriented paradigm and the other paradigms. There are some important differences, though, that are not

quite asobvious. Theremainder of this section will highlight those most important differences.

Booch describes objects as "a set of autonomous agents that collaborate to perform some higher
level behavior" [2]. This characterization of objects as agents is not far from the truth, but there are some
differences between agents and objects. Objects and agents do both encapsulate the who, what and how.
Agents, however, encapsulate more. The knowledge they encapsulate includes the when—their own thread
of control—and the where—the location of the execution. Additionaly, they contain why they do
something, that is, a software agent captures the goals that it has been design to accomplish. With an

interface to the environment and other agents, contracts and services are negotiated at a meta-level [28].

Intelligence and autonomy are important characteristics that separate agents from objects and
components. Objects and components are typically passive and obedient. They do not perform functions
unless specifically asked and have no ability to refuse a request. Even active agents are limited in their

autonomy. For example, active agents are monolithic and only encapsulate a single behavior.

131

Additionally, active objects do not reason about its behavior or interactions with other objects [B7].
Agents, on the other hand, can exhibit many behaviors as well as choose to perform atask. The decision is
generally made by a utility function that may take into account such things as the cost of the operation, the
current workload, and the expected pay back. One concept not addressed by the object-oriented paradigm
was the agent’s mental state, or internal view of the environment. Objects naintain attributes that are
characteristic of the object itself and provide the operators to effect those attributes. Extensions to the

object-oriented paradigm need to addressissues of inference, planning, etc. [29].

In large complex systems, direct method invocation requires the requesting entity to know much
more about the entire system. Traditional distributed software can use techniques such as remote method
invocation or message passing. In a system developed in Java, the system can implement the remote
method invocation via RMI or CORBA, and it can implement message passing through sockets. In both
cases, the object requires some a priori knowledge. For example to create a socket connection, the local
class needs to know the host nhame, or address, and the port number of the distant class. Likewise, using
RMI or CORBA, class stubs must be generated for both client and server and placed on the respective
systems, as well as locally running a registry with knowledge of the location of the objects. In an agent
system in which agents can broker and negotiate for services, entities can join dynamically [15]. That is,
agents are free to initiate action independent of any other entity [28], though some a priori knowledge is
needed with regard to a service server. The agent is not required to making use of a single service server,
however. The agent can maintain a list of service servers and dynamically select the server with which to

negotiate.

Components are not as powerful as agents computationally. Components are passive, requiring
invocation in order to provide service. Additionally, acomponent’s contract specifies the preconditionsthe
incoming data must meet in order to guarantee the correctness of the output. For components to be useful,
they must be general problem solvers. Components that are loaded with too much functionality become

expensive, especially if some of that functionality is not going to be used [37]. Agents, however, can be

132

designed with the ability to find or request services within the system that they cannot provide, thus

allowing a dynamic problem solver [15].

A.4Agent-Oriented Problemsand Pitfalls

The focus of this section is to highlight the downside to taking an agent-oriented approach to
software engineering. To date, the main problem identified is the great difficulty software engineers have
in validating their systems due to agent and system unpredictability. In addition to these problems, a
number of pitfalls, as presented by Wooldridge and Jennings are summarized. The significance of
identifying these problems and pitfallsisto the software engineers' advantage for the purpose of selecting a

software engineering paradigm.

A.4.1Agent-Oriented Problems

Current research has highlighted two major downsides to the agent approach for software
development. Those downsides are intrinsic to agent interaction. Since agent systems exist, software
engineers have been able to work around these problems, however, the fixes are made on a case-by-case
basis and there is not currently a general solution. These problems can be seen at two level of the system:
theindividual agent and the agent system.

At the first level, the agent level, agents exhibit a natural unpredictability. Being able to perceive
changes in the environment, agents must balance proactive and reactive behavior. By being too proactive,
the agent may undertake tasks that are, or may become, irrelevant. On the other side, an agent that is too
reactive may spend too much time fulfilling requests and may not fulfill its own goals. By reaching a
compromise, agents demonstrate a new level of sophistication and flexibility. The only problem with this
is that they also are quite unpredictable. Because of the vast nhumber of combinations of events and
changes to the environment that can exist in an environment, it would be impractical to try to test every
combination of events and actions. Since the decision to work toward a particular objective is decided at
run-time based on the state of the environment, the ability to predict the agent interactions is extremely
difficult. Furthermore, if agents are given the ability to negotiate for services and tasks, the service that an

agent reguests and the service that is actually performed on its behalf cannot be predicteda priori [14].

133

The second level, the agent system, is where another source of unpredictability can be found. At
this level, the unpredictability is associated with emergent behavior. As a benefit to multiagent systems,
emergent behavior is a synergetic effect that makes the system more powerful than the individual agents
combined. Another way of interpreting thiseffect that demonstrates the problem with emergent behavior is
well stated by Jennings, “results in behavioral phenomena that cannot be deconstructed solely in terms of
the behavior of the individual components” [14]. Just as with the individual agent, emergent behavior

makes the ability to reproduce or predict the system interactions very difficult.

A.4.2 Agent-Oriented Pitfalls

In attempt to understand how to better engineer software projects using an agent-oriented
approach, it is necessary to consider the possible problems that can arise. Furthermore, there are other
factors that determine whether or not the agent-oriented paradigm will succeed. Presented here is a
summary of the main pitfalls as seen by Wooldridge and Jennings [41]. They identify seven categoriesin
which twenty-four key pitfalls have been classified.

?? Political Pitfalls — The two pitfalls that fall under this heading are very similar to problems
that have plagued the field of Artificial Intelligence as awhole. Thefirst is overselling agents
as a solution. Agent-oriented software is not promising to provide solutions to problems that
other software engineering approaches cannot. There is currently no data to suggest that an
agent-based solution could not be developed in a non-agent form. The second pitfall in this
category is being dogmatic about agents. This technology is still immature and the use of it
should be based on a clear advantage. If a system can be designed with a non-agent approach
and perform just as well as an agent approach, then the non-agent approach should be
selected. The argument here is that until the agent more engineers better understand
approach, an agent system will be harder to maintain.

?? Management Pitfalls — This category has four key pitfalls. The first two pitfalls involve
ignorance of agents. Management does not know why they need agents or what the agent is

good for, but they understand that it is a state-of-the-art technology that is currently hot in

134

today’s market. The problem with using agents when they are not really understood usually
involves inappropriate use of the agents. When the system does not perform correctly the use
of agentsis blamed and the reputation of the technology istarnished. The other two pitfallsin
this category involve the system design. With regard to re-use and building “one-off”
solutions, general solutions are difficult and costly to design and implement and usually do
not live up to expectations.

?? Conceptual Pitfalls — There are four conceptual pitfalls that involve fully understanding the
software engineering process. The agent-oriented paradigm does not offer a “silver bullet”
solution to software engineering’s greatest challenges. Misunderstanding the concepts tha go
into agents is another major problem. The idea of an agent is intuitive, but that should not
mean developers should not study the concepts in depth. Software engineering is a complex
process, and many well-founded techniques for doing so have been developed. Forgetting
these techniques can be disastrous for software development.

?? Analysis and Design Pitfalls — Two pitfalls fall under the analysis and design category. One
involves the using current technology to the agent’s advantage. The “agent-specific” aspects
of a system are small compared to the whole system, so it is vital to use the state-of-the-art
technology in the non-agent areas. Failing to exploit concurrency isthe second pitfall. Multi-
agent systems are well suited for distributed problems that can be solved concurrently.
Concurrency allows for multiple objectives to be simultaneously achieved.

?? Agent Level Pitfalls — The pitfalls that fall under this category involve internal agent design.
With regard to using artificial intelligence techniques, agents can have too much or not
enough. Putting in too much intelligence can hinder the performance of the agent as well as
overburden the processor the agent is running on. Agents that have no intelligence are bad
because they make the term “agent” lose it's meaning. Additionally, “agents’ raise certain
expectationsthat could leave users dissatisfied if the non-intelligent system does not live up to

the expectations.

135

?? Society Level Pitfalls— Under this category, six pitfalls have been identified. These pitfalls
involve incorrectly identifying agents within the system. Using too many agents can drive the
communications overhead up, where as using too few agents can improperly divide the
workload. Another major pitfall is confusing simulated and real parallelism. As a multi
agent system prototype may provide a good insight to distributed problems, the system
running on a real network may show much different results than the system running on a
scaled-down isolated test network.

?? Implementation Pitfalls— The two pitfalls that fall under this category involve misconceptions
of using a new technology. Building every system from scratch can drive up the cost of
software development. Though some standards are not firmly established, the groundwork

for the standard has been laid and devel opers should attempt to work within that framework.

A.5Rdated Work

As agent-oriented software engineering develops into a viable technique for solving software
prablems, the question of what type of problem is suited to the technique arises. This question is similar to
the problem that this research is addressing, but the current work that has been done looks just at the agent-
oriented side of the problem. Two major undertakings with regard to answering the question of for what

type of problem is the agent-oriented approach appropriate are described below.

A.5.1Jennings and Wooldridge's Work on Agent-Oriented Software Engineering

Jennings and Wooldridge have presented numerous papers on agent-oriented software
engineering. Their work presents a qualitative analysis of the engineering approach to provide “intellectual
justification” [15]. Their work is an attempt to answer why agent-oriented software engineering is the

“new revolution in software engineering” [15]. The argument that they make is based on three parts [15]:

1. Agent-oriented decompositions are effective ways of partitioning the problem space of a

complex system.

136

2. The key abstractions of the agent-oriented mindset are natural means to abstracting a

complex system.

3. The agent-oriented philosophy for identifying and managing organizational relationships

is appropriate for dealing with the interactions and dependencies in acomplex system.

By arguing these issues, Jennings and Wooldridge assert that the agent-oriented techniques
represent an advance over the current state of the art. Based on these three areas, they compare the agent-
oriented technique to object-oriented and component-based software engineering. They leave as

“outstanding issues’ the following [15]:
0 Understanding of the situationsin which agent solutions are appropriate
o0 Principled development techniques for agent systems

A.5.2MESSAGE: Methodology for Engineering Systems of Software AGEnNts

MESSAGE is a project that is being developed by the European Institute for Research and
Strategic Studies in Telecommunications (EURESCOM). Initiated in 1999 as a two-year project, seven

major European telecommunication industries formed a consortium to achieve three objectives [24]:

?? Define a suitable methodology for agent-based application development in the

telecommuni cations domain
?? ldentify and recommend tools to support the methodol ogy

?? Define guidance for the identification of application areas where an agent-based approach

is better suited than other approaches

The aim of the project is to extend existing approaches, such as UML, to allow them to support

Agent-Oriented Software Engineering AOSE). Furthermore, MESSAGE is attempting to combine the

best features of other AOSE approaches that are currently being defined.

137

The particular interest with the MESSAGE project with regard to this research is its focus on its
third objective. Currently, they are promoting five guidelines that are intended to help the developer in
deciding whether or not an agent-oriented approach is appropriate. Those guidelines are presented below

[24]:

1 An agent-oriented approach is beneficial in situations where complex/diverse types of

communication are required.

2. An agent-oriented approach is beneficial when the system must perform will in
situations where it is not practical/possible to specify its behavior on a case-by-case

basis.

3. An agent-oriented approach is beneficial in situations involving negotiation, co-

operation and competition among different entities.
4, An agent-oriented approach is beneficial when the system must act autonomously.

5. An agent-oriented approach is beneficial when the system is expected to be expanded

or modified or when the purpose of the system is expected to change.

Further development of these concepts is the topic of the projects second deliverable, which has
not been published at this time. Based on these five guidelines alone, there is still no clear answer as to
whether or not an agent approach is appropriate. Does a system have to meet one guideline, two, or
perhaps all fiveto be well suited to the approach? Likewise, the guidelines do not address other factors that
may argue against an agent-oriented approach even if the system meets all five guidelines; hence, the

necessity of thisresearch.

A.5.3Methodology Selection for Developing Real-Time Systems

In 1988, the Software Engineering Institute presented a set of guidelines for assessing software
development methods for reaktime systems [38]. The guidelines are a five-step process for evaluating

different methodologies. The five steps of the guidelines from [38] are given below:

138

1. Needs Analysis — Determine the important characteristics of the system
to be developed and how individual methods help developers deal with

those characteristics.

2. Constraint Identification — lIdentify the constraints imposed on the
permitted solutions and determine how individual methods help

devel opers deal with those constraint .

3. User Reguirements — Determine the general usage characteristics of the

individual methods.

4, Management I ssues — Determine the support provided by the method to
those who must manage the development process as well as the costs

and benefits of adopting and using the method.

5. Introduction Plan — Develop an understanding of the issues that the
method does not address and a plan to augment the method in those

areaswhereit is deficient.

With these steps, the authors present questions for the software engineer to answer about the
methodology. Some of the questions are rhetorical, meant to remind the engineer of the issue. Other
guestions require an in-depth knowledge of the methodology and its representations. The purpose of the
guestions is to make the assessor form an opinion regarding the methodology, however, not over-simplify
the problem of selecting a methodology. The questions provide a framework to present a systematic

evaluation process.

A.6Decision-M aking Frameworks

A goal of this research is to specify a decision-making process for determining an appropriate

software engineering technique. Clearly, the decision to select one methodology over another is a difficult

139

tasks where many trade-offs must be made. As such, a multidimensional technique for decision-making is

required. This section explorestwo different techniques for making multidimensional decisions.

A.6.1Design Space and Rules

In the field of software architectures, the concept of design space and rules has emerged as a
methodology for describing and classifying architectural alternatives and indicating good and bad
combinations of those alternatives [21]. The intention of the design space and rules methodology is to
assist new engineers in making the correct choice in design, as would an experienced software engineer.
This technique is the foundation for a decision-making process for software engineers when trying to

determine which design options will provide a good solution to a given requirements statement.

The design space is a multidimensional space for classifying systems. Each dimension of the
design space represents different structural and functional characteristic of the system. Structural
dimensions represent characteristics that pertain to the techniques that can be employed, where as the
functiona dimension captures the impact of the decisions. An example of two dimensions is response time
(functional) and interprocess synchronization (structural). A point in the design space then determines a

design. Thissmall design spaceisillustrated below in Figure 54[21].

Fast []

Response Time Med ®

Slow

| | | |
Message Semaphores Monitors Rendezvous

Interprocess synchronizatior

Figure 54: A Smple Design Space

Not al dimensions are independent of one another and it is important to find these correlations.
As correlations between alternatives are discovered, rules can be generated to assist in the decision process.
For example, a correlation that can be drawn from the simple design space in Figure 54 is the relationship

between interprocess synchronization and response time. |f the specification required a highly responsive

140

system, then messaging or semaphores would be better design choices that monitors or rendezvous.
Another functional dimension that the “Interprocess Synchronization” may be plotted against is
complexity. The space may show that messaging and semaphores are “very complex.” The software
engineer is now required to balance the complexity of the system with the responsiveness. By testing
existing systems against the design space and rules, the degree of agreement—that is how the actual

implementation compares to the design predictions—can be measured.

Selecting the dimensions that reflect the requirements and describe the structure of the system
creates adesign space. Using the correlations of the design space, the designer is ableto directly see which
choices meet the requirements of the specification. Rules can be developed based on the design space and
the designer’s experience. These rules could be automated to accept a set of requirements and propose a

good, but perhaps not optimal, design.

By defining a set of dimensions that can be used to establish a system design, existing systems
could be tested against the design prediction to determine a degree of agreement. Systems that score high
degrees of agreement will validate the design prediction and the rules that led to that prediction.
Additionally, systems can be modified to test different combinations of the dimensions. These modified

systems' degree of agreement can also be determined to further test the design rules.

At AFIT, design space and rules were used in the integration of software engineering tools [26].
In this research, Noe demonstrated the possibility of integrating different software engineering tools based
on the tools extendibility and communication paths. Noe's design rules were used as guidelines for
selecting options in the structural dimensions based on the requirements given by the set of functional
dimensions. With these guidelines in place, formal transformations were developed. New tools could be
integrated with each other by determining the tools structural characteristics and selecting the appropriate

transformations.

141

A.6.2Multiobjective Decison Analysis

The purpose of using a strategic decision making technique isto apply aquantitative approach to a
problem that can be greatly qualitative. Using numbers to quantify choices clarifies different elements of
the decision and makes the user of the technique be explicit about reasoning. In turn, the basis for a
decision can be reviewed and analyzed during and after the process. Additionally, communication between
different interested parties is improved, as there is a concrete baseline for discussion [L8]. Strategic

approaches to decision making generally follow the five phases shown in Figure 55.

1. Specify objectives and scales for measuring achievement with respect to

these objectives
2. Develop alternatives that potentially might achieve the objectives
3. Determine how well each alternative achieves each objective
4. Consider tradeoffs among the objectives

5. Select the alternative that, on balance, best achieves the objectives, taking

into account uncertainties

Figure 55: Five Phasesto Strategic Decision Making [18]

This section begins with definitions relevant to decision making. Following the definitions, the

five-phase strategic decision making process is dissected and the critical pointsin each are discussed.

A.6.2.1 Taxonomy

This section defines a set of terms that are used throughout the thesis for the purpose of discussing

the multiobjective decision analysistechnique. The definitions of the terms are derived from [18].

- Alternatives. Alternatives are different realizations of a decision. The purpose of a decision-

making technique isto assist a person in selecting the best alternative to a choice.

- Evaluation Consideration: An evaluation consideration is a matter that needs to be taken into

account when an alternative is being evaluated. For example, evaluation considerations for a person that is

142

looking for a new job may include salary, location and advancement opportunities. Evaluation

considerations are also known as eval uation concernsor areas of concern.

- Evaluation Measure: An evauation measure is a scale for the degree of attainment of an
objective. For example, “annual salary in dollars’ may be an evaluation measure for a job seeker looking
for a new job with a higher salary. Other terms used for evaluation measure include measure of

effectiveness, attribute, performance measure, or metric.

- Goal: With respect to an evaluation consideration, a goal is the threshold of achievement that is
either obtained or not by an alternative. For the job seeker example, a goal may be a salary of $50,000. A

goal isalso referred to as atarget [16].

- Layer or Tier: The evaluation considerations at the same distance from the top of a value
hierarchy make up a layer or tier. The evaluation considerations in layers higher in the hierarchy are

composed of the evaluation considerations lower in the hierarchy.

- Level or Score: The level or score represents the specific numerical rating for a particular

alternative with respect to a specified evaluation measure.

- Multiobjective Value Function: A multiobjective value function is the combination of all of the

evaluation measures within avalue structure to derive asingle value.

- Objective: An objective is the preferred direction of movement with respect to an evaluation
consideration. Typically, the preference will display monotonic behavior. An example of an objective of

the job seeker would be to have ahigher salary.

- Sngle Dimensional Value Function: A single dimensional value function, or single attribute

value function, is afunction that returns the level of an evaluation measure based on the alternative.

- Value Hierarchy or Value Tree: A value structure with a hierarchical or tree-like structure is a

value hierarchy or value tree. The structure can be presented textually or graphically.

143

- Value Structure: The value structure is the entire set of evaluation considerations, objectives, and

evaluation measures for a particular problem.

-Weights: A weight is used in a multiobjective value function to place more or less emphasis on a
particular evaluation measure. The value of the weight is multiplied by the level of the evaluation measure

for aparticular alternative. The sum of the weightsin a multiobjective value function must equal one.

Note: In the literature, the use of the terms “goal” and “objective” are sometimes interchanged, but

this research will follow the definitions presented here.

A.6.2.2Value Hierarchies

The first step in the five-step strategic decision-making process is to capture the objectives of a
decision and specify eval uation measures with respect to the objective. A value hierarchy allows adecision
maker to structure evaluation considerations, objectives, and evaluation measures in a structured and

understandable format.

Value hierarchies are generally depicted as tree diagrams with the root of the tree either at the top
of the diagram with the children nodes below, or at the left of the diagram with the children nodes to its
right. Value hierarchies can also be represented textually in an outline format. The value diagrams that
will be used in this research will be graphical with the node on the right. An example of a value hierarchy

for our job seeker is shown in Figure 56.

144

Starting salary

Immediate Insurance

Fringe Retirement

Monetary
compensation — 3-year salary

— Future —

—— 5-year salary

— Proximity to relatives

Geographical
location — Degree of urbanity

Selecta —— Climate
best job

— Daily commuting

Travel

requirements Trip length
| Extended
trips

Percent time away

— Immediate training

Nature
of work

Technical interest
— Continuing
Variety

Management training

Figure 56: Value hierarchy for employment options [18]

The example inFigure 56 only shows the evaluation considerations. It isnot generally practical to
include the information regarding objectives and evaluation measures on the same diagram because it
increases the complexity of the diagram. This additional information is typically captured in a table for
reference. The evaluation considerations included in this table are those that are the leaves of the tree.

Figure 57 isapartia evaluation consideration table for the job seeker example in Figure 56.

Evaluation Objective Evaluation Measure
Consideration
Starting Salary Maximize starting salary Salary in current dollars
Insurance Minimize health insurance premiums Premium cost per year in
current dollars
Retirement Maximize retirement investment Potential annual investment in
potential current dollars

Figure 57: Evaluation considerations for evaluation of jobs

145

Value hierarchies are able to quickly convey information regarding a decision to the decision
maker and other interested parties involved. When creating avalue hierarchy, it isimportant to try to attain
a set of desirable properties that will increase the value of the diagram. A value hierarchy that has these
properties can provide many uses to the vested parties. The next sections discuss those properties and

looks at the different uses a value hierarchy can meet.

A.6.2.2.1 Desirable Propertiesof Value Hierarchies

The desirable properties of value hierarchies are completeness, nonredundancy, decomposabil ity,

operability and small size[16, 18]. Each of these propertiesis discussed below.

A.6.2.2.1.1 Completeness

To be complete, the evaluation considerations at each layer in the hierarchy, as a group, must
adequately cover all concerns in order to evaluate the overall objective of the decision. In addition to
adequately covering the concerns, the evaluation measures at the lowest tier must adequately measure the
degree of attainment for the respective objectives. A hierarchy that is complete is considered “collectively
exhaustive.” That is, taken as a whole, the value hierarchy includes everything necessary to evaluate the
decision. Completeness is hecessary to ensure that one can accurately distinguish the differences between

alternatives. The task of developing evaluation measuresis discussed in Section A.6.2.4.2.

A.6.2.2.1.2Nonredundancy

As well as being complete, a value hierarchy should be nonredundant. In order to be
nonredundant, evaluation considerations in the same tier should not overlap. For example, in Figure 56 the
evaluation consideration “Immediate” under the “Monetary compensation” consideration is divided into
“Starting salary” and “Fringe”. Dollar values associated with these two evaluation considerations can be
assigned to one, and only one, category; hence the categories are nonredundant. A nonredundant hierarchy
is called “mutually exclusive.” Factors used for evaluation are included in no more than one evaluation

consideration.

146

A.6.2.2.1.3Decomposability

Decomposability deals with the independence of evaluation measures for different evaluation
considerations. When evaluation measures are not decomposable, developing a procedure to combine
evaluation measures for determining an overall preferability of an alternative can be very difficult. In fact,

the required procedures can become so complicated that they are no longer practical for use.

A.6.2.2.1.40perability

Operability of a value hierarchy implies understandability. The evaluation considerations,
objectives and evaluation measures need to be understood by the audience. Technical terms and evaluation
measures that are only understood by subject matter experts are impractical if people from different

backgrounds are vested in the problem.

A.6.2.2.1.5Small Size

The last property is size. There is benefit to having a smaller value hierarchy if it can
communicate the same information as a larger hierarchy. The smaller value hierarchy is more easily
explained to others and requires fewer resources in order to evaluate different alternatives. For practical
value hierarchies, completeness and detail must be balanced with the ability to complete an analysis in a
timely manner. To help keep the size reasonable, evaluation considerations should be put against a “test of
importance” [18]. The test states, “an evaluation consideration should be included in a value hierarchy
only if possible variations among the alternatives with respect to the proposed evaluation consideration

could change the preferred alternative” [18].

A.6.2.2.2 Usesof Value Hierarchies

In addition to using a value hierarchy to evaluate alternatives, the value hierarchy has other
important uses. First, the value hierarchy can guide information collection. By knowing what is important
to the problem, appropriate eval uation measures can be selected or developed. At some point information

collection must end and a decision made. Knowing what needs to be collected assists the decision maker in

147

knowing when enough information has been collected. Being able to have peers review the hierarchy and

find holes helps avoid collecting too little information.

Another use of the value hierarchy is to help identify alternatives. If the situation does not call for
a prescribed set of aternatives, the value hierarchy provides a basis for developing aternatives. On the
other hand, some decision makers limit the number of alternatives that are considered, which could result in

good alternatives being missed.

A third use of a value hierarchy is to facilitate communications between multiple stakeholders.
The diagram can assist everyone in understanding what is collectively considered the important

considerations, aswell as provide a basis for compromise or consensus when selecting alternatives.

A.6.2.3Evaluation M easures

Evaluation measures alow for a quantifiable degree of attainment of objectives. Quantifying
evaluation considerations allow for an unambiguous rating on how well one alternative does compared to
another with regard to a specified objective. Developing accurate evaluation measures is a critical part of
the first step in the five-step decision making process. This section looks at the different types of

evaluation measures and how to develop them.

A.6.2.4 Typesof Evaluation Measur e Scales

Evaluation measures are classified based on their occurrence in the world and how they measure
objective attainment. That is, evaluation measures can occur naturally or be constructed for the particular
decision. Additionally, evaluation measures can directly measure the attainment of the objective or reflect

the degree of attainment.

A.6.2.4.1.1Natural or Constructed

A natural scale for an evaluation measure is one that has a common interpretation for the general
public. Natural scales have the property that not much time is required to define the scale, for example, a

natural scale for the job seeker’s “starting salary” evaluation measure, salary in current dollars, has the

148

intuitive definition that $50,000 isbetter than $25,000. There are situations, however, where anatural scale
is not appropriate. In those cases, a constructed scale is used. A constructed scale is one that is developed
for a particular problem. Constructed scales are necessary when natural scales do not exist for a particular

evaluation measure.

A.6.2.4.1.2Direct or Proxy

The second category for classifying evaluation measure scales specifies how the scale measures
the degree of attainment. A direct scale, as the name implies, directly measures the degree of attainment.
For example, in a business, “profitsin dollars’ is a direct scale. Scales that are a reflection of the degree of
attainment are called proxy scales. The gross national product is a proxy scale for the economic well-being

of acountry.

A.6.2.4.2 Developing Evaluation Measur e Scales

The purpose of developing an effective eval uation measure scale is to have an unambiguous rating
of fitness one alternative does with a particular evaluation consideration compared to another aternative.
The task of selecting scales may not be void of controversy. Depending on the type of scale used,
interpretation of the scale by the interested parties may vary. The questions listed below are guides for
selecting and developing evaluation measure scales for the decision problems evaluation considerations
[18].

1. Should we use a natural scale that is a proxy, or should we develop a

constructed direct scale?

2. Should we subdivide an evaluation consideration into more detailed sub-
considerations for which natural scales might exist, or should we construct a

scale to measur e the evaluation consideration without subdividing it further?

3. Should we use a natural scale that is precise, but uses technical jargon, or
should we use a constructed scale that may not be as precise but that may be

mor e under standabl e to some stakeholdersin the decision process?

4. How carefully should we specify the scale definition for a constructed scale?

149

A.6.2.5Alternatives

The next step in the decision making process is developing viable alternatives to the decision
problem. Even the most complete analysis can only show the best alternatives that have been identified.
Likewise, if none of the alternatives are particularly good, the best solution the analysis can provide is the
best of a poor set of alternatives. The value hierarchy can be used to assist decision makers in identifying
alternatives, however, it is an explicit step and not a direct result from the analysis. There are many issues
that come from having too many or too few aternatives; likewise, there are ways of identifying more

potential alternatives. For additional information in this area, see[18].

A.6.2.6 Multiobjective Value Analysis

The purpose of multiobjective value analysis is to derive a value function that provides the fithess
of an alternative to a particular problem. It is impossible to simultaneously maximize all objectives in a
multiobjective decision problem [6]. The ability of a decision-maker to determine an optimal solution is
based on defining an optimal solution to be “ one that maximizes a decision maker’ s utility (or satisfaction)”
[16]. This next section discusses how to derive the multiobjective value function to determine the decision

maker’ s satisfaction and how to devel op spreadsheet analysis techniques to validate the result.

A.6.2.6.1 Multiobjective Value Function

A multiobjective value function, or value function, combines the multiple evaluation measures of
a decision problem into a single measurement of an evaluation alternative. The form of the value function
is the weighted sum of the single dimensional value functions for each evaluation measure in the problem.
Weights are applied to the results of single dimensional value functions in order to handle different scales

in the functions as well as different levels of emphasisthat are placed on each evaluation measure.

Generally when making a decision to a complex problem, a “winner” among a set of alternatives
is not dear, as there are tradeoffs that occur between evaluation measures. By combining the values of the

single dimensional value function into a single index value the overall desirability of an alternative can be

150

found. There are some intuitive combination techniques, like simple averaging, that are practical but have
many drawbacks. Common problems include the units used for the evaluation measures. The scale used
for a particular measure may cause the measure’ s value to dominate the value function. Likewise, ranges
for the evaluation measures can pose problems. To solve these two potential problems, weights for each

evaluation measure are introduced into the multiobjective value function.

These weights provide for a different multiplying factor for each evaluation measure to account
for both the range of variation for each evaluation measure and different degrees of importance on each.

That is, if one evaluation measure has a greater importance in the decision, it should have a greater weight.

Another problem that can arise is the return-to-scale issue. When using constructed evaluation
measure scales, the difference between levels may not be equal. Take for example the following

constructed evaluation measure scale for selecting a new software product:

-2 The use of the software will cause a potentially serious decrease in productivity
-1 Thereisanoticeable but acceptable decrease in productivity

0 Thereis no detectable change in productivity

1 Thereisan increase in work productivity

The movement from -2 to -1 may be significantly more important to the decision than the move
from -1 to 0. When the increase in value that results from moving to each successively more preferable
score on the scale is less, there is a decreasing return to scale. Likewise, when each successively more
preferable score on the scale is greater than the last, there is an increasing return to scale. The returns-to-

scale effect can be captured in the single dimensional value function.

The value function is of the following form

V(X]_, Xz‘) = W1V1(X1) +W2V2(X2) +o.

where X3, X, €tc., are the appropriate evaluation measures; wi, Wy, €fc., are the weights on the evaluation

measures; and vi(X1), »(Xy), etc., are the single dimensiona value function for each of the evaluation

151

measures. The sum of the values of the weights typically sum to one. The single dimensional value

functions are often piecewise linear or exponential functions.

A.6.2.6.2 Spreadsheet Analysis

The use of computer-based spreadsheets allows for quick calculation when making a decision.
There are two major reasons for using a spreadsheet. First, it reduces the potential for human calculation
errors. The second benefit is the ability to investigate whether changes to the assumptions about the data
for the decision lead to changes in the ranking of alternatives. Thisis called sensitivity analysis. Since the

sensitivity analysis can be tediousin the calculations, the spreadsheet makes the analysis fast and painless.

A.7Summary

This appendix has provided a broad survey of many topicsin software engineering with afocuson
how they relate to software engineering paradigm selection. Beginning with some basic definitions, several
properties of multiagent systems were explored. These properties included the multiagent system benefits,
environments, principles and problem domains.

Next, three popular software engineering paradigms—object-oriented, component-ware, and
agent-oriented—were discussed. Similarities to the approaches have been pointed out, as well as
differences. Though object-oriented and agent-oriented software engineering appear to be more closely
related than component-ware in technique, both the object- and agent-oriented approaches are appropriate
for building system components, and the techniques used by the component-ware paradigm are reasonable
for building agent systemsin which the agents are heterogeneous.

Following the discussion of the three software engineering paradigms, a survey of problems and
pitfalls that the software engineer may encounter when building agent-based systems was presented. From
Section A.4, the unpredictability of agents and agent systems was described. Additionally, twenty-four
pitfalls of the agent-oriented approach were summarized.

With the foundation of multiagent systems and software engineering techniques laid, several areas
of related research were presented. Wooldridge and Jenning’s work points out that the decision to use an

agent-based approach is currently an open issue. The MESSAGE project is intent on defining guidelines

152

that software developers can use when making that decision. Finally, Software Engineering Institute
research on selecting appropriate methodologies for devel oping real-time systems was discussed.

Last, techniques for strategic multidimensional decision-making are presented. Understanding of
decision-making processes is an essential piece of this research. Decision theory alows for making a

difficult decision easier to justify.

153

Appendix B. Methodology Selection Criteria Survey

B.1Survey

Survey

Before beginning the survey, | am requesting some personal information. This
information is being collected to track the background of the participants. Names

and contact information are optional and will only be used in the event that we

need any clarifications on the answers given.
Contact Information

Name:

E-Mail Address:
Background

Occupational Area:

Field of Interest (Multiagent Systems, Agent-Oriented Software Engineering,
Methodologies, etc.):

Length of Time in Field:

Directions

Below are the sets of criteria for the Management and Technical Issues. For
each of the issues, rate the categories on a scale of zero to four. (NR is provided
as not rated). The rating that you are providing is based on the importance that
the category has on the general problem. When evaluating a methodology for a

specific software requirement the decision-maker will weight each of the factors.

154

Following each category is a brief description of the category as well as a field for
any comments you may have regarding the category.

At the end of the survey, please remember to submit the results.

Management Issues

NRO 1 2 3 4

Cost of Acquiring the Methodology ECCECLEELC

The category focuses on the costs involved with adopting the methodology for
use. Factors that play into this category include the costs incurred by sending
personnel to available training, the purchase of reference materials, etc.
Comment:

NRO 1 2 3 4

Cost of Acquiring Support Tools ECEDDCELOD

In addition to adopting a methodology, costs are incurred by acquiring tools
that support the methodology. The tools include CASE tools that support the
methodology and programming development tools. Additionally, this category
factors in other software/hardware requirements that would be needed to support
the tools.

Comment:
NRO 1 2 3 4

Availability of Reusable Components ECECELDDO

Incorporating previously developed software into a new system reduces the
overall design, implementation, and testing phases for software development.
This category is used to measure how easily the methodology allows the
integrating predefined components into the system.

Comment:

NRO 1 2 3 4

155

Support of Organizational Business Practices ECCCLCC

The point of this category is to measure the impact the methodology will have on the

Organizations Business Practices. These practices include tracking development progress
through milestones, reports, customer interaction, etc.

Comment:

NRO 1 2 3 4

Compliance with Established Standards ECCoCCCoC

This category rates an alternative based on its ability to meet established standards,
whether local or international.
Comment:

NRO 1 2 3 4

Support for Tracking Changes EECELCEEL

This category measures how well a methodology supports the ability to make and trace
changes throughout the devel opment lifecycle.

Comment:

Technical Issues

NRO 1 2 3 4

Integration of Existing Legacy Systems EECELDCLEL

This category is used to measure the methodology's support for integrating the
new system with related existing systems.
Comment:
NRO 1 2 3 4

Distribution EEECECELCLDE

The ability of the methodology to support the modeling of distributed aspects
of the problem is the focus of this category.
Comment:
NRO 1 2 3 4

156

Execution Environment ECECELCLE

This category is used to determine the methodology's support of developing
software systems for environments that have heterogeneous hardware or
software (such as operating systems).

Comment:

NRO 1 2 3 4

System Structure ECEELEELC

This category measures the methodology's ability to develop software capable
of handling the introduction and removal of system components in a manner that
is not detrimental to the users of the system.

Comment:
NRO 1 2 3 4

Interactions ECECLCDE

This category determines the methodology's ability to handle the interaction
between system level components as well as with entities outside of the system
such as the human user or other systems.

Comment:
NRO 1 2 3 4

System Scalability ECCCcCCEC

This category is used to measure the methodology's ability to develop software
capable of handling the introduction and removal of system-level resources while
minimizing the impact on users.

Comment:

NRO 1 2 3 4

157

Agility and Robustness CCEEDD

This category measures the methodology's ability to create flexible software
that will be resilient to dynamic changes.

Comment:

Additional Questions

Would you include any additional factors? If yes, please list:
When making a decision based on these factors, do you believe the factors
should be weighted relative to all of the other factors, or only relative to the

factors within the same category of issues (Management or Technical)?

E yes B o E

If weighted relative only to the other factors in the category, what do you feel is

Yes Unsure

an appropriate weighting for each category?
Management: %

Technical: %

Please check here if you would like a copy of the thesis this survey is

supporting =

Don't forget to submit your results!

158

B.2Responses

Occupation: Government Timein Field: 1-5years
Field: Interface agents, multiagent systems

Cost of Acquiring the Methodology: 3

Cost of Acquiring the Support Tools: 2

Component Reuse: 2

Organizational Business Practices: 3

Compliance with Standards: 3

Effects of Changes: 3

Legacy System Integration: 3

Distribution: 1
Environment: 1

Dynamic Structure: 1
Interaction: 3

Don't ignore the simple fact that human users must interact with these systems
Scalability: 2

Agility and Robustness. 3
Additional Factors

Relative Weighting: UNSURE Management: Technical:
Occupation: Academic Timein Field: 1-5years

Field: Multi-agent systems, real-time systems

Cost of Acquiring the Methodology: 3

Cost of Acquiring the Support Tools: 3

Component Reuse: 4

Organizational Business Practices: 2

Compliance with Standards: 4

Effects of Changes: 3

Legacy System Integration: 1

Distribution: 3
Environment: 3

Dynamic Structure: 3
Interaction: 2
Scalability: 3

Agility and Robustness. 2
Additional Factors
Relative Weighting: UNSURE Management: 35 Technical: 65

Occupation: Industry/Commercial Timein Field: 5- 10years
Field: Multiagent Systems, logic programming, agent
architectures, business models

Cost of Acquiring the Methodology: NR
This question is off base; especially asthe first question.
Cost of Acquiring the Support Tools: 2
Ditto
Conponent Reuse: 2
Organizational Business Practices; 1
Compliance with Standards: 2
Effects of Changes: NR
Legacy System Integration: 3

Distribution: 0
Environment: 2
Dynamic Structure: 3

159

Interaction: 3

Scalability: 3

Agility and Robustness. 3

Additional Factors
This whole questionnaire begs the most important question: what do people see as the
prime benefits and risks associated with agents? Why is a much more important question
than how, or how much.

Relative Weighting: UNSURE Management: 75 Technical: 25

Occupation: Industry/Commercial Timein Field: 1-5years
Field: Methodologies, Software Architecture, Design Patters,
Components, Agents

Cost of Acquiring the Methodology: 2
Cost of Acquiring the Support Tools: 2
Component Reuse: 0

Organizational Business Practices: 1
Compliance with Standards: 3

Effects of Changes: 1

Legacy System Integration: 3

Distribution: 4
Environment: 1

Dynamic Structure: 1
Interaction: 2
Scalability: 3

Agility and Robustness: 3
Additional Factors

Relative Weighting: UNSURE Management: 40 Technical: 70
Occupation: Industry/Commercial Timein Field: 5- 10years

Field: Multiagent Systems as applied to Enterprise computing problems

Cost of Acquiring the Methodology: 1

Cost is not as important as the cost/benefit ratio. If my benefit is measured in the
millions, it matters not if my entry cost is $10,000 or $100,000. (Cost/benefit is perhaps

scored asa4.)

Cost of Acquiring the Support Tools: 1
same as above

Component Reuse: 2

Wetend to be COTS oriented. ...but we arelearning fast that it is more important to have
things work right than to save afew bucks by applying the shoehorn.
Organizational Business Practices: 2

Compliance with Standards: 4
Boeing isbig. Assuch, interoperability is extremely important.

Effects of Changes: 3
Our complexity and scale requires strong configuration management and the use of block
points.

Legacy System Integration: 4

Distribution: 2
Environment: 4

Dynamic Structure: 4
Interaction: 3
Scalability: NR

This question is confusing. To me scalability (in thetitle) has to do with sheer numbers
... high volumes of transactions, large numbers of users, etc without bogging down. The
description talks more about changes and disruption. Agreed, disruption on alarge scale

160

can have a larger overall impact than disruption on a smaller scale, but scalability and
disruption are two very different things. As for my score, it al depends on the
application and my first applications will be smaller prototype apps where adverse
impacts are minimized.

Agility and Robustness: 3

Additional Factors
Benefits, cost savings, and productivity gains are also important ...but in the context of
the application. As| look at this questionaire, | get the sense that this is the criteria for
selecting a vendor's package. We do not divorce the two. The weight of various criteria
depends on how we might use the product or tool.

Relative Weighting: UNSURE Management: Technical:
Occupation: Industry/Commercial Timein Field: > 10years
Field: Intelligent Agents, Engineering Process Automation

Cost of Acquiring the Methodology: 1

The organization within EDS | am involved in is standardizing on the CMM/SEI
methodologies, as long as this can tie directly to that, it would make it much easier for
theindustry to digest...

Cost of Acquiring the Support Tools: 2

Component Reuse: 3
Some of the things | have in mind with Agent Technology requires the ability to utilize
installed software (existing 3rd Party Engineering Analysis software)

Organizational Business Practices: 3
Again, my organization has requirements in place. We are attempting to get our SEI
Level 4 certification, so our methodologies are pretty well ingrained...

Compliance with Standards: 4
As mentioned earlier, we are kind of committed to specific standards already...(As a
company with over 120,000 employees, it is slow to move)

Effects of Changes: 3
Thisis something that occurs with methodol ogies already and must be maintained...

Legacy System Integration: 1
To prove feasibility, early systems will be self sufficient, as the trust in the technology
increases so will the level of integration...

Distribution: 3
Our focus is global, we have vehicle development activities all over the world that need
to work together...

Environment: 4
The things | am thinking about require multi-platform capability. We have groups of
userson UNIX (HP and Sun), Windows (95 and NT), and soon to be 2000...

Dynamic Structure: 3
Minimize impact on the user as much as possible when doing enhancments...

Interaction: 4
Depending on the ability of the technology, many different systems could be users or
suppliers...

Scalability: 3
As mentioned before, as trust increases so will it's use...Users also tend to find uses you
never dreamed of ...

Agility and Robustness: 3
Thisis one of the reasons | am thinking about this technology...

Additional Factors
As with other new technology and concepts, specific examples of true capabilities and
restrictions or limitations would be extremely helpful... One of the things | struggle with
most is how to apply these concepts to my specific needs in the Engineering (at least
Automotive development) environment...

161

Relative Weighting: YES Management: 35 Technical: 65

Occupation: Academic Timein Field: 5- 10years
Field: Multiagent Systems, AOSE, Artificial Life

Cost of Acquiring the Methodology: 2

Cost of Acquiring the Support Tools: 3

Component Reuse: 3

Organizational Business Practices: 1

Compliance with Standards: 1

Effects of Changes: 4

Legacy System Integration: 1

Distribution: 2
Environment: 3

Dynamic Structure: 2
Interaction: 3
Scalability: 4

Agility and Robustness: 4
Additional Factors

Relative Weighting: UNSURE Management: 35 Technical: 65
Occupation: Industry/Commercial Timein Field: 5- 10years

Field: Multiagent systems

Cost of Acquiring the Methodology: 3

All anwswers are in the context of the Open Agent Architecture (OAA),
www.openagent.com, a multiagent framework. OAA puts forth a new style of
programming called "Delegated Computing” that is radically different enough asto create
somewhat of abarrier until the programmer learns to trust the methodol ogy.

Cost of Acquiring the Support Tools: 0
No support tools required, so cost islow.

Component Reuse: 4
Highest reuse of components I've seen.

Organizational Business Practices; 2
Should be as good as other methodol ogies.

Compliance with Standards: 1
OAA does not expend much effort to support other standards.
Effects of Changes: 1
No additional support beyond standard programming tools.
Legacy System Integration: 4
Support for many programming languages, so it's easy to write adapters for legacy
systems.

Distribution: 4
Highly distributed.

Environment: 4
OAA supports many platforms, OS, (Solaris, Windows, Linux) and programming
languages.

Dynamic Structure: 4
Conpletely dynamic, any component can be added or removed at runtime and the system
degradesin as optimal away as possible.

Interaction: 4
Unparalleled capabilities for enabling cooperation and advanced interactions among
multiple human and automated comp onents.

Scalability: 2
Most multiagent systems are only research quality, as is OAA. Robust, but only
moderately scalable (~50 agent components or so).

162

Agility and Robustness: 4

None better.
Additional Factors
Relative Weighting: UNSURE Management: Technical:
Occupation: Government Timein Field: 5- 10years
Field: human interaction with agent-based systems
Cost of Acquiring the Methodology: 4
Cost of Acquiring the Support Tools: 4
Component Reuse: 3
Organizational Business Practices: 4
Compliance with Standards: 2
Effects of Changes: 4
Legacy System Integration: 4

Distribution: 4
Environment: 4

Dynamic Structure: 3
Interaction: 4
Scalability: 4

Agility and Robustness: 4

Additional Factors
No additional factors, but | question how useful the survey results will be. | would say
that all the factors above are critical. Y ou might want to think about reworking thisinto a
relative weighting survey. l.e., 16 factors, rated in order of importance. Otherwise I'm
afraid you're going to find some surveys where everything gets a'4'. Good luck. | don't
want an individual copy of your thesis, but please be sure to advertise it on the agents-list
when it is completed.

Relative Weighting: NO Management: Technical:
Occupation: Academic TimeinField: 1-5years
Field: Software Engineering, MAS and AOSE

Cost of Acquiring the Methodology: 3

Cost of Acquiring the Support Tools: 3

Also the training for these tools. In using every tool in our company we are focused on
the training needed for that tools. Also, thelevel of company process maturity.

Component Reuse: 3
Organizational Business Practices: 4
Compliance with Standards: 2

It's needed for Quality Control of software artifacts that are produced during the
methodol ogy.

Effects of Changes: 3

Legacy System Integration: 2

Distribution: 2

Environment: 2

Dynamic Structure: 3
Interaction: 4
Scalability: 4

Agility and Robustness: 4
Additional Factors
Relative Weighting: YES Management: 45 Technical: 55

Occupation: Student Timein Field: 1-5years

Field: Community information exchange support (agents as software devel opment paradigm)
Cost of Acquiring the Methodology: 3

Cost of Acquiring the Support Tools: 2

163

Component Reuse: 2
Organizational Business Practices: 1

Compliance with Standards: 2
Effects of Changes: 3
Legacy System Integration: 3

Distribution: 4
Environment: 4

Dynamic Structure; 4
Interaction: 2
Scalability: 4

Agility and Robustness: 3
Additional Factors

Relative Weighting: UNSURE Management: 75 Technical: 25
Occupation: Industry/Commercial Timein Field: 5-10years

Field: Multiagent Systems, Mobile agents technology,

Cost of Acquiring the Methodology: 3

Comparing to other area filed of Agent technology is rather young. Materia and
information available are mostly results of research projects. For the commercial sector,
time and money is needed to find out how this technology could be used for public use.
Cost of Acquiring the Support Tools: 2
There are lots of scientific products. Commercial tools are starting to become more
available and mature
Component Reuse: 4
To my opinion this playes an important role. Reusable components would help to design
and implement agent applications faster and cheaper. also complies with OO-paradigm
that plays an important role now adays.
Organizational Business Practices: 3

Compliance with Standards: 4
Effects of Changes: 2
Legacy System Integration: 2

Distribution: NR
Environment: 1

Dynamic Structure: 2
Interaction: 4
Scalability: 4

Agility and Robustness; 2
Additional Factors

Relative Weighting: NO Management: 40 Technical: 60
Occupation: Industry/Commercial Timein Field: 5- 10years
Field: Agent-Oriented Software Engineering, Multiagent
Cost of Acquiring the Methodology: 3
There aren't many professional/commercial-oriented resources for personnel training.
Cost of Acquiring the Support Tools: 0

There are a lot of tools that you can use without many costs. The problem is with the
guarantees you have with those tools. Most of them are academic or semi-academic.
Component Reuse: 1
Naturally, it depends on the previously used platform. In a Intranet base solutin the multi-
agent interaction is quite simple.
Organizational Business Practices: 4
It will be a "revolution” in the way we interact with the information systems. The
organizations will have to make some adjustments in their business process.
Compliance with Standards: 4

164

Effects of Changes: 3

Legacy System Integration: 3
Identical to Availability of Reusable Components

Distribution: 3
Multiagent systems are well fitted to local business analisys.

Environment: 2
Thisis a dificult question. It depends on the development tools you choose. | think that
there are already some mobile agents that are able to travel across networks of
heterogeneous

Dynamic Structure: 4
Multiagent systems alow for on-running reconfiguration. But, naturally, it depends on
how you implement the del egation and negotiation process.

Interaction: 3
The interaction with the users may be better than non-agent systems. The interaction with
other systems may require some intermediate level (an interface agent?), which will
degrade performance.

Scalability: 4
As stated before, multiagent systems are very flexible.

Agility and Robustness: 2
Y ou can achieve systems that are quite robust against system break-down, but you may
also get some unexpected system behaviour.

Additional Factors

Relative Weighting: NO Management: 60 Technical: 40

Occupation: Industry/Commercial TimeinField: 1-5years
Field: MAS, AOSE, SE in General

Cost of Acquiring the Methodology: 1
Cost of Acquiring the Support Tools: 1
Component Reuse: 3

Organizational Business Practices; 2
Compliance with Standards: 3

Effects of Changes: 3

Legacy System Integration: 3
Distribution: 3

Environment: 1

Dynamic Structure: 0
Interaction: 1
Scalability: 3

Agility and Robustness: 4
Additional Factors

Relative Weighting: YES Management: Technical:
Occupation: Academic Timein Field: 1-5years
Field: Agent Communication Languages, Multiagent Systems
Cost of Acquiring the Methodology: 3

Cost of Acquiring the Support Tools: 2

Component Reuse: 4

Organizational Business Practices: 2

Compliance with Standards: 3

Effects of Changes: 2

Legacy System Integration: 4

Distribution: 4
Environment: 4
Dynamic Structure; 2

165

I nteraction: 2
Scalability: 1
Agility and Robustness. 3
Additional Factors

Relative Weighting: UNSURE Management: Technical:
Occupation: Academic Timein Field: 1-5years

Field: Agent-Oriented Software Engineering, Distance

Cost of Acquiring the Methodology: 3

Cost of Acquiring the Support Tools: 2

Component Reuse: NR

Organizational Business Practices: 3

Compliance with Standards: 3

Effects of Changes: 4

Legacy System Integration: 3

Distribution: 4
Environment: 2

Dynamic Structure: 3
Interaction: 3
Scalability: 4

Agility and Robustness: 4
Additional Factors
Workflow technology, Human factors

Relative Weighting: YES Management: 60 Technical: 40
Occupation: Academic Timein Field: 1-5years

Field: Multi-Agent Systems/ Distributed agent operating

Cost of Acquiring the Methodology: 4

Cost of Acquiring the Support Tools: 4

Component Reuse: 4

Organizational Business Practices; 3

Compliance with Standards: 4

Effects of Changes: 4

Legacy System Integration: 4

Distribution: 4
Environment: 4

Dynamic Structure: 4
Interaction: 4
Scalability: 4

Agility and Robustness: 4

Additional Factors
What do you learn from this questionnaire? All aspects are important. Maybe give
combinations of aspects, and ask for which one is more important than the other?! Also
allows you to cross-check answers from people. The question below has an OR in it -

hard to answer!
Relative Weighting: YES Management: Technical:
Occupation: Academic Timein Field: 1-5years
Field: Multiagent Systems
Cost of Acquiring the Methodology: 3
Cost of Acquiring the Support Tools: 4
Component Reuse: 2
Organizational Business Practices: 3
Compliance with Standards: 2
Effects of Changes: 2

166

Legacy System Integration: 2
Distribution: 4
Environment: 4

Dynamic Structure: 2
Interaction: 3
Scalability: NR

Agility and Robustness: 4
Additional Factors

Relative Weighting: UNSURE Management: 10 Technical: 90
Occupation: Student Timein Field: 1-5years

Field: Infrastructuresfor Multi-Agent Systems

Cost of Acquiring the Methodology: 1

Cost of Acquiring the Support Tools: 2

Component Reuse: 3

Organizational Business Practices. 4

Compliance with Standards: 3

Effects of Changes: 4

Legacy System Integration: 4

Distribution: 2
Environment: 4

Dynamic Structure: 4
Interaction: 4
Scalability: 4

Agility and Robustness: 4

Additional Factors
The questions asked have a high "it depends" factor, especially for the technical section.
Without any clear knowledge of the situation for which the technology is used the weight
to all the questions is inevitably 4 since the questions represent the very essence of multi-
agent systems ~(adaptability, sociability, reactiveness, interaction with users, integration
of legacy systems etc, etc.). | don't know to which extend this will bias your survey since
| find it difficult to believe that most people will not rate all aspects asvery important.
In any case, well done for performing the survey and | hope people participate.

Relative Weighting: YES Management: 30 Technical: 70
Occupation: Student Timein Field: 1-5years

Field: Multi-agent Systems, Systems Engineering

Cost of Acquiring the Methodology: 1

Cost of Acquiring the Support Tools: 3

Component Reuse: 4

Organizational Business Practices. 0

Compliance with Standards: 0

Effects of Changes: 2

Legacy System Integration: 2

Distribution: 4
Environment: 3

Dynamic Structure; 4
Interaction: 4
Scalability: 3

Agility and Robustness: 4
Additional Factors
Relative Weighting: NO Management: 25 Technical: 75

Occupation: Academic Timein Fied: > 10years
Field: Agent-Oriented Software Engineering

167

Cost of Acquiring the Methodology: 4

Cost of Acquiring the Support Tools: 4
Component Reuse: 4

Organizational Business Practices: 4
Compliance with Standards: 4

Effects of Changes: 4

Legacy System Integration: 4

Distribution: 4
Environment: 4

Dynamic Structure: 4
Interaction: 4
Scalability: 4

Agility and Robustness: 4
Additional Factors
Expected Agent Lifetime

Relative Weighting: YES Management: 50 Technical: 50
Occupation: Academic Timein Field: > 10 years
Field: Software Engineering
Cost of Acquiring the Methodology: 1
If it's good enough, cost can usually be overcome.
Cost of Acquiring the Support Tools: 1
Component Reuse: 2

Although I think reuse isimportant, reality isthat there aren't sufficient libraries available
to make it practical in all but afew limited cases.

Organizational Business Practices: 4
Theless | have to change established practices, the better.

Compliance with Standards: 2
It depends. Some standards aren't very good, but without them it's difficult to exchange
modelsfor reuse

Effects of Changes: 2
Thisisimportant, but | consider it separate from the devel opment methodol ogy
Legacy System Integration: 3

This is important, but again, I'm pessimistic about the ability for any methodology to
support this. Thus, | would be hesitant to base my selection of a methodology based on
thiscriteria

Distribution: 2
Certainly important if I'm building a distributed system

Environment: 2
Not sure | understand this one.

Dynamic Structure: 4

| likethis.
Interaction: 3

In what way do you mean?
Scalability: 3

Sounds alot like system structure
Agility and Robustness: 4

Important, but how do you measure it?
Additional Factors

Relative Weighting: YES Management: 30 Technical: 70
Occupation: Student Timein Field: 1-5years

Field: Multiagent Systems,

Cost of Acquiring the Methodology: 0

168

Cost of Acquiring the Support Tools: 0

Component Reuse: 4
Organizational Business Practices: 2
Compliance with Standards: 2
Effects of Changes: 3
Legacy System Integration: 4

Distribution: 3
Environment: 3

Dynamic Structure; 3
Interaction: 4
Scalability: 1

Agility and Robustness: 4
Additional Factors

Relative Weighting: UNSURE Management: 10 Technical: 90
Occupation: Academic Timein Field: 1-5years

Field: multi-agent systems

Cost of Acquiring the Methodology: 2

Cost of Acquiring the Support Tools: 2

Component Reuse: 3

Organizational Business Practices: 2

Compliance with Standards: 3

Effects of Changes: 3

Legacy System Integration: 2

Distribution: 2
Environment: 3
User interface important because trust plays a part

Dynamic Structure: 2
Interaction: 3
Scalability: 2

Agility and Robustness. 3
Additional Factors

Relative Weighting: UNSURE Management: Technical:
Occupation: Academic Timein Field: 1-5years

Field: AOSE, OOSE, MAS

Cost of Acquiring the Methodology: 3

Cost of Acquiring the Support Tools: 2

Component Reuse: 3

Organizational Business Practices: 3

Compliance with Standards: 2

Effects of Changes: 1

Legacy System Integration: 3

Do the systems being devel oped really need to be compatible with legacy systems.
Distribution: 1
How often isthis necessary or important?
Environment: 0
How does a particular methodology determine or limit what kind of environments the
systems being devel oped can operate on?

Dynamic Structure: 3
For any kind of upgradability, thiswould seem important.
Interaction: 1

Of course, this highly depends on what kinds of systems are going to be developed.
Scalability: 3

169

Agility and Robustness. 3
Additional Factors

Relative Weighting: UNSURE Management: 40 Technical: 60
Occupation: Student Timein Field: > 10 years
Field: Knowledge Based Software Engineering
Cost of Acquiring the Methodology: NR
N/A - asastudent, | do not have a cost consideration
Cost of Acquiring the Support Tools: NR
N/A - asastudent, | do not have a cost consideration
Component Reuse: 4

Integrating "provibly correct” software solutions to the generation of new software
systems in support of the principle of software reuseis of great importance.

Organizational Business Practices; 1

Compliance with Standards: 1

Effects of Changes: 3
Thisis more important for large scale long term business or mission critical systems were
many people are responsible of system maintenance.

Legacy System Integration: 2

Distribution: 2

Environment: 1

Dynamic Structure: 1
However, could be rated very high (3 or 4) if the reliablity concerns of the system were
extremely important.

Interaction: 1

Scalability: 2

Agility and Robustness: 1

Additional Factors
Depending upon the category of the individual, the responses will vary greatly. Asa
student, | can only guess at the many very important commercial aspects of software
systems (reliability and maintainability being in my option of great concern).

Relative Weighting: NO Management: 75 Technical: 25

Occupation: Academic Timein Field: 5-10years
Field: Design of Intelligent multi-agent systems, automated negotiation, interpretation and
verification of multi-agent systems, and more.

Cost of Acquiring the Methodology: 2
Cost of Acquiring the Support Tools: 2
Component Reuse: 4

Organizational Business Practices: 3
Compliance with Standards: 4

Effects of Changes: 2

Legacy System Integration: 1

Distribution: 4
Environment: 4

Dynamic Structure: 4
Interaction: 2
Scalability: 4

Agility and Robustness: 4

Additional Factors
- does the development method support compositional design
- does the method support validation and verification
- does the method support reguirement engineering

Relative Weighting: YES Management: Technical:

170

Occupation: Academic Timein Field: > 10 years
Field: Multiagent Systems

Cost of Acquiring the Methodology: 3
Cost of Acquiring the Support Tools: 2
Component Reuse: 2

Organizational Business Practices: 3
Compliance with Standards: 2

Effects of Changes: 1

Legacy System Integration: 3

Distribution: 4
Environment: 2

Dynamic Structure: 3
Interaction: 3
Scalability: 2

Agility and Robustness: 4
Additional Factors
Relative Weighting: UNSURE Management: Technical:

Occupation: Academic Timein Field: > 10years
Field: Process activities and measurement
Cost of Acquiring the Methodology: 3
Cost of Acquiring the Support Tools: 2
Component Reuse: 2

Organizational Business Practices: 3
Compliance with Standards: 2

Effects of Changes: 3

Legacy System Integration: 3
Distribution: 1

Environment: 2

Dynamic Structure: 3
Interaction: 2
Scalability: 4

Agility and Robustness: 4
Additional Factors
Question below is not ayes-no question. | assume yes means first choice.

Relative Weighting: YES Management: 45 Technical: 55
Occupation: Academic Timein Field: 1-5years

Field: Juridical applications

Cost of Acquiring the Methodology: 4

We have only a very small budget, and are mostly interested in producing working
prototypes to demonstrate our ideas.

Cost of Acquiring the Support Tools: 4
Component Reuse: 1

Organizational Business Practices: 0
Compliance with Standards: 2

Effects of Changes: 2

Legacy System Integration: 0

Distribution: 3
Environment: 2

Dynamic Structure: 2
Interaction: 3
Scalability: 1

Agility and Robustness: 3

171

Additional Factors

Relative Weighting: YES Management: 50 Technical: 50
Occupation: Government Timein Field: 5- 10years

Field: Information Technology, Computer Networks, Information Warfare
Cost of Acquiring the Methodology: 3

Cost of Acquiring the Support Tools: 3

Component Reuse: 2

Organizational Business Practices: 3

Compliance with Standards: 4

Effects of Changes: 3

Legacy System Integration: 4

Distribution: 3
Environment: 3

Dynamic Structure: 2
Interaction: 2
Scalability: 2

Agility and Robustness. 3
Additional Factors

Relative Weighting: UNSURE Management: Technical:
Occupation: Academic Timein Field: > 10 years

Field: Formal methods

Cost of Acquiring the Methodology: 2

Cost of Acquiring the Support Tools: 2

This one is alittle problematic. If tools are reasonable, then importance is 2. However,
many CASE tools are prohibitively expensive. In that case cost would be a4 as it could
single-handedly eliminate the option.

Component Reuse: 3
Organizational Business Practices. 2
Compliance with Standards: 4
Effects of Changes: 4
Legacy System Integration: 3

Distribution: 2
Thisisvery application-specific. For some (distributed) applicationsthisisa4.
Environment: 2
Unclear. Does a high rating mean it needs to run in a heterogeneous environment? Like
the previous question, thisis application specific.

Dynamic Structure: 2

Dynamically? Again, depends on the application.
Interaction: 4
Scalability: 3

Sounds similar to System Structure. Usually this means the system can grow (in some
sense) with alinear impact on performance time.
Agility and Robustness: 4
Additional Factors
Availability of tools (not just cost).
Experience base (is this a new methodology or has it been proven in practice).

Relative Weighting: UNSURE Management: 33 Technical: 66
Occupation: Academic Timein Field: 1-5years

Field: MAS, AOSE

Cost of Acquiring the Methodology: 3

Cost of Acquiring the Support Tools: 3

Component Reuse: 2

172

Organizational Business Practices: 4

Compliance with Standards: 4
Effects of Changes: 4
Legacy System Integration: 3

Distribution: 4
Environment: 3

Dynamic Structure: 4
Interaction: 4
Scalability: 3

Agility and Robustness: 3
Additional Factors
Relative Weighting: YES Management: 50 Technical: 50

173

C.1Case Study 1

Appendix C. Sensitivity Analyses

Value

1.000
0.900
0.800
0.700
0.600
0.500
0.400
0.300
0.200
0.100
0.000

Sensitivity Analysis Results

— MaSE
----Booch

Yourdin

Value

0.750
0.700
0.650
0.600
0.550
0.500
0.450
0.400
0.350
0.300

—— MaSE
----Booch
-~ - Yourdin

0 0.25 0.5 0.75 1

Organizational Business Practices Weight

174

Value

Sensitivity Analysis Results

0.800
0.700 A

0.600

0.500
0.400

— MaSE
-~~~ Booch
- -~ Yourdin

0.300

0.200

0.100

0.000

0 0.25 05 0.75 1
Distribution Weight

Value

Sensitivity Analysis Results

0.900

0.800

0.700

0.600

0.500

—— MaSE
----Booch

0.400

- Yourdin

0.300

0.200

0.100

0.000

0 0.25 0.5 0.75 1

Environment Weight

Value

Sensitivity Analysis Results

0.800

0.700

0.600

0.500

0.400

—— MaSE
Booch
-~ Yourdin

0.300

0.200

0.100

0.000

0 0.25 0.5 0.75 1
Agility & Robustness Weight

175

Value

Sensitivity Analysis Results

0.800
0.700 A

0.600

0.500

0.400

0.300

0.200

0.100

0.000

— MaSE
----Booch
- - Yourdin

Value

0.900

0.800

0.700

0.600

—— MaSE

0.500

----Booch

0.400

- Yourdin

0.300

0.200

0.100

0.000

0

0.25 0.5 0.75

Interaction Weight

1

Value

Sensitivity Analysis Results

1.200

1.000

0.800

—— MaSE

0.600

----Booch
~ - Yourdin

0.400

0.200

0.000

Methodology Maturity Weight

176

C.2Case Study 2

Value

1.000
0.900
0.800
0.700
0.600
0.500
0.400
0.300
0.200
0.100
0.000

Sensitivity Analysis Results

—— MaSE
---- Booch
Yourdin

0 0.25 0.5 0.75 1
Cost for Methodology and Support Tools Weight

Value

0.750
0.700
0.650
0.600
0.550
0.500
0.450
0.400
0.350
0.300

Sensitivity Analysis Results

—— MaSE
----Booch
-~ Yourdin

0 0.25 0.5 0.75 1
Organizational Business Practices Weight

Value

0.900
0.800
0.700
0.600
0.500
0.400
0.300
0.200
0.100
0.000

Sensitivity Analysis Results

0 0.25 0.5 0.75 1

Agility & Robustness Weight

—— MaSE
Booch
-~ Yourdin

177

Value

0.800
0.700
0.600
0.500
0.400
0.300
0.200
0.100
0.000

Sensitivity Analysis Results

—MaSE

----Booch
- Yourdin

Value

0.900
0.800
0.700
0.600
0.500
0.400
0.300
0.200
0.100
0.000

—— MaSE

----Booch

- Yourdin

0 0.25 0.5 0.75 1

Interaction Weight

Value

1.200
1.000
0.800
0.600
0.400
0.200

0.000

Sensitivity Analysis Results

—— MaSE

----Booch
- Yourdin

0 0.25 0.5 0.75 1
Methodology Maturity Weight

178

C.3Case Study 3

Value

1.000
0.900
0.800
0.700
0.600
0.500
0.400
0.300
0.200
0.100
0.000

Sensitivity Analysis Results

—— MaSE
----Booch
Yourdin

0 0.25 0.5 0.75 1
Cost for Methodology and Support Tools Weight

Value

0.750
0.700
0.650
0.600
0.550
0.500
0.450
0.400
0.350
0.300

Sensitivity Analysis Results

—— MaSE
----Booch
-~ - Yourdin

R S S S AU S W S S WU T S S S S T S S S S S S S S SRS W S ST S S T W W
LI e B B B B B B e e B e B B e e e B B e e e B

0 0.25 0.5 0.75 1
Organizational Business Practices Weight

Value

0.800
0.700
0.600
0.500
0.400
0.300
0.200
0.100
0.000

Sensitivity Analysis Results

— MaSE
—~~~ Booch

-~ - Yourdin

0 0.25 05 0.75 1
Distribution Weight

179

Value

0.900
0.800
0.700
0.600
0.500
0.400
0.300
0.200
0.100
0.000

Sensitivity Analysis Results

—— MaSE

----Booch

~ -~ Yourdin

Environment Weight

Value

0.800
0.700
0.600
0.500
0.400
0.300
0.200
0.100
0.000

Sensitivity Analysis Results

—— MaSE

Booch
-~ Yourdin

0.25 0.5 0.75
Agility & Robustness Weight

Value

0.800
0.700
0.600
0.500
0.400
0.300
0.200
0.100
0.000

Sensitivity Analysis Results

—MaSE
----Booch
- Yourdin

180

Value

0.900
0.800
0.700
0.600
0.500
0.400
0.300
0.200
0.100
0.000

Sensitivity Analysis Results

—— MaSE
----Booch
~ - Yourdin

Interaction Weight

Value

1.200

1.000

0.800

0.600

0.400

0.200

0.000

Sensitivity Analysis Results

—— MaSE
----Booch
- Yourdin

0 0.25 0.5 0.75 1
Methodology Maturity Weight

181

C.4Case Study 4

Value

1.000
0.900
0.800
0.700
0.600
0.500
0.400
0.300
0.200
0.100
0.000

Sensitivity Analysis Results

— MaSE
---- Booch

Yourdin

0 0.25 0.5 0.75 1
Cost for Methodology and Support Tools Weight

Value

0.750
0.700
0.650
0.600
0.550
0.500
0.450
0.400
0.350
0.300

Sensitivity Analysis Results

—— MaSE
----Booch
-~ Yourdin

0 0.25 0.5 0.75 1

Organizational Business Practices Weight

Value

0.700
0.600
0.500
0.400
0.300
0.200
0.100
0.000

Sensitivity Analysis Results

—— MaSE
----Booch

= Yourdin

0 0.25 0.5 0.75 1
Legacy System Integration Weight

182

Value

0.800
0.700
0.600
0.500
0.400
0.300
0.200
0.100
0.000

Sensitivity Analysis Results

—— MaSE
----Booch
~ - Yourdin

Distribution Weight

Value

0.700
0.600
0.500
0.400
0.300
0.200
0.100
0.000

Sensitivity Analysis Results

—— MaSE
Booch

-~ Yourdin

0.25 0.5 0.75 1
Agility & Robustness Weight

Value

0.900
0.800
0.700
0.600
0.500
0.400
0.300
0.200
0.100
0.000

Sensitivity Analysis Results

—— MaSE
----Booch

~ - Yourdin

Interaction Weight

183

Value

1.200
1.000
0.800
0.600
0.400
0.200

0.000

Sensitivity Analysis Results

—— MaSE
----Booch
~ - Yourdin

Methodology Maturity Weight

184

Appendix D. Software Engineering Methodology Decision Analysis Tool

(SEM-DAT) and Data Analyzer User’s Manual

D.1Introduction

The Software Engineering Methodology Decision Analysis Tool (SEM-DAT) is a software project
developed to assist decision makers utilizing the decision-making framework established in thisthesis. The
application ensures that the process is followed appropriately. In addition, it supports the decision maker
by automating a number of the calculations that would otherwise have to be computed by hand. The Data
Analyzer tool is an auxiliary tool that provides graphical representations of the decision, and sensitivity

analysis support.

The SEM-DAT application is a Java program. The main focus of the program is to ensure the
collection of data to on which the methodology selection decision is based. The Data Analyzer tool is an
analysis application developed in Microsoft Excel. This software package was chosen for its ability to

quickly represent datain charts.

D.2Installation
SEM-DAT and Data Analyzer are packaged in a zip file called DATv1.zip. When expanded the

following directories will be created:

?? \DATSoftwareTool\
?? \DATSoftwareTool Analyzer\
?? \DATSoftwareTool I nterface\

The working directory selected will also have two batch files used to facilitate use of the software.

Executing DAT-start.bat starts the software.

185

System and software requirements for the using the system are as follows (the options underlined

indicate the software used for development):

Hardware — Intel-based Pentium processor
Operating System —Windows NT 4.0, Windows 9x

Java Version— 1.2 or higher

3 3 3 3

Microsoft Excel Version— 95, 98 or 2000

D.3Features

SEM-DAT is a five-step process for calculating the multiobjective functions of software
methodology alternatives. It is currently structure to compare two alternatives. Each of the five steps is
discussed below. In order to move from one step to the next step, buttons are provided at the bottom right
corner of the window. The buttons do perform some testing of the data in each step, so the next step will

not be activated unless the correct data has been entered into the system.

D.31STEP1

Step 1 is the first step in the “Weighting” phase of the decision analysis process. A list of the
evaluation considerations that the tool supports is provided in the possible criteria field. For the specific
software requirements problem, the relevant considerations are selected by highlighting the considerations
individually, and using the ">>>" button. If a consideration is placed in the selected box by error, it can be
returned to the possible criteria field by highlighting it and using the "<<<" button. At least one

consideration must be selected. After the relevant considerations have been selected, go to step 2.

D.3.2STEP 2

The next step in the weighting process is ranking the evaluation considerations based on their
importance to the decision. Selecting a consideration and using the “move up and move down” orders the
list. The considerations should be ordered so the most important considerations are at the top of the list.

When the considerations have been ordered, go to step 3.

186

D.3.3STEP 3

The final step in the weighting process is assigning a weight for each evaluation consideration
relative to the next least important evaluation consideration. The next to the least important and the least
important considerations are compared first. Values that should be entered are real numbers greater than or
equal to one. For considerations that are "equal” should be given a rating of 1. These ratings are

normalized at the end of this step.

D.34STEP 4

The next step of SEM-DAT represents the “Rating” phase of the decision-making process. For
each of the evaluation considerations selected in Step 1 a set of focus points are presented in a unique tab.
The focus points should be rated on a scale of 0 to 4 where 0 indicates "No Support" for the question, 4
indicates "Full Support”, and the values in between provide for partial support. The first column of input
fields represents altemative 1 and the second column represents alternative 2. If afocus point is not to be
considered in the decision process, the field should be left blank. Before moving on to Step 5, each

evaluation consideration should be rated.

D.3.5STEP5

Step 5 provides an opportunity to review the choices made up to this point. Each of the
considerationsis listed in the table along with the normalized weights, which have been calculated from the
relative weights assigned in Step 3, and the ratings of each alternative. Y ou can continue and get the results
by pressing the "Ratings" button, or go back to any of the previous steps and modify your responses. If
modifications are necessary, the data collected in step can be changed by selecting the tab for that step.
After making the change, the button in the bottom right corner should be used to move back through to
Step 5. If additional considerations are added in Step 1, then all the steps after must be reaccomplished.

The response to the focus points will be maintained for any consideration previously evaluated.

187

D.3.6RATING

The final multiobjective fithess scores are reported on this screen. The decision-maker can choose
to go back to any previous stage and make changes, choose to use the Data Analyzer, or exit the program.
The Data Analyzer is invoked by using the “Save” button. Microsoft Excel should start at thistime. In the
event that it does not start, it can be manually started by executing Excel and opening the file datvl.xls,

which can be found in the directory \DATSoftwareTool Analyzer\.

D.3.7Data Analyzer

After invoking the Data Analyzer, a dialogue will open asking if macros should be enabled.
Enabling macros will allow for refreshing the input data. When the file completes, select the worksheet
called “Input” and press “Ctrl-r". This will invoke the macro for refreshing the data. The input dataisin a
file caled output.dat in the working directory. After the data is updated, the graphical representations and

sensitivity analyses can be viewed in the “Data’ and “ Charts” worksheets, respectively.

D.4Demonstration

This section demonstrates the execution of SEM-DAT and the Data Analyzer by applying the first
case study from Section 4.3.2. Assuming the system is installed as described in Section D.2, after

executing the batch file, DAT-start.bat, the application will begin with the screen shown in Figure 58.

Fetirn m u mmkrn of by maprein ke
N

W TRl e TR e foRRi, e toal BLIL by mla
PRt & ELSEL B TR O P AL B A
FARAGA IV e AW, G3Hale LN O DA A0 O
Wi, C1RE SV TR 18 O ST BLH T Al

LML, TR A AL LS L TGS T T M
ma. . Er sling 4 aRtioaim, WeeTEl, RHUE MDA
P L 0 BRARON TN B9 TF U X AN W TG D R
FERITE AT Tl R M R

—

Figure 58: SEM-DAT Welcome Screen

188

The Welcome Screen provides the user with information about what the system does, as well as
information describing the process the user is to follow. To begin the analysis process, press the button
“Step 17 at the bottom right corner of the screen. The tab is shown in Figure 59. The user selectsthe
evaluation considerations relevant to the problem. For this problem, the user selects the following
evaluation considerations: Cost of Methodology and Support Tools, Organizational Business Practices,
Methodology Maturity, Distribution, Environment, Agility and Robustness, Dynamic Sructure and

Scalability, and Interaction.

% Snilmas Engnoanzg Metisdeiogy Deciien Analmiz Tosl - SER-DAL =110

\'\'HL\:IFMB'W']- | | [| 1

Balear 13 w lioe of chi avaluerias coroadscaciang chae tha ol
mrpackd. Far your wpecific scfbwars copoicements peobles,
BELEL LI ERIEVERL JE0S1SEACIONE DF DgnligClhg Coe
|oomsleerarions iodiviteally, avd naipy ThE “wo” burcon, If
Pl plade A JEnALASEATian Ln Che . sslsorsd hos charc pou db Wic
wmc, highlighic it sl hic cha "goo” borion.Afoer ohs calsvanc

Prasiae Ciikfis Selerled (iR

il b 4 i 0 i M 1 DD G S Cteirt O BeCarpd i o Mebriro b T el B L
e iy Ewedenn Wil oo E Vg N il B R P il e
T — ettty ity

ity and Rrbusiness Q Cislribubion

Crraamir Siucture an o Scalhily

Intermction

Dk Hap

Figure59: SEM-DAT Step 1 Screen

After the considerations are selected, the user hits the “Step 2" button. The next tab, shown in
Figure 60, becomes active. This tab allows the user to order the evaluation considerations based on their
importance to the decision. The order of importance, selected for this case, is the following: Cost of
Methodology and Support Tools, Distribution, Environment, Interaction, Agility and Robustness, Dynamic

Structure and Scalability, Methodology Maturity, and Organizational Business Practices.

189

| cast af Acquiring Wathcdokagy and B

Figure 60: SEM-DAT Step 2 Screen

The next tab is activated after the user hits the “ Step 3" button. This tab allows for the input of

relative weights. The relative weights have been captured in Figure 36. Upon the completion of this step,

the user hitsthe “ Step 4” button.

A0k T ieed slip

Figure 61: SEM-DAT Step 3 Screen

190

Figure 62: SEM-DAT Step 4 Screen

The “Step 4” tab, shown in Figure 62, list the focus points for the evaluation considerations
selected in step 1. The responses to each set of questions can be found in the appropriate considerations in
Figure 25 to Figure 34. After entering the data, the user hits the “Step 4” button. The tab, shown in Figure

63, provides the user with an opportunity to review the data entered.

Figure 63: SEM-DAT Step 5 Screen

191

rgi'i.lllw.-uﬂ Engmessing Methodology Decesion Analpsis Tool - SEM-DAT «1.0

e e
[| |
SR e] Eerp oy K

Figure 64: SEM-DAT Ratings Screen

After reviewing the data, the user hits the “Ratings’ button. The result of the multiobjective
analysis is presented. The user can now accept this result as is, or return to any step in the process and
make changes to the input. A third option is to use the data analyzer. The data analyzer is launched by
hitting the “Save’ button. The data analyzer provides a series of sensitivity analyses of the user's
consideration. When the data analyzer opens, the first worksheet is the data input sheet. It is shown in

Figure 65. The datais updated by using a macro; it isinvoked by hitting “Ctrl-r".

192

Figure 65: Data Analyzer Data Input Screen

After updating the data, the data analyzer presents the user with graphical representations of the
choices the user made, such as the percentage of weight for each consideration and the breakdown of the
score each alternative received as seen in Figure 66. The sensitivity analyses are summarized in the
“Charts” worksheet, see Figure 67. The sensitivity analysis for each consideration can also be found in the

worksheet named following the conventionsin Figure 24.

Figure 66: Data Analyzer Data Eval uation Screen

193

[
=
.

!1.-
.

it

194

Appendix E. Software Development Questionnaire

E.1Content Search System Analysisand Design M odels— M aSE

Goal Hierarch:

| "H

I | \x f Ill'l
..... | e b p

195

P

1EFW e A

196

197

Task: Register Researchers

198

i

ro . 0 Rt B)

;l'iutl'g
i

[EEE

[m
i
#

A,
o
B e -1

199

Task: File Search

200

201

i

i

Tewmaem

=L
==
i
M
.|
b
Tree e
-ng
=t
=t
T

I
K
i

202

Conversation R

equest Researchers- Responder (Broker

i

IEIF;EE[E

203

ail

i R |y

‘-

204

Conversation Search - Responder (File Finder Agent

oo e WP it
[] R
Finlistn prifipnls

Data Di ctionary

USE CASES
Use Case: Researcher Registration
Descri ption:

205

When a researcher cones on-line, it should register itself with a
resource broker.

Sequence Di agr amns:

Resear cher Registration

Use Case: Typical Search Scenario
Description:

When a user inputs a search request, the systemw |l request a |ist of
avail abl e researchers for the specified functional area fromthe
resource broker. The systemw ||l then forward the search request to

each of the researchers and await the response fromthe individua
searches. Upon receipt of the request, the researcher notifies the
resource broker of its increased workload. After each researcher has
conpl eted the search, the results will be ordered and reported to the
user. The researcher will notify the resource broker of the job
conpl eti on.

Sequence Di agr ans:

Typi cal Search Scenario

Use Case: |npatient User

Descri pti on:

After submitting a request, the user decides that he would Iike to see
results up to that point. The researchers forward the current results
to the system which in turn reports the interimresults.

Sequence Di agr ans:

| npati ent User

Use Case: Cancell ation

Descri pti on:

After submitting a request, the user decides that he would like to
cancel the search. The researcher ends the search and forwards the
results to the system

Sequence Di agr ans:

Cancel | ati on

TASKS
Task: Registration
Descri pti on:

After initiation, this task registers the Researcher with the
Resource Broker as an available file system researcher

Rol e = Researcher
Connected to:
Regi ster Researchers via Registration

Task: File Search
Descri pti on:

This task accepts a search request fromthe systemthrough the
search protocol. Then the researcher updates the broker with the nunber
of search requests it has pending. The search request is executed on
the file system After conpleting the search, the results are returned
to the systemthrough the search protocol, and the researcher inforns
the resource broker that the search has been conpl et ed.

206

Rol e = Researcher

Connected to:

Syst em Sear ch Vi a Search

Mai nt ai n Resear cher Status via Status Update

Task: System Search
Description:

This task takes a search request fromthe systemuser. First,
through the "Request Researchers" protocol, the systemrequests a |ist
of appropriate file systemresearchers fromthe Resource Broker. Then
the search request is forwarded to each of the researchers on the |ist
t hrough the "Search" protocol

Rol e = System

Connected to:

Manage Researchers vi a Request Researchers
File Search via Search

Task: Regi ster Researchers

Descri pti on:
The Resource Broker accepts registration through the
"Regi stration" protocol. A registration is an announcenent from a

researcher announcing its availability and the functional area its
respective file systemrepresents.

Rol e = Resource Broker
Connected to:
Regi stration via Registration

Task: Maintain Researcher Status
Descri pti on:

This task maintains the status of the avail able researchers.
Researchers are not consi dered avail able after their workl oad reaches
ten concurrent requests.

Rol e = Resource Broker
Connected to:
File Search via Status Update

Task: Manage Researchers
Description:

This task receives a request for researcher and returns a |ist of
avail abl e researchers that neets the required functional areas.

Rol e = Resource Broker
Connected to:
Syst em Sear ch vi a Request Researchers

PROTOCOLS
Protocol : Registration
Description:

207

A registration is passed froma Researcher to the Resource Broker

announcing the availability of ser

Task1l
Task?2

= Registration

= Regi ster Researchers
Protocol : Request Researchers
Description:

Vi ce.

The System requests a |list of researchers that are provided by

t he Resource Broker

Task1l
Task?2

= System Search

= Manage Researchers
Protocol : Search

Description:

The Search System forwards a request for search to the file

system Researchers and waits for t

Task1l
Task?2

= System Search
= File Search
Protocol : Status Update
Description:

he results.

The Researcher infornms the Resource Broker of its current search

request | oad.

Taskl = File Search
Task2 = Mai ntai n Researcher
SYSTEMS

System System XX2

Description:

System XX2 is a PC/ W ndows 2000
| P Address: XXX X. X. XXX

Host Nanme: XXX2

Agent s:

Broker : Port 5001

Search Interface : Port 4001
File Finder : Port 3001

System System XX3
Description:

System XX3 is a Spark 10
| P Address: XXX X. X. XXX
Host Nanme: XXX3

Agent s:
Search Interface : Port 4001
File Finder : Port 3001

System System XX1
Description:

St at us

208

System XX1 is a Spark 10
| P Address: XXX. X. X. XXX
Host Name: XXX1

Agent s:
File Finder : Port 3001

209

E.2Content Search System Analysisand Design M odels— Booch

Logical View:

System

Interface

%txtSearchString : textfield
txtFunctionalArea : textfig¢
&schbx : checkbox

d

v

%userCmd

1

Cofmposediof

go : button
cancel : button
&interim : button

“actionPerformed()

Composéd of

displays

Result

&location string

Compgsedof 1
&fileName : string
occurrenceCount : integer
generates
‘getLocation()
0..* :getFiIeName()
getOccurenceCount() "
& Search Req.uest setLocation(string) reports
exactMatch : booleay %setFileName(string) 1 o
searchPhrase : string setOccurenceCount(integelr) -
oString() Report
*
1 searcpe/s Bresults : collection of Resy
incjudes
1 $add()
%t0String()
Functional Area Fi Assigned to Flo Li
%name) * e _____ __ /\\/ lle List
pertains to - O*
TS~ |__File Manager _ | - 1 1
=~y &parent Assidned to
&sfileSystems |
1 “®executeSearch) Qg
Revision 4 handlelnterim() File System
evision ﬁ
1 <\/ &rootDir : string
Man[la es @IistofFiIeS : container of strinds
i g &host : string
0.+! . _
-) getFunctionalArea()
File System Int '”teffaief/,, %getListofFiles()
o 0* %searchFile(string)
“getFunctionaIArea()’ - setListofFiles(vector)
‘getListofFiIeS() 1 showListofFiles()

%searchFile(string)

setListofFiles(vecto
showListofFiles()

~

210

Use Cases:

System Use :
Normal Search

O

Get Interim Results

Cancel Search

211

Sequence Diagrams:

Normal Search:

User : System
User

|
o

GUI : Interface

Local System :

Local File Manager

fs1 : File Systen|

fs2 : File Systen|

1: go(sstring, fa,match) I

System : File Manager
| | |
| | |
| |
2 executeSearchd I
* |

3: executeSearch()

8: report

9: display

212

4: searchFile()

5: result

6: search

File()

7:re

sult

Get Interim Results:

User : System
User

—

GUI : Interface]

Local System |

Local File Managgr

fsi : File Syste

n| fs2 : File Syste

System

: File Manager

1: go(sstring, fa,match)!

6: interim

|
|
b executeSearch(j)

3: executeSearch()

setUsrCmd(interiir]

)

8: getinterimResults

4: searchFile(

5: result

9: report

10: display

13: report

11: searchFile()

12: rgsult

14: display

———

213

B ——

Cancel Search:

User : System
User

—

GUI

: Interface

Local System :

Local File Managelr

fsl : File Systen|

fs2 : File Systen|

System

: File Manager

1: go(sstring, fa,match)]

8: cancel

2: executeSearch()

|
|
|
|
|
|

————

9 setUsrCmd(Cancel

: executeSearch(|

S

—

214

4: searchFile()

5: result

6: searchFile()

7:re

sult

————

Deployment View:

Search Request

Search Request

System XX1

System XX2

File System
Interface

File System
Interface

215

Data Dictionary
LOG CAL VI EW

1. dass nane:
Search Request

Cat egory: Logi cal Vi ew
Document at i on:
A search request is initiated by the user. It wll

require the key word or phrase that is to be searched,
whet her or not an "exact" search is required, and the
functional area of the search.

Associ ati ons:

<no rol ename> : File Manager in association request
list

<no rolename> : Interface in association generates

<no rol ename> : Functional Area in association includes

<no rol enanme> : Systemin association Conposed of

<no rolenanme> : File in association searches

Private Interface

Attributes:
exact Mat ch : bool ean
Bool ean flag used to indicate
whet her or not the search request
is for an "exact" search.
searchPhrase : string
The key word or phrase to be
sear ched for.
2. Cl ass nane:
Repor t
Cat egory: Logi cal View

Documnent at i on:
A report is a collection of search request results.

Associ ati ons:

<no rolename> : Result in association reports
<no rolename> : Interface in association displays

Public Interface:
Oper ati ons:
add()
toString()

Private Interface
Attributes:

216

results : collection of Result

Cl ass nane:

Resul t
Cat egory: Logi cal Vi ew
Docunent ati on:
Aresult is data collected after a search. |t contains

the location of the file, name of the document, and the
nunber of occurrences of the key word or phrase.

Associ ati ons:
<no rol ename> : Report in association reports

Public Interface:
Oper ati ons:

get Location()
get Fi | eNane()
get Cccur enceCount ()
set Location(string)
set Fi | eName(string)
set Occur enceCount (i nt eger)
toString

Private Interface
Attributes:
| ocation : string
The location of the file (ful
directory path).

fileName : string
The nane of the file searched
(full name with file extension).

occurrenceCount : integer
A count of the nunber of
occurrences the key word or
phrase was found in the file.

Cl ass nane:
Functi onal Area

Cat egory: Logi cal View

Documnent at i on:
A functional area describes the subject that the
directory of files pertains to, as well as the type of
informati on the search request is pertaining to.

Associ ati ons:

<no rol ename> : Search Request in association includes

217

of

<no rol ename> : File Manager in association pertains to

Private Interface

Attributes:
nanme
The nanme that describes the
functi onal area.
Cl ass nane:
File
Cat egory: Logi cal Vi ew

Docunent ati on:

A file on a conputer system

Associ ati ons:

<no rol ename> : Search Request in association searches
<no rolename> : File List in association Assigned to

Cl ass name:
System

Cat egory: Logi cal Vi ew
Docunent ati on:

Systemis the overall content search system

Associ ati ons:

<no rolenane> : Interface in association Conposed of
<no rol ename> : Search Request in association Conposed

<no rol ename> : File Manager in association Conposed of

Private Interface

Attributes:
user Cnd
Cl ass nane:
I nterface
Cat egory: Logi cal View

Docunent ati on:

The interface is the gui to the overall system
providing the user access to searching renote systens.
When a request is made, a Search Request is generated,
which is used for the search

Associ ati ons:

<no rol ename> : Report in association displays

218

<no rol ename> : Search Request in association generates
<no rol ename> : Systemin associati on Conposed of

Public Interface:
Oper ati ons:
acti onPerfornmed

Private Interface

Attributes:
txt SearchString : textfield
t xt Functional Area : textfield
chbx : checkbox
go : button
cancel : button
interim: button

8. Cl ass nane:
Fil e Manager
Cat egory: Logi cal Vi ew

Document at i on:
A File Manager maintains a list of file systens for the
overall system

Associ ati ons:

<no rol ename> : Search Request in association request

list
<no rol ename> : Functional Area in association pertains
to
<no rol enane> : Systemin association Conposed of
<no rolename> : File SystemlInt in association Manages
Public Interface:
Oper ati ons:
execut eSear ch()
handl el nterim
Private Interface
Attributes:
par ent
fileSystens
9. Cl ass name:
File System
Cat egory: Logi cal Vi ew

Document ati on:
A File Systemis the interface to searching files.

Associ ati ons:

219

<no rolenanme> : File List in association Assigned to
<no rolename> : File SystemlInt in association
i nterfaces

Public Interface:
Oper ati ons:
get Functi onal Area()
getListof Fil es()
searchFil e(string)
setListof Fil es(vector)
showLi st of Fi | es()

Private Interface

Attributes:
rootDir : string
listof Files : container of strings
host : string
10. Cl ass nane:
File List
Cat egory: Logi cal Vi ew

Document at i on:
Afile list is a set of files that are in a particular
directory

Associ ati ons:

<no rolenanme> : File in association Assigned to
<no rolename> : File Systemin association Assigned to

11. Cl ass nane:
File System I nt

Cat egory: Logi cal View
Documnent at i on:
Interface for rempte File System

Associ ati ons:

<no rolename> : File Manager in associati on Manages
<no rolename> : File Systemin association interfaces

Public Interface:
Oper ati ons:
get Functi onal Area()
get Li stof Fi |l es()
searchFi |l e(string)
set Li stof Fil es(vector)
showLi st of Fi | es()

220

1. Associ ation:
sear ches

Document ati on:
When a search request is generated, it is intended to
search a set of files that are associated with a
speci fic functional area.

Rol e:
Cl ass: File
Cardinality / Miltiplicity: n

Rol e:
Cl ass: Search Request
Cardinality / Miultiplicity: 1

2. Associ ation:
reports

Documrent at i on:
A collection of results are collected in a report

Rol e:
Cl ass: Resul t
Cardinality / Miultiplicity: n

Rol e:
Cl ass: Report
Cardinality / Miltiplicity: 1

3. Associ ation:
i ncl udes

Document at i on:
A Search Request includes a Functional Area for the
search

Rol e:
Cl ass: Search Request
Cardinality / Miultiplicity: n

Rol e:
Cl ass: Functi onal Area
Cardinality / Miultiplicity: 1

4. Association:
gener at es
Docunent ati on:

The Interface generates Search Requests when a user
requires a information

221

Rol e:
Cl ass: Sear ch Request
Cardinality / Miultiplicity: 0..n

Rol e:
Cl ass: I nterface
Cardinality / Miultiplicity: 1

5. Associ ation:
di spl ays

Document ati on:
After a search is conplete, the Interface displays a
Report concerning the results of the search

Rol e:

Cl ass: Report

Cardinality / Miultiplicity: 0..n
Rol e:

Cl ass: Interface

Cardinality / Miultiplicity:

6. Associ ation:
Conposed of

Documrent at i on:
The System is conposed of a user interface (Interface),
user defined requests (Search Requests), and a set of
known files (File Manager).

Rol e:
Cl ass: System
Cardinality / Miultiplicity: 1

Rol e:
Cl ass: Interface
Cardinality / Multiplicity: 1

7. Associ ation:
Conposed of

Documnent at i on:
The System is conposed of a user interface (Interface),
user defined requests (Search Requests), and a set of
known files (File Manager).

Rol e:
Cl ass: System
Cardinality / Miultiplicity: 1

222

8.

10.

11.

Rol e:
Cl ass: Sear ch Request
Cardinality / Miultiplicity: 0..n

Associ ati on:
Assigned to

Document at i on:
A File Systemis contains a File List, or collection of

files.
Rol e:
Cl ass: File System

Cardinality / Miultiplicity: 1

Rol e:
Cl ass: File List
Cardinality / Miultiplicity: 1

Associ ati on:
Assigned to

Documrent at i on:
Files are assigned to a File List

Rol e:
Cl ass: File List
Cardinality / Miultiplicity: 1

Rol e:
Cl ass: File
Cardinality / Miultiplicity: 0..n

Associ ati on:
Manages

Document ati on:
The Fil e Manager manages a set of interfaces to the
file systens throughout the network

Rol e:
Cl ass: Fil e Manager
Cardinality / Miltiplicity: 1
Rol e:
Cl ass: File System Int

Cardinality / Miultiplicity: 0..n

Associ ati on:

223

request 1|ist

Rol e:
Cl ass: Fil e Manager
Cardinality / Multiplicity:

Rol e:
Cl ass: Sear ch Request

Cardinality / Miultiplicity:

12. Associ ati on:
Conposed of

Documrent at i on:
The Systemis conposed of a user interface (Interface),
user defined requests (Search Requests), and a set of
known files (File Manager).

Rol e:
Cl ass: System
Cardinality / Miultiplicity: 1

Rol e:
Cl ass: Fi |l e Manager
Cardinality / Miultiplicity: 1

13. Associ ation:
pertains to

Document ati on:
A File Manager manages a set of files that pertain to

t he Functional Area

Rol e:
Cl ass: Fil e Manager
Cardinality / Miltiplicity:
Rol e:
Cl ass: Functional Area

Cardinality / Miultiplicity:

14. Associ ati on:
i nterfaces

Docunent ati on:
File SystemInt is the Renmote Method | nvocation

interface for File System
Rol e:

Cl ass: File System
Cardinality / Miultiplicity: 0..n

224

Rol e:
Cl ass: File System I nt
Cardinality / Multiplicity: 1

USE CASES

1. Class nane:
System User

Cat egory: Use Case View

Document ati on:
A systemuser is defined to be an enpl oyee of the
organi zation that requires information regarding the
| ocation of information throughout the organization's
net wor k.

St er eot ype: Act or
Associ ati ons:
<no rol ename> : Nornmaml Search in association

<no rol ename> : Cancel Search in association
<no rolename> : Get InterimResults in association

1. Use Case nane:
Nor mal Sear ch

Cat egory: Use Case View
Docunent ati on:
The typical scenario for searching the network.
Associ ati ons:
<no rol ename> : System User in association
2. Use Case nane:
Get InterimResults
Cat egory: Use Case View
Docunent ati on:
The scenario requiring the systemto return an
i nternedi ate set of results to the user

Associ ati ons:

<no rol ename> : System User in association

225

3. Use Case nane:
Cancel Search

Cat egory: Use Case View
Docunent ati on:
The scenario in which the user decides to abort the
sear ch.
Associ ati ons:
<no rol ename> : System User in association

SEQUENCE DI AGRAMS

1. nbject nane:
User

Cl ass: Syst em User

2. Object nane:
GuUl

Cl ass: Interface

3. Object nane:
Local System

Cl ass: System

4. Obj ect name:
Local File Manager

Cl ass: Fi |l e Manager

5. Object nane:
fsi

Document ati on:
Local or renote File System

Cl ass: File System

6. Object nane:
fs2

Docunent ati on:
Local or renote File System

Cl ass: File System
DEPLOYMENT MODEL

1. Processor nane:
System XX3

226

Document ati on:
A system contains a search interface, and a file

system The file systemis registered with an RM
registry.

The file manager, when initiated, accesses each of the
renote file systens through the RM registry.

Characteristics:
System XX3 is a Spark 10
| P Address: XXX. X. X. XXX
Host Name: XXX3

Processes: File System
Interface

2. Processor narme:
Syst em XX2

Document ati on:
A system contains a search interface, and a file

system The file systemis registered with an RM
registry.

The file manager, when intitiated, accesses each of the
renmote file systens through the RM registry.

Characteristics:
System XX2 is a PC/ W ndows 2000
| P Address: XXX. X. X. XXX
Host Name: XXX2

Processes: File System
Interface

3. Processor narme:
System XX1

Documnent at i on:
A system contains a search interface, and a file

system The file systemis registered with an RM
registry.

The file manager, when intitiated, accesses each of the
remote file systens through the RM registry.

Characteristics:
System XX1 is a Spark 10
| P Address: XXX. X. X. XXX
Host Name: XXX1

Processes: File System
Interface

227

1. Process nane:
File System

Document ati on:
This process is used for searching the local file
system for specified strings.

2. Process nane:
I nterface

Docunent ati on:

This thread manages a user interface for collecting
requests and presenting results.

228

E.3 Softwar e Development Questionnaire

Analysis and Design Representation Understanding Questionnaire

Below are 15 questions related to the packet of analysis and design models for a
software system. Please take a few minutes to review the packet of models and data
dictionary. After reviewing the packet, answer the following questions to the best of your

ability. You may use the packet for reference as necessary.

1. Which set of models did you review? MaSE (agent-oriented) or Booch (object-

oriented)

2. Are you familiar with this methodology? Yes or No

3. Have you ever used this methodology to develop software systems? Yes or No

4. List other methodologies you have used to develop software systems (please rank in

order of familiarity, or use, from most to least):

1)

2)

3)

4)

5. On the continuum below, rate your general understanding of the models:
| understand
| think | some of the It looks familiar | | do not
| got it! understand models and but | cannot understand
what's going understand the | determine what | these models
on big picture is going on
4 3 2 1 0

6. Which statement best describes the overall objective of the system described in the

packet?

a) The system provides an interface to the user in order to find data files on a computer

system that are relevant to a user-specified text string. (1)

b) The system provides an interface to the user in order to find data files on a network of
computer systems that are relevant to a user-specified string. (2)

c) The system provides an interface to a network of computer systems within an
organization allowing users to find data files that contain a specified string and related to

a specified area of responsibility. (3)

d) The system provides an interface to a network of computer systems within an
organization allowing users to find data files relevant to a specified topic and related to a
specified area of responsibility. Additionally, the system is capable of retrieving the file so

the user can review the particular data. (2)

229

7. Can you identify the incorporation of an existing legacy system? Yes (0) or No (1)
If yes, where

8. Are previously designed components identifiable? Yes (0) or No (1)
If yes, where

9. How many hardware systems have been identified for the implementation? (1)

10. What information can be identified regarding the hardware system? (Check all that

apply) (6)
____ Computer Name __ Location of Computer ____ Type of Processor
____Address ____ Number of Processes Assigned ____ Connectivity Properties

11. How many different operating systems have been identified for the implementation?

_(1)
12. Identify the input the system requires of the user. (Check all that apply) (6)
_____Search String ____Functional Area _____Time limit to Search
___Result format ____Systems to be Searched __ Limit Results to the top # of results

13. Identify the output of the system. (Check all that apply) (6)

_____Name of the File A copy of the File
____Location of the File ____Date and Time of File’s last modification
____ File originator/creator ____Number of times the Search String appears

14. Identify the options presented to the user. (Check all that apply) (5)
____Request for intermediate results ____ Repeat Search ____Cancel the Search
____Limit number of results returned ____ Template for result presentation

15. Were you able to visualize the interface from any of the models? Yes (0) or No (1)

Please verify that you have answered all the questions to the best of your ability.

230

E.4Questionnaire Results (Tabulated Summary)

Question 11213 4 [5]16 |7 |89 |]10|11|12| 13|14 | 15| 16| 17| 18
1

MaSE X[XX | XX X[X[X]X]|X

Booch X I X [X [X [X [X [X [|X
2) Y|Y[N[N[N|NJY [Y]|Y]Y Y |[Y[Y [Y [Y [Y [N]|Y
3) Y|Y[N[N[N|N|N|[Y|[Y]Y Y |Y | N|IN]|JY |Y |N|Y
4)

1) 5/6|6 |6 |5 (|85 |6]|6 |2 |3 2 (1|2 1
2 6 |5 |5 6|7 |6 5 4

3) 3 2

4

5) 4 [3]2 4 [3 13|13 |4 (412 2 4 3 4 3 3 3
6) B|B|B |DlC|[B|C|B|B|B c|c|c|bj|jcj|c|C|C
7) N|IN|[N]JY [[N|N|N|N|[NI|N N [N Y IN|Y |Y |Y
8) N|IN|[N |N[N|JY|N|N|[NI|N Y | N N [N [N [N]|N
9) 3 13]10{3 |3 (|33 (3|33]2 (|3 |32 |3 |3 |3]2
10)

ComputerName | X [X | X [X [X | X | X [X | X | X X | X X | X | X X
Address XXX [X[X]|X]|X[X X X | X X | X | X
Location X X

Number X | X X | X X | X X X X
Type X X X | X X X | X X | X
Connectivity X X | X XX | X[X]|X X
11) 2 12 |2 211212202 2 2 113 2 2 2 2
12)

Search String X[XX | XX X[X[X]X]|X X [X [X [X [X [X [X [|X
Result Format

Functional Area | X X X [X [X [X | X |X |X]|X
Systems X

Time X

Limit

231

13)

Name
Location
Creator
Copy
Date/Time

Occurrences

14)
Intermediate
Limit
Repeat
Template

Cancel

15)

Other Methodol ogies (Question 4)

1- Structured
2—Ad-Hoc
3-UML

4—- AWL

5— Functional

6— Object-Oriented

7-Z
8— OMT

232

10.
11.

12.

13.

14,

15.

16.

17.

18.

Bibliography

Bailey, Elizabeth, et al. “Practical Software Measurement — A Foundation for Objective Project
Management.” Office of the Under Secretary of Defense for Acquisition and Technology (April
1998).

Booch, Grady. Object-Oriented Analysis and Design with Applications. Redwood City CA: The
Benjamin/Cummings Publishing Company, 1994.

Durfee, Edmund H. “Distributed Problem Solving and Planning,” in Multiagent Systems: A
Modern Approach to Distributed Artificial Intelligence. Gerhard Weiss ed. Cambridge Mass:
MIT Press, 1999.

Fichman, Robert G. and Chris F. Kemerer. “ Object-Oriented and Conventional Analysis and
Design Methodologies,” |EEE Computer p. 22-39 (October 1992).

Firth, Robert et al. “ A Classification Scheme for Software Development Methods,” Software
Engineering Institute Technical Report 87-TR-41 (Nov 1987).

Goicoechea, Ambrose Don R. Hansen, and Lucien Duckstein. Multiobjective Decision Analysis
with Engineering and Business Applications. New Y ork: John Wiley & Sons, 1982.

Guessoum, Zahia and Jean-Pierre Briot. “From Active Objects to Autonomous Agents,” |EEE
Concurrency Vol 7 No3 : p 68-76 (July -Sept 1999).

Hendler, James. “ Control of Agent-Based Systems (CoABS),” Excerpt from unpublished
document, n. pag. http://dtsn.darpa.mil/iso/programtemp.asp?mode=126. 24 April 2000.

Huhns, Michael and Larry Stephens. “Multiagent Systems and Society of Agents” in Multiagent
Systems: A Modern Approach to Distributed Artificial Intelligence. Gerhard Weiss ed.
Cambridge Mass. MIT Press, 1999.

|EEE Standards Collection: Software Engineering, |EEE Standard 610.12-1990, |EEE, 1993.

Iglesias, C. A., M. Garijo, and J.C. Gonzalez. “A Survey of Agent-Oriented Methodologies,” in
Intelligent AgentsV — Proceedings of the Fifth International Workshop on Agent Theories,
Architectures, and L anquages (ATAL-98), L ecture Notes in Artificial Intelligence. Heidelberg:
Springer-Verlag, 1998.

Jennings, N.R. “On Agent-based Software Engineering,” Artificial Intelligence: Vol 117 (2000), p
277-296.

Jennings, N.R. “Agent Oriented Software Engineering.” Proc. 12th Int Conf on Industrial and
Engineering Applications of Al, Cairo, Egypt, 4-10. (Invited paper) n. pag.
http://www.ecs.soton.ac.uk/~nrj/pubs.html

Jennings, N. R. “Agent-Based Computing: Promise and Perils,” in Proceedings of the 16™ Joint
Conference on Artificial Intelligence (IJCAI-99). Stockholm, Sweeden, p. 1429-1436 (1999).

Jennings, N.R. and M. J. Wooldridge. “ Agent-Oriented Software Engineering.” In Handbook of
Aqgent Technology, ed. J. Bradshaw, AAI/MIT Press (To Appear).

Karpak, Birsen and Stanley Zionts eds. Multiple Criteria Decsion Making and Risk Analysis
Using Microcomputers. Berlin: Springer-Verlag, 1989.

Kelley, Jay W. Air Force 2025. 2025 Support Office, Air University, Air Education and Training
Command. Air University Press, August 1999.

Kirkwood, Craig W. Strategic Decision Making: Multiobjective Decision Analysis with
Spreadsheets. Belmont CA: Wadsworth Publishing, 1997.

233

19.

20.

21.

22.

23.

24,

25,

26.

27.

28.

29.

30.

31

32.

33.
34.

35.
36.

37.

Kobryn, Cris. “Modeling Components and Frameworks with UML,” Communications of the
ACM Vol 43: No 10 p. 31-38 (October 2000).

Lacey, Timothy H. A Formal Methodology and Technique for Verifying Communication
Protocolsin aMulti-Agent Environment. AFIT/GCS/ENG/00M -12. School of Engineering and
Management, Air Force Institute of Technology (AU), Wright-Patterson AFB OH, March 2000.

Lane, Thomas G. “Guidance for User Interface Architecture,” in Software Architecture:
Perspectives on an Emerging Discipline. Mary Shaw ed. Upper Saddle River NJ: Prentice Hall,
1996.

Lawlis, PatriciaK. “Guidelines for Choosing a Computer Language: Supporting the Visionary
Organization” 2nd Ed. http://sw-eng.falls-church.va.us/Adal C/docs/reports/lawlis/content.html
(August 1997).

Lesser, Victor R. "Cooperative Multiagent Systems: A Personal View of the State of the Art,"
| EEE Transactions on Knowledge and Data Engineering Vol 11, No 1: p. 133-142 (Jan-Feb 1999).

“MESSAGE: Methodology for Engineering Systems of Software Agents— Initial Methodology.”
EURESCOM Participantsin Project P907-Gl, July 2000.

Muller, Pierre-Alain. Instant UML. Birmingham UK: Wrox Press, 1997.

Noe, Penelope A. A Structured Approach to Software Tool Integration. AFIT/GCS/ENG/99M -14.
School of Engineering and Management, Air Force Institute of Technology (AU), Wright-
Patterson AFB OH, March 1999.

Nwana, Hyacinth et al. “ZEUS: A Toolkit and Approach for Building Distributed Multi-Agent
Systems,” in Proceedings of the Third Annual Conference on Autonomous Agents. Seattle WA,
(May 1999).

Odell, James. “ Objects and Agents. How do they differ?” Unpublished document, n. pag.
http://www.jamesodell.com/publications.html September 1999.

O’'Malley, Scott, Athie Self, and Scott Del_oach. “ Comparing Performance of Static versus Mobile
Multiagent Systems,” in Proceedings of NAECON 2000. Dayton OH, (Oct 2000).

Orfali, Robert et al. The Essential Distributed Objects Survival Guide. New Y ork: John Wiley &
Sons, Inc. 1996.

Pressman, Roger S. Software Engineering: A Practitioner’s Approach. New Y ork: McGraw-Hill,
1997.

Robinson, David J. A Component Based A pproach to Agent Specification.
AFIT/GCS/ENG/00M -22. School of Engineering and Management, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, March 2000.

Ryan, Michael. Commanders NOTAM 00-5, July 2000.

Sametinger, Johannes. Software Engineering with Reusable Components. New Y ork: Springer,
1997.

Shelton, Henry. Joint Vision 2020. Joint Staff: Pentagon, 2000.

Shen, Weiming and Douglas Norrie. “ Agent-Based Systems for Intelligent Manufacturing: A
State-of the-Art Survey,” Knowledge and Information Systems, an International Journal. Vol 1,
Num 2. p 129-156 (1999).

Szyperski, Clemens. Component Software, Beyond Object-Oriented Programming. New Y ork:
ACM Press, 1999.

234

38.

39.

40.

41.

42.

43.

Wood, Bill, Richard Pethia, Lauren Roberts Gold, and Robert Firth. “A Guide to the Assessment
of Software Development Methods,” Software Engineering Institute Technical Report 88-T R-8,
Software Engineering Institute, Carnegie-Mellon University, Pittsburgh, July 1988.

Wood, Mark F. Multiagent Systems Engineering: A Methodology for Analysis and Design of
Multiagent Sy stems. AFIT/GCS/ENG/0O0M -26. School of Engineering and Management, Air
Force Institute of Technology (AU), Wright-Patterson AFB OH, March 2000.

Wooldridge, M. “Intelligent Agents,” in Multiagent Systems: A Modern Approach to Distributed
Artificia Intelligence. Gerhard Weiss ed. Cambridge Mass: MIT Press, 1999.

Wooldridge, M.J. and N.R. Jennings. “Pitfalls of Agent-Oriented Development,” Proceedings 2nd
International Conference on Autonomous Agents (Agents-98), Minneapolis MN USA, p. 385-391
(1998).

Wooldridge, M.J., N.R. Jennings and D. Kinney. “The Gaia Methodology for Agent-Oriented
Analysisand Design,” International Journal of Autonomous Agents and Multi-Agent Systems, vol
3, (2000) p. 1-27.

Y ourdon, Edward. Modern Structured Analysis. Englewood Cliffs NJ: Y ourdon Press, 1989.

235

VITA

First Lieutenant Scott Alan O’'Malley was born in Allegan, Michigan. He graduated from
Indianola High School in Indianola, lowa in June 1993. After completing his Bachelor of Science degree in
Computer Science in May 1997 & the University of lowa, he was commissioned through the Air Force

Reserved Officer Training Corps (ROTC).

Lieutenant O’ Malley’s first assignment was at Hickam AFB, Hawaii as an executive officer for
the 15™ Support Group in September 1997. In June 1998, he was assigned as a communications-
information officer in the 15™ Communications Squadron at Hickam AFB, where he held a number of
positions throughout the squadron while participating in a program called Aerospace Communications
Expertise (ACE). In August 1999, he entered the Graduate School of Engineering and Management’s
Computer Science program, Air Force Institute of Technology. Upon graduation, he will be assigned to the

United States Strategic Command at Offutt AFB, Nebraska.

236

Form Approved
REPORT DOCUMENTATION PAGE OME No. D704-0188

Tha public megorhng burdan for this colleston of miarmation @ ssbmeted 1o sverage 1 hour per reEspanse, incheding tha Hme Tor /avidsing NSINCTsOng, SERfching acEng dals sources,
gathenng and mairteaning tha dota needed, and complateng and revievong the collectien of ifarmabon Send comments regarding this burden estimate of any othar aspect of this collaction
of algematon, nchading lunw“tlﬂﬂs for reducang the burden, to Departmen: of Dalense, ‘Washingion Headguerters Ssevices. Direciodste for Informapon Opersuons ano Repors
I0TOA-01BE), 1278 Jatlarson 18 Highoway, Suite 1204, Arhington, WA 22202-4302 Respondents should be sware that notwithsiandng any other provaon of law, no person shall be
subyedt to any panatty for fahng to comply with & collacton of wiormabon o it doss not display a curremly wahd OME control number

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REFORT DATE (DD-MM-¥vYy] | 2. REPORT TYFE 3. DATES COVERED (From - 7o)
20-03-2001 Master’s Thesis April 2000 - March 2001
&. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

SELECTING A SOFTWARE ENGINEERING METHODOLOGY USING
MULTIORJECTIVE DECISION ANALYSIS

5b. GRANT NUMBER

be. M ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER
Scott Alan O'Malley

Be. TASK NUMEER

&f. WORK UNIT NUMEER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSIES] 8. PERFORMING URGANIZATION
Air Force Institute of Technology REPORT NUMBER
Graduate School of Engineering and Management (AFIT/EN) AFIT/GCS/ENG/DIM-08

2950 P Street, Building 640
WPAFB OH 45433-7765

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSIES) 10. GPONSOR/MONITOR 5 ACRONYMIS)

Dr. Robert L. Herklotz

AFOSR/NM, Program Manager: Software and Systems
801 N. Randolph Street, Room 732

Arlington VA 22203-1977 Ty DESHUUI N
(703) 696-6565 NUMBERIS)

12. DISTRIBUTION/AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

13. SUPPLEMENTARY NOTES
SCOTT A. DELOACH. Maior, USA

(e SO R E ey AFAGLJME A Fida y & Adeies, @LBOSLILOIEL 3 1AiFLACS 5

o
e
1]
i
|
&
3
-3
]
4
&
&
A

14. ABSTRACT

With the emergence of agent-oriented software engineering methodologies, software developers have a new set of tools to
solve complex software requirements. One problem software developers face is to determine which methodology is the best
approach to take to developing a solution. A number of factors po into the decision process. This thesis defines a decision
making process that can be used by a software engineer to determine whether or not a software engineering approach is an
appropriate system development strategy. This decision analysis process allows the software engineer to classify and evaluate a
set of methodologies while specifically considering the software requirement at hand.,

The decision-making process is developed on a multiobjective decision analysis technique. This type of technique is

as there are a number of different, and sometimes conflicting, criterions. The set of criteria used to base the decision

was derived from literature sources and validated by an opinion survey conducted to members of the software engineering
community. After developing the decision-making framework, a number of case studies are examined,

15. SUBJECT TERMS
Software Engineering, Specifications, Methodology, Decsion Analysis

16. SECURITY CLASSIFICATION OF: | 17. LIMITATION OF |18, NUMBER |19a. NAME OF RESPONSIBLE FERSON
a. REPORT | b. ABSTRACT | c. THIS PAGE ABSTRACT E:EES Maj Scott DeLoach
u u u UU 254 18b. TELEPHONE NUMBER (include ares code)
(937)255-3636 x 4581

Standard Form 298 (Rev. B/28)
Frascribed by ANSI Sud Z39 18

