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Abstract

Following and expanding upon the philosophy set down by Cousot and Cousot, this
tutorial paper uses stepwise abstract interpretation to transform a system’s naive
trace-set semantics into a format that is readily analyzable by temporal logic. The
abstraction interpretations first transform a concrete trace-set semantics, where the
traces are characterized by a state-transition relation, into an abstracted trace-set
semantics that uses abstracted states such that linear-time properties are soundly
(and in some cases, completely) preserved. Conditions under which universally and
existentially quantified linear-time properties are preserved are also stated, and
these conditions motivate the universal and existential abstractions of the abstracted
trace-set semantics into state-set semantics upon which quantified properties can
be soundly and completely checked, producing simple branching-time logics.

Finally, the combination of universal and existential quantification in a single
logic motivates mixed and modal transition systems, where a concrete system is ab-
stracted by two transition relations, one that abstracts universal behaviors and one
that abstracts existential behaviors. The definitions, constructions, and technical
results are illustrated by examples.

1 Introduction

A standard way of understanding a hardware or software system is by exe-
cuting it and studying the execution traces that result. Linear-time temporal
logic [16,37] was designed for stating and checking patterns of correct behav-
ior of individual execution traces, and as argued most strongly by M. Vardi
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[50] but also by many others, it is the most natural format for this purpose.
But many testing and analysis frameworks are oriented towards another for-
mat, branching-time temporal logic [4,16,18], which lets one write correctness
properties in terms of the potential execution steps (“branches”) that might
be taken from each state in a system.

The standard formulations of linear-time logic (LTL [16,37]) and branching-
time logic (CTL [6,16]) are often presented as incomparable, because of the-
oretical results that assert that the two logics are incomparable in terms of
expressivity [3,17,27]. Indeed, in a landmark paper, Lamport presented linear-
time logic and branching-time logic as competing semantical interpretations
of the same temporal-logic notation [27]. Although these insights are valuable,
they have suggested that the linear-time and branching-time approaches are
“competitors,” locked in a dual where one must vanquish the other [18,50].

A significant paper by Cousot and Cousot shows that this scenario need not
be the case [12]: By employing abstract interpretation, a theory of abstrac-
tion of structure [9,10,25], Cousot and Cousot show that a system’s concrete
operational semantics generates execution traces whose behaviors are neatly
described in terms of linear-time temporal logics. Application of abstract in-
terpretation to both the execution-trace sets and the linear-temporal logic
generates natural branching-time temporal logics. Rather than being incom-
parable competitors, linear-time and branching-time logics are related by ab-
stract interpretation mappings in sound and complete ways.

This tutorial paper applies these insights to a pedagogical, stepwise, abstract-
interpretation-based development of frameworks for sound (and in some cases,
complete) extraction of temporal-logic properties of systems that are under-
stood in terms of execution traces. The stages proceed as follows:

(1) A system’s semantics is defined by its set of execution traces, called its
model. For computability purposes, the model must be characterized by
a (not necessarily finite) binary transition relation.

A linear-time temporal logic, LMC (linear mu-calculus), is used to ex-
press correctness properties of traces, and LMC’s semantics defines when
a trace satisfies a correctness property. Correctness properties can be
quantified as universal (the property holds for all traces) or existential
(the property holds for a trace).

This material appears in Section 2.
(2) For reasons of finite computability, the states that appear in execution

traces are abstracted to states with simpler structure. The abstraction is
performed by means of a Galois connection [9,31], which is a special form
of binary abstraction relation [40].

Although the abstraction is done on the system’s states, it affects the
generation of the system’s traces. Specifically, the transition relation that

2



generates the concrete system’s model is abstracted to a transition rela-
tion that generates the abstract system’s model. The abstraction is also
applied to the linear-time logic, synthesizing an abstracted logic that one
uses to check the abstracted traces.

Using the classic techniques introduced by Cousot and Cousot [11], a
sound, and in some cases, complete abstract logic is derived— abstract
properties that are validated as true on an abstract trace must hold true
for the corresponding concrete property applied to the corresponding con-
crete trace.

The cases of universally and existentially quantified properties are given
special attention, because the standard abstraction technique soundly re-
flects only universally quantified properties on the corresponding concrete
system. This motivates the formulation of a dual abstracted transition
relation that soundly reflects existentially quantified properties.

Sections 3 and 4 present these developments.
(3) For historical and pragmatic reasons, we abstract the linear-time logic

further so that it checks states, rather than traces: A trace to be checked
is abstracted to just one state that represents the entire trace, and the
logic is abstracted to a logic that checks properties of states. As noted
by Cousot and Cousot [12], this abstraction transforms linear-time logic
into branching-time logic.

But there are two such abstractions from linear-time logic to branching-
time logic: a universal abstraction and an existential abstraction, showing
that classic linear-time logic (LTL) abstracts to either universal branching-
time logic (ACTL) or existential branching-time logic (ECTL), each of
which must be checked on correspondingly abstracted transition systems.
For restricted versions of the abstracted logics, state checking of proper-
ties is complete with respect to the corresponding trace checking of the
related trace property.

Section 5 explains these techniques.
(4) Finally, the universal and existential quantifiers can be added directly

into linear-time logic, giving the logic, mu-CTL*. But abstraction of the
logic’s quantifiers must be done in two ways, by means of a universal ab-
straction and an existential abstraction. This produces a mixed transition
system, which allows both trace and state checking, of mu-CTL*. Specif-
ically, the state-checking abstraction of a subset of the logic yields the
modal mu-calculus, a standard branching-time logic which is complete for
state checking with respect to the restricted form of mu-CTL*. A linear-
time logic, mu-XCTL*, is proposed for describing properties of modal
transition systems, which are a well-behaved variant of mixed transition
systems.

Sections 6 and 7 develop these results.

At the conclusion of this development, we have a roadmap that takes us from a
naive and natural trace semantics with its linear-time logic to a systematically
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abstracted version based on multiple transition relations and corresponding
linear- and branching-time logics.

2 Traces and Linear-Time Logic

We assume that the operational semantics of a program, a hardware compo-
nent, or a software system is based on incremental, discrete updates of state:
A program begins in some starting state, and each execution step transforms
the current state into a new state. A state traditionally consists of an instruc-
tion counter paired with the values of storage cells, registers, or input data,
but any configuration that supports incremental updates is acceptable. We
use Σ to name the set of states that might be encountered during executions.
An execution of a program generates a countably infinite sequence of states,
called an execution trace:

Definition 1 For state set, Σ, Σω = Nat→ Σ is the set of (infinite) execution
traces consisting of states from Σ. For π ∈ Σω, i ∈ Nat, π(i) ∈ Σ is the ith
state in π, and πk = λi.π(k + i) is the trace that results from forgetting the
first k states of π and treating π(k) as the initial state.

We will informally write a trace as a sequence of states, e.g., s0s1 · · · si · · ·, and
use the abbreviation, sω, to represent s repeated infinitely, s s s · · ·.

We assume that traces are infinite primarily for technical convenience; to
model a finite execution as an infinite trace, repeat the final state infinitely or
append a special “halt” state infinitely to the end of the sequence.

The notion of trace in Definition 1 can be adapted to display the inputs or
events that generate state updates. A sequence, s0

e0−→ s1
e1−→ s2 · · ·, where

event ei triggers a transition from si to si+1, can be expressed as the sequence,
(s0)(e0, s1)(e1, s2) · · ·, where event-state pairs are used in the sequence. We
retain Definition 1 primarily for convenience.

Of course, a program might be executed with many distinct start states, s0,
and a nondeterministic program might generate distinct execution traces from
the same s0. For this reason, one “execution” might generate a set of traces.
Or, the traces generated by distinct executions might be grouped into one
trace set. For technical reasons, it is important that a trace set of executions
be suffix closed:

Definition 2 A trace set, T ⊆ P(Σω), is suffix closed if, for all π ∈ T and
i ∈ Nat, πi ∈ T also.
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The trace set is “closed” in its expression of the “futures” of the executions
it portrays. When a suffix-closed set of traces contains all the executions of
interest to us, we call the set a model and use M⊆ P(Σω) to denote it.

2.1 Linear-time logic

Given a model, M, we might examine its traces for correctness properties.
Such an examination might check each trace in the model for desirable (or
undesirable) state sequences. For example, a trace that documents the usage
of a resource should contain desirable sequences of the form,

acquire · · ·use · · · release

that is, a resource must be acquired before it is used, and it must be released
some time thereafter. If a trace deviates from the desired behavior, the devi-
ations should be reported.

To help us discuss such behaviors without digging into the internal structure
of the states, we define a set, AtomProp, that names the primitive, atomic
properties that we care about (e.g., acquire, use, release), and we employ
an interpretation function, I : Σ → P(AtomProp), that maps each state to
those atomic properties that hold true for it. For example, we might define
AtomProp = {acquire, use, release} and then define I so that those program
states, s, that acquire the resource have acquire ∈ I(s) and those states that
use the resource have use ∈ I(s), and so on. In this way, I catalogs the atomic
behaviors of individual states. 2

Linear-time temporal logic is a notation for stating behavioral patterns within
traces. Regular-expression notation is one example of linear-time temporal
logic; to see this, say that we have a model, M, whose states, Σ, possess
properties from AtomProp = {acquire, use, release}. Then, the regular ex-
pression, E = acquire; true∗; release, is one way of stating that an acquired
resourse must be released some finite time later. 3 We check whether a trace,
π ∈M, matches E as follows:

• acquire ∈ I(π(0))
• release ∈ I(π(n)), for some n > 0

2 This development can be taken to an extreme by defining Σ = P(AtomProp)
and making I the identity mapping. This characterization is sometimes called a
predicate abstraction [22].
3 This example is somewhat informal, where true∗ represents a finite state sequence
where atomic properties are unimportant.
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[[ · ]]M ⊆M

[[p]]M = {π ∈M | π(0) ∈ I(p)}

[[¬φ]]M =M− [[φ]]M

[[φ1 ∨ φ2]]M = [[φ1]]M ∪ [[φ2]]M

[[Xφ]]M = {π ∈M | π1 ∈ [[φ]]M}

[[φ1Uφ2]]M = {π ∈M | there exists k ≥ 0 such that for all 0 ≤ j < k,

πj ∈ [[φ1]]M, and πk ∈ [[φ2]]M}

Fig. 1. LTL semantics

If the check succeeds, we write π |= E to denote that π has property E.

Regular expression notation includes union (∨), intersection (∧), and comple-
ment (¬), giving a propositional logic. For example, to assert, “for all subtraces
within a trace, property E holds,” we might write the expression, ¬(true∗;¬E).
But regular-expression notation is clumsy to use for specifying behavioral
properties, 4 so we move to an alternative notation, namely, linear-time logic
as proposed by Pnueli [16,37].

Here is a syntax for a linear-time logic that we title LTL:

p ∈ AtomProp φ ∈ PathProp
φ ::= p | φ1 ∨ φ2 | ¬φ | Xφ | φ1Uφ2

Specifications in LTL consist of atomic propositions, p, the propositional con-
nectives, and two modalities:

• Xφ (“next φ”), which asserts that φ holds true for the subtrace that begins
at the next time instance;
• φ1Uφ2 (“φ1 until φ2”), which asserts that φ1 holds true for some finite se-

quence of time until φ2 becomes true.

Figure 1 presents the logic’s semantics, where the meaning of a proposition
is defined as that subset of model M for which the proposition holds true.
(Examples soon follow.) Classical propositional reasoning lets us employ the
abbreviations, φ1 ∧ φ2 for ¬(¬φ1 ∨ ¬φ2) and φ1 ⊃ φ2 for ¬(φ1 ∧ ¬φ2). When
π ∈ [[φ]]M, we write π |=M φ (similarly for π 6|=M φ).

4 But there has been sustantial effort in employing ω-regular expressions in this
context [16,48].
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Some examples best explain the semantics:

Example 3 Let Σ = {si | i ≥ 0} and say that the atomic properties for the
states are defined as I(s2i) = {even} and I(s2i+1) = {odd}, for 0 ≤ i ≤ 49,
and finally I(sj) = {even, halt}, for i ≥ 100. Now, consider the trace, π =
s0s1 · · · si · · ·, and define model M = {πi | i ≥ 0}; M is the suffix closure of
π.

Here are some examples for the traces in M:

• π0 |=M even∧Xodd, because the trace’s initial state has property even and
the subtrace π1 has property odd. Similarly, π1 6|=M even ∧ Xodd, implying
π1 |=M ¬(even∧Xodd). Also, π1 |=M X(even∧Xodd). These examples show
how to use the X modality to list sequences of properties/events.
• π0 |=M (odd ∨ Xodd)Uhalt, because the trace maintains odd ∨ Xodd until

time 100, when π100 has property halt. Indeed, πi |=M (odd ∨ Xodd)Uhalt
for all i ≥ 0.

Let true represent some tautology, e.g., even ∨ ¬even. Then π0 |=M
trueUhalt holds. This particular LTL pattern is abbreviated by the modality,
F:

Fφ iff trueUφ

It can be read as, “in the finite future, φ holds.”
• Another commonly used pattern is

Gφ iff ¬F¬φ

which is read as “φ holds generally (globally) true.” We see that π100 |=M
Ghalt and π0 6|=M Geven.

Propositions like GFeven (“even holds infinitely often”) and FGeven (“in
the future, even holds generally”) are terse but important examples of be-
haviors expressible in LTL.

A typical LTL proposition will state a safety 5 or invariance property of the
form Gφ, e.g., G(¬useUacquire)—“it is generally true that a resource is not
used until it is first acquired.” Or, an LTL proposition might state a liveness 6

property of the form Fφ, e.g., acquire ⊃ Frelease—“if the resource is acquired
now, then in the future it is released.”

Example 4 Consider a system consisting of a shared file, n processes that
read the file, and 1 process that writes to it. States in such a system take
the form, 〈r1, · · · , rn, w〉, where each ri ∈ {sleep, read} is the state of the ith

5 A safety property is sometimes described as an assertion stating, “something bad
never happens” [27].
6 The intuition is, “something good must eventually happen” [27].
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reader, and w ∈ {wait, write} is the state of the writer. Traces are generated
by applying these transition schemes:

〈· · · , sleep, · · ·wait〉 → 〈· · · , read, · · ·wait〉

〈· · · , read, · · ·〉 → 〈· · · , sleep, · · ·〉
〈sleep, sleep, · · · , sleep, wait〉 → 〈sleep, sleep, · · · , sleep, write〉

〈· · · , write〉 → 〈· · · , wait〉

For example, for two readers and one writer, a trace might begin as

〈sleep, sleep, wait〉 → 〈sleep, read, wait〉 → 〈read, read, wait〉

→ 〈sleep, read, wait〉 → 〈sleep, sleep, wait〉 → 〈sleep, sleep, write〉

→ · · ·

Atomic properties might be assigned to the states depending on whether the file
is currently read or written: AtomProp = {read, write}, read ∈ I〈· · · , read, · · ·〉;
write ∈ I〈· · · , write〉. For example, I〈sleep, read, write〉 = {read, write}.

ModelM is the set of all traces generated from initial state, 〈sleep, · · · , sleep, wait〉,
made suffix closed.

For the previous example, G(¬(read ∧ write)) expresses the safety property
that the file is never simultaneously read and written; the property can be
verified true for every trace starting from the initial state. Another example
is the liveness property, Fwrite. This property fails to hold for those traces in
the model that allow the reader processes to unfairly use the file forever— an
assumption of fair execution must be added to rule out the unfair traces, e.g.,
fairness ⊃ Fwrite, where fairness is an LTL-like coding of a pattern of fair
execution.

As noted by Wolper and others [50,52], LTL is not expressive enough to state
notions of fair execution; 7 as shown by Thomas [47], LTL can express exactly
the star-free ω-regular expressions. For this reason among others, we consider
a more expressive variant, the linear mu-calculus.

7 See Clarke, et al. [6] for an introduction to coding fairness assumptions.
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2.2 Linear mu-calculus

If LTL is propositional logic with the X modality and “iteration” (U), then
the linear mu-calculus [2,49] is propositional logic with X and recursion (least-
fixed-point propositions, µZ.φZ, and greatest-fixed-point propositions, νZ.φZ).
Here is the syntax of the linear mu-calculus we call LMC:

p,¬p ∈ AtomProp Z ∈ Var φ ∈ PathProp

φ ::= p | ¬p | φ1 ∨ φ2 | φ1 ∧ φ2 | Xφ | µZ.φ | νZ.φ | Z

The recursion operators let us easily express safety and liveness propositions:
Gφ is written νZ.φ ∧ XZ, and Fφ is µZ.φ ∨ XZ. Also, φ1Uφ2 is µZ.φ2 ∨ (φ1 ∧
XZ). These can be understood by considering the infinite unfoldings of the
recursions:

µZ.φ iff
∨
i≥0 φi, where

φ0 = false

φi+1 = [φi/Z]φ

νZ.φ iff
∧
i≥0 φi, where

φ0 = true

φi+1 = [φi/Z]φ

where [φ′/Z]φ defines the replacement of all free occurrences of Z by φ′ within
φ.

More formally, the recursion operators define the least- and greatest-fixed
points of monotonic functionals defined over P(M); their semantics appear in
Figure 2. As the Figure shows, an environment, ρ, remembers the trace sets
denoted by variables. The classic Tarski-fixed-point theorems give the seman-
tics of µ and ν. The monotonicity of the functional, F , used to calculate the
fixed point depends crucially on the absence of negation, which is antimono-
tonic on the complete lattice, P(M). For this reason, LMC allows negations
on atomic propositions only.

For the denotations of atomic propositions, we demand the following consis-
tency property for the interpretation map, I [14]:

for all s ∈ Σ, for all p ∈ AtomProp, {p,¬p} 6⊆ I(s)

We can also demand completeness of I:

for all s ∈ Σ and p ∈ AtomProp, either p ∈ I(s) or ¬p ∈ I(s)
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[[ · ]]M ∈ Env→ P(M), where ρ ∈ Env = Var→ P(M):

[[p]]Mρ = {π ∈M | p ∈ I(π(0))}

[[¬p]]Mρ = {π ∈M | ¬p ∈ I(π(0))}

[[φ1 ∧ φ2]]Mρ = and([[φ1]]Mρ, [[φ2]]Mρ)

where and : P(M) ×P(M)→ P(M) is defined as

and(S1, S2) = S1 ∩ S2

[[φ1 ∨ φ2]]Mρ = or([[φ1]]Mρ, [[φ2]]Mρ)

where or : P(M) ×P(M)→ P(M) is defined as

or(S1, S2) = S1 ∪ S2

[[Xφ]]Mρ = next([[φ]]Mρ)

where next : P(M)→ P(M) is defined as

next(S) = {π ∈M | π1 ∈ S}

[[µZ.φ]]Mρ =
⋂{S ⊆M | F (S) ⊆ S}

[[νZ.φ]]Mρ =
⋃{S ⊆M | S ⊆ F (S)},

where F : P(M)→ P(M) is defined as

F (S) = [[φ]]M(ρ+ [Z 7→ S])

[[Z]]Mρ = ρ(Z)

Fig. 2. LMC semantics

Returning to Example 3, its consistent and complete interpretation, I, reads:

I(s2i) = {even,¬odd,¬halt}, 0 ≤ i ≤ 49

I(s2i+1) = {odd,¬even,¬halt}, 0 ≤ i ≤ 49

I(sj) = {even,¬odd, halt}, j ≥ 100

We use the standard conversion rules to attempt translation of propositions
into LMC syntax:

¬(φ1 ∨ φ2)⇒ ¬φ1 ∧ ¬φ2

¬(φ1 ∧ φ2)⇒ ¬φ1 ∨ ¬φ2

¬(Xφ)⇒ X¬φ

¬(µZ.φ)⇒ νZ.¬([¬Z/Z]φ)

¬(νZ.φ)⇒ µZ.¬([¬Z/Z]φ)

¬¬φ⇒ φ
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For example, ¬(νZ.¬p ∧ XZ) ⇒∗ µZ.p ∨ XZ, but µZ.Z ⊃ p ⇒∗ µZ.¬Z ∨ p,
which is not in LMC. With the semantics of negation in Figure 1, the soundness
of the translation rules is argued in the usual way:

Proposition 5 [16,45] If φ⇒∗ φ′, and φ′ ∈ LMC, then for all M and ρ:

(1) if I : AtomProp→ P(Σ) is consistent, then [[φ]]Mρ ⊇ [[φ′]]Mρ
(2) if I is consistent and complete, then [[φ]]Mρ = [[φ′]]Mρ .

Note that the soundness of the translation rule for X depends on all traces
being infinite.

2.3 Checking linear-time properties

Given a model,M, and property, φ ∈ LMC, we might check individual traces,
π ∈M, to see if π |=M φ holds. 8

More likely, we are interested in those traces in M that begin at some state,
s ∈ Σ. We define

M ↓ s = {π ∈M | π(0) = s}

Two commonly used notions are

s |=M ∀φ iff π |=M φ for all π ∈M ↓ s

s |=M ∃φ iff there exists π ∈M ↓ s and π |=M φ

We say that φ universally holds at s if s |=M ∀φ, and φ existentially holds at
s if s |=M ∃φ. Further, we have these forms of properties, for φ ∈ LMC [14]:

universal safety: s |=M ∀Gφ

universal liveness: s |=M ∀Fφ

existential safety: s |=M ∃Gφ

existential liveness: s |=M ∃Fφ

8 Of course, to make the check effective, we require a finite representation of π.
This issue is addressed shortly in the guise of a (finite-)state-transition system that
generates all traces inM, including π. With this in hand, we can apply, for example,
the tableau technique of Stirling and Walker [46] to systematically decompose φ and
decide π |=M φ.
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If we plan to check universal or existential properties of a state, s, then we
require a manageable (i.e., finite) representation of M ↓ s and indeed, of M
itself. The standard approach is to encodeM as a (finite) transition relation,
τ ⊆ Σ × Σ, such that (s, s′) ∈ τ iff there is some π ∈ M such that s = π(i)
and s′ = π(i + 1), for some i ≥ 0. Let wft(τ) represent the set of all traces
generated by τ .

Obviously, we desire, for all s ∈ Σ, that M ↓ s = wft(τ) ↓ s. And we will
assume this is so, because it is easy to devise models where this is not the
case: consider π = acdω, π′ = bceω, and M = {πi, π′i | i ≥ 0}. Then τ is
graphically depicted as

a

b
c

d

e

and we see that aceω ∈ wft(τ), but this trace was not in M.

When we wish to discuss the transition relation along with its state set and
interpretation, we call it a transition system:

Definition 6 A (Kripke) transition system is a tuple, K = 〈Σ, τ, I〉, where

• Σ is a set of states
• τ ⊆ Σ×Σ is a transition relation, and
• I : Σ→ P(AtomProp) is an interpretation mapping.

The model defined by K is wft(τ).

Transition systems are automata like, and it is not surprising that we can
check universal and existential linear-time properties of states by applying
automata-theoretic techniques [51]. Crudely stated, a transition system can
be translated into an automaton whose language consists of wft(τ) annotated
with atomic propositions. Next, a linear-time proposition, φ, can be translated
into an automaton that accepts the language, [[φ]]P(Σω)∅, where ∅ denotes the
empty environment. Now, the task of checking, say, s |=wft(τ) ∀φ, is performed

as a language-inclusion check on the two automata: wft(τ) ↓ s ⊆ [[φ]]P(Σω)∅.
Simple introductions to this approach are found in Clarke, et al. [6] and Müller-
Olm, et al. [34].
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3 Abstracting the states within traces

Often, the task of formulating a finite-state transition system makes us replace
the state set, Σ, with a significantly smaller— usually finite— set of abstract
states, ΣA, where every s ∈ Σ is modelled (abstracted) by at least one a ∈ ΣA.
We write s R a to denote that state s is abstracted by a. Call Σ the concrete
state set, ΣA the abstract state set, and R ⊆ Σ×ΣA the abstraction relation.

Here are some examples:

Example 7 For Example 3 seen earlier, we might abstract all the states to
just these three: isEven, isOdd, isHalted; the abstraction relation is

s2i R isEven, when 0 ≤ i ≤ 49

s2i+1 R isOdd, when 0 ≤ i ≤ 49

sj R isHalted, when j ≥ 100

A simpler abstraction uses just two states, isE and isO, and the relation,
s2i R isE, s2i+1 R isO, for i ≥ 0.

A trivial abstraction of Example 3 would use just one state, a0, such that
si R a0, for all i ≥ 0.

Example 8 A program that manipulates variables x and y might use states of
the form, 〈p, vx, vy〉, where p is the instruction counter and vx and vy are the
respective values of the variables. The states might be abstracted to merely their
counters: 〈p, vx, vy〉 R p. The abstract states monitor the program’s control
flow.

Example 9 A program that manipulates variable x uses states of form, 〈p, vx〉,
as above. The states are abstracted to 〈p, u〉, where u ∈ {odd, even, either},
and

〈p, vx〉 R 〈p, u〉 iff

vxmod2 = 1 implies u ∈ {odd, either}
and vxmod2 = 0 implies u ∈ {even, either}

The abstract states monitor the polarity of variable x, with loss of precision
in execution of statements like pk: x := x div2, where the successor state to
〈pk, u〉 would be 〈pk+1, either〉.
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Example 10 The system of Example 4, consisting of a shared file, n-readers,
and one writer, can be abstracted to a system whose states are {readOnly,
writeOnly, atRest, readWrite}, where

〈· · · , read, · · · , wait〉 R readOnly

〈sleep, sleep, · · · , sleep, write〉 R writeOnly

〈sleep, sleep, · · · , sleep, wait〉 R atRest

〈· · · , read, · · · , write〉 R readWrite

The abstract states monitor the mode of file usage.

An abstract state, a ∈ ΣA, acts as a representative for the concrete states that
it abstracts. Based on the abstraction relation, R ⊆ Σ × ΣA, we define a’s
concretization by this concretization function, γ : ΣA → P(Σ):

γ(a) = {s ∈ Σ | s R a}

For Example 7, we see that γ(isOdd) = {s2i+1 | 0 ≤ i ≤ 49}.

Example 9 shows that a state in Σ can be abstracted by multiple states in
ΣA. In such a case, it is common to partially order ΣA, where for a, a′ ∈ ΣA,
a vA a′ if a conveys more precise information than does a′.

For Example 9, we see that a reasonable ordering for ΣA is 〈p, u〉 vA 〈p′, u′〉
iff p = p′ and u falls below u′ in this Hasse diagram:

either
even odd

A “reasonable” partial ordering for ΣA should make the following two prop-
erties hold true:

Definition 11 [38,40] For set P and partially ordered set Q, a binary rela-
tion, R ⊆ P ×Q, is

• U-closed (“upper closed”) iff for all p ∈ P , q ∈ Q, p R q and q vQ q′ imply
p R q′

• G-closed (“greatest-lower-bound closed”) iff for all p ∈ P , p R (u{q |
p R q})

The U-closure property is equivalent to the statement, a vA a′ implies γ(a) ⊆
γ(a′), meaning that the concretization function γ is monotonic. The G-closure
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property implies that each s ∈ Σ has a most precise abstraction, β(s) = u{a |
s R a}, where the meet, u, is guaranteed to be defined.

When ΣA is ordered as a complete lattice 9 , even stronger results follow:

Theorem 12 [40] For set P , complete lattice 〈Q,vQ〉, and UG-closed rela-
tion, R ⊆ P ×Q, define γR : Q→ P(P ) and αR : P(P )→ Q as follows:

γR(a) = {s | s R a}
αR(S) = ts∈SβR(s), where βR(s) = u{a | s R a}

Then,

(1) αR and γR are monotone with respect to 〈P(P ),⊆〉 and 〈Q,vQ〉;
(2) S ⊆ (γR ◦ αR)(S), for all S ⊆ P ;
(3) (αR ◦ γR)(a) vQ a, for all a ∈ Q.

That is, (αR, γR) form a Galois connection [9,31] for the complete lattices,
〈P(P ),⊆〉 and 〈Q,vQ〉.

The mapping, αR, defined above, generalizes βR so that every set of concrete
states has a best approximation as an abstract state—this is a crucial property
for generating traces directly upon abstract states. 10

Recall that a Galois connection is a pair of monotone mappings, (α : X →
Y, γ : Y → X), for complete lattices X and Y , such that idX v γ ◦ α and
α◦γ v idY under the usual pointwise ordering of functions. The two mappings
are “weak inverses” 11 that possess a wealth of useful properties [9,10,31]; we
will enumerate some of these properties the narrative that follows.

3.1 Atomic properties of abstract states

Recall that the concrete state set, Σ, is accompanied by an interpretation,
I : Σ→ P(AtomProp), which maps states to the atomic properties that hold
true for it. When Σ is abstracted to ΣA, then I must be abstracted to some
IA : ΣA → P(AtomProp) as well. There are two ways to abstract I; the first
is the standard one:

9 If ΣA is an unordered set, we can make a complete lattice from it by adding extra
elements, ⊥ and >, such that ⊥ v a and a v >, for all a ∈ ΣA ∪ {⊥,>}. We set
a R >, for all s ∈ Σ; no s is abstracted by ⊥.
10 Note that βR(s) = αR{s}.
11 More precisely, the images of α and γ are order-isomorphic [31].
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Definition 13 For an abstraction relation, R ⊆ Σ×ΣA, and interpretations
IA : ΣA → P(AtomProp) and I : Σ → P(AtomProp), R reflects atomic
properties iff

s R a implies I(s) ⊇ IA(a)

(Equivalently, a concretization map, γ : ΣA → P(Σ), reflects atomic properties
if I(s) ⊇ IA(a) where s ∈ γ(a).)

Reflection sets the stage for checking temporal-logic properties of abstract
states (and traces)—when p holds true for a and a R s, then p holds true for
s as well.

The best definition for IA that makesR reflect atomic properties goes, IA(a) =⋂
s|s R a I(s). (Equivalently, replace s ∈ γ(a) for s R a.)

Returning to Example 7, when the abstract state set is {isEven, isOdd, isHalted},
then we should define 12

IA(isEven) = {even,¬odd,¬halt}
IA(isOdd) = {odd,¬even,¬halt}

IA(isHalted) = {even, halt,¬odd}

and there is no loss of atomic properties in the state abstraction. Of course, pre-
cision can be lost; in Example 7, when we use the abstract state set {isE, isO},
then the best definition of IA we can devise is merely

IA(isE) = {even,¬odd}
IA(isO) = {}

because both halting and nonhalting concrete states are abstracted by the
two abstract states. In particular, halt 6∈ IA(isE) does not assert that all
the states represented by isEven are nonhalting—rather, we lack precision to
decide this property.

When ΣA is partially ordered, we expect that the ordering reflects information
content: when s R a, then a vA a′ should imply IA(a) ⊇ IA(a′). This property
indeed holds when the abstraction relation, R, is U-closed and IA is defined
as stated above.

There is a second way of abstracting I—the dual of the above:

12 We continue to assume that atomic properties have the form, p or ¬p.
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Definition 14 For an abstraction relation, R ⊆ Σ×ΣA, and interpretations
IA : ΣA → P(AtomProp) and I : Σ → P(AtomProp), R preserves atomic
properties iff

s R a implies I(s) ⊆ IA(a)

(Equivalently, concretization map, γ : ΣA → P(Σ) preserves atomic properties
if I(s) ⊆ IA(a) where s ∈ γ(a).)

Preservation helps one refute temporal-logic properties: when p fails to hold
for a and s R a, then p fails to hold for s as well. The best definition of IA
that gives preservation of I goes, IA(a) =

⋃
s|s R a I(s).

3.2 Lifting a state abstraction to a trace abstraction

Now that ΣA and IA are fixed, we focus on the traces one generates from them:
From Definition 1, we defineA = Nat→ ΣA = Σω

A as the set of abstract traces.
We relate abstract traces to concrete ones by lifting the abstraction relation,
R ⊆ Σ×ΣA, to Rω ⊆M×A; let κ ∈ A be an abstract trace:

π Rω κ iff for all i ≥ 0, π(i) R κ(i)

Given γ(a) = {s ∈ Σ | s R a}, the corresponding concretization map is
γTrace : A → P(M):

γTrace(κ) = {π ∈M | π(i) ∈ γ(κ(i)), for all i ≥ 0}

If the abstraction relation on states is formalized by a Galois connection,
〈α : 〈P(Σ),⊆〉 → 〈ΣA,vA〉, γ : 〈ΣA,vA〉 → 〈P(Σ,⊆〉〉, we can lift the Galois
connection into one that defines which how concrete traces are abstracted by
abstract traces. First, let v represent the pointwise ordering on traces in A. 13

〈αTrace : 〈P(M),⊆〉 → 〈A,v〉, γTrace : 〈A,v〉 → 〈P(M,⊆〉〉

γTrace(κ) = {π ∈ M | π(i) ∈ γ(κ(i)), for all i ≥ 0}

αTrace(S) = t{λi.α{π(i)} | π ∈ S}

As before, γTrace(κ) maps an abstract trace to all the concrete traces it rep-
resents. The dual map, αTrace, synthesizes one abstract trace from a set of

13 For κ, κ′ ∈ A, κ v κ′ iff for all i ≥ 0, κ(i) vA κ′(i).
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concrete traces by, first, building an abstract trace for each concrete trace
and, second, joining the abstract traces by pointwise join.

Here are some examples: Recall modelM from Example 3 and its three-state
abstraction in Example 7. For these three example abstract traces, we calculate
that

γTrace(isEven isOdd isHaltedω) = {s98s99s100 · · ·}

γTrace(isHaltedω) = {sisi+1 · · · | i ≥ 100}
γTrace(isEvenω) = {}

4 Checking properties of abstract traces

Given a trace, κ ∈ A, we wish to check whether linear-time properties, φ, hold
for κ, and we wish to use the outcomes to deduce properties of the concrete
traces that κ represents. Assume that the abstraction relation, R ⊆ Σ× ΣA,
reflects atomic properties. By Definition 13, p ∈ IA(a) implies p ∈ I(s), when
s ∈ γ(a) (equivalently, when s R a). We wish to generalize this result to
propositions in LMC:

κ ∈ [[φ]]A∅ implies γTrace(κ) ⊆ [[φ]]M∅

where [[ · ]]A : AbsEnv → P(A), represents the abstract interpretation of the
concrete linear-time semantics, [[· ]]M : Env→ P(Σω); AbsEnv = Var→ P(A),
is the abstracted variable environment; and ∅ represents an empty environ-
ment. The inclusion states, when κ |=A φ holds, then it must be that π |=M φ
holds, if π Rω κ.

Ideally, we would like to strengthen the implication in the above assertion into
an equivalence, that is,

[[φ]]A∅ = {κ | γTrace(κ) ⊆ [[φ]]M∅}

This result makes the abstract interpretation, [[ · ]]A, as precise as possible
regarding the abstract traces in A and concretization map γTrace.

Note that a precise-as-possible abstract interpretation is not the same as an
equal one: for an [[ · ]]A that satisfies the above equality, it may still be the
case that π Rω κ and π |=M φ, yet κ 6|=A φ; the loss of precision due to use of
abstract states leads to loss of precision in deciding linear-time properties of
traces built from the abstract states.
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Although it would be convenient to define [[ · ]]A by the above equation, this is
not pragmatic, because it makes calculating [[ · ]]A depend on calculating [[ · ]]M,
which is what we are trying to avoid. Instead, we must define [[ · ]]A inductively
on the syntax of LMC (see Figure 2), that is, for each syntax constructor, opφ,
in LMC, we wish to define an abstract operation, opA, so that

[[opφ]]Aρ = opA[[φ]]Aρ

for opA : P(A) → P(A). Figure 2 shows there are three such constructors
in LMC that need such abstract operations: Xφ, φ1 ∨ φ2, and φ1 ∧ φ2. (The
semantics of p, ¬p, µZ.φ, νZ.φ, and Z will be fixed in the format as they
appear in Figure 2.)

Some properties from Galois connections can help us derive appropriate opAs.

4.1 Soundness and completeness of abstract operations

Definition 15 Let (α : X → Y, γ : Y → X) be a Galois connection and
opC : X → X a function. A function, opA : Y → Y , is sound with respect
to opC iff α ◦ opC v opA ◦ α. 14 opA is complete with respect to opC iff
α ◦ opC = opA ◦ α.

An opA that is sound with respect to opC approximates the latter’s behavior
on arguments from Y . A complete opA mimics opC so that the latter is indis-
tinguishable from the former (when mapped through the Galois connection).

Proposition 16 Given (α : X → Y, γ : Y → X) and opC : X → X, the
most precise opA that is sound with respect to opC is opA = α ◦ opC ◦ γ.

The Proposition suggests that we should begin our search for sound opAs by
formulating α ◦ opC ◦ γ.

We must define the abstract counterparts for next, and, and or in Figure 2.
But these operations have arity P(M)→ P(M), implying that we require a
Galois connection between the two sets P(M) and P(A). Alas, we have only
the Galois connection that relates individual abstract traces to concrete sets of
traces: 〈αTrace : P(M)→ A, γTrace : A → P(M)〉. The following proposition
repairs the situation.

14 As usual, v represents the pointwise ordering on functions. Also, Giacobazzi
and Quintarelli [21] call the soundness property forwards soundness. There is also
backwards soundness, opC ◦ γ v γ ◦ opA, which is a nonequivalent notion.
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Proposition 17 Given a concretization function, g : Y → P(X) (or, an
abstraction relation, R ⊆ X × Y , such that g(a) = {s | s R a}), the
functions,

γg : P(Y )→ P(X)

γg(T ) = {s ∈ X | s ∈ g(a), a ∈ T}

αg : P(X)→ P(Y )

αg(S) = {a ∈ Y | g(a) ⊆ S}

form the Galois connection,

〈αg : 〈P(X),⊇〉 → 〈P(Y ),⊇〉, γg : 〈P(Y ),⊇〉,→ 〈P(X),⊇〉〉

γg merely unions the g-images of all elements in its argument. αg behaves like
g−1, where each image set must fall within the argument set.

Proposition 17 is surprising because it merely requires that g be a function
(and not half of a Galois connection). Also, note that the orderings on the sets
of the powersets are reversed. We have this simple, useful Corollary:

Corollary 18 For model M ⊆ P(Σω) and concretization γTrace : A →
P(M),

〈αTrSet : 〈P(M),⊇〉 → 〈P(A),⊇〉, γTrSet : 〈P(A),⊇〉,→ 〈P(M),⊇〉〉

γTrSet(T ) = {π ∈M | π ∈ γTrace(a), a ∈ T}

αTrSet(S) = {a ∈ A | γTrace(a) ⊆ S}

is a Galois connection.

Because the orderings on the powersets are reversed, soundness is correctly
expressed as αTrSet ◦ opC ⊇ opA ◦ αTrSet, and completeness is the equality,
αTrSet ◦ opC = opA ◦ γTrSet.

Using the Corollary, we can formulate the abstract semantics of Figure 2; see
Figure 3.

The soundness of the abstract operators leads to a proof of soundness for [[· ]]A:
First, for ρ ∈ Env = Var → P(A), define the environment’s abstraction as
αρ = λZ ∈ Var. αTrSet(ρ(Z)). We have this result:

Theorem 19 [12] Assume that γ reflects atomic properties (Definition 13).
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ρ ∈ AbsEnv = Var→ P(A)
[[φ]]A ∈ AbsEnv→ P(A)

[[p]]Aρ = {κ ∈ A | p ∈ IA(κ(0))}

[[¬p]]Aρ = {κ ∈ A | ¬p ∈ IA(κ(0))}

[[φ1 ∧ φ2]]Aρ = andA([[φ1]]Aρ, [[φ2]]Aρ)

where andA(S1, S2) = αTrSet(γTrSet(S1) ∩ γTrSet(S2))

[[φ1 ∨ φ2]]Aρ = orA([[φ1]]Aρ, [[φ2]]Aρ)

where orA(S1, S2) = αTrSet(γTrSet(S1) ∪ γTrSet(S2))

[[Xφ]]Aρ = nextA([[φ]]Aρ)

where nextA(S) = αTrSet(next(γTrSet(S)))

[[µZ.φ]]Aρ =
⋂{S ⊆ A | F (S) ⊆ S}

[[νZ.φ]]Aρ =
⋃{S ⊆ A | S ⊆ F (S)},

where F (S) = [[φ]]A(ρ+ [Z 7→ S])

[[Z]]Aρ = ρ(Z)

Fig. 3. Abstracted LMC semantics

For all φ ∈ LMC, ρ ∈ Env,

[[φ]]A(αρ) ⊆ αTrSet[[φ]]Mρ = {κ | γTrace(κ) ⊆ [[φ]]Mρ}

Further, when the abstract operations, opA, are complete with respect to the
concrete operations, opC, then the first ⊆ becomes =.

PROOF. The proof is by induction on the structure of φ and is a simple
variation of a similar result by Cousot and Cousot [12].

The cases for p and ¬p follow from the reflection property for IA. When
IA(a) =

⋂
s|s∈γ(a) I(s), we have completeness:

[[p]]Aαρ = {κ | p ∈ IA(κ(0))}
= {κ | p ∈ ⋂s|s∈γ(a) I(π(0))}

= {κ | p ∈ I(π(0)), for all π ∈ γTrace(κ)}
= {κ | γTrace(κ) ⊆ {π | p ∈ I(π(0))}}

= αTrSet{π | p ∈ I(π(0))} = αTrSet[[p]]Mρ
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The cases for Z, µZ.φ, and νZ.φ are proved in [12].

The cases for abstract operators, opA : A → A, proceed as follows:

[[opφ]]Aαρ = (αTrSet ◦ opC ◦ γTrSet)[[φ]]Aαρ

⊆ (αTrSet ◦ opC ◦ γTrSet){κ | γTrace(κ) ⊆ [[φ]]Mρ}, by the inductive hypothesis

(when completeness holds for φ, then ⊆ becomes =)

= (αTrSet ◦ opC ◦ γTrSet ◦ αTrSet)[[φ]]Mρ

⊆ (αTrSet ◦ opC)[[φ]]Mρ, by soundness of αTrSet ◦ opC ◦ γTrSet

(when completeness holds, then ⊆ becomes =)

= αTrSet[[opφ]]Mρ

Corollary 20 γTrSet[[φ]]A(αρ) ⊆ [[φ]]Mρ.

PROOF. By the previous theorem, [[φ]]Aαρ ⊆ αTrSet[[φ]]Mρ, and by mono-
tonicity, γTrSet[[φ]]Aαρ ⊆ (γTrSet ◦ αTrSet)[[φ]]Mρ. By definition of Galois con-
nection, (γTrSet ◦ αTrSet)[[φ]]Mρ ⊆ [[φ]]Mρ, implying the result.

Note that completeness does not imply equality in the preceding Corollary—
the results are always “filtered” through the Galois connection. To see this,
consider the model M = {sω0 , sω1} where I(s0) = {p}, I(s1) = {q}. Say that
we employ the trivial abstraction, where ΣA = {a}, so A = {aω}. There is a
Galois connection between P(Σ) and ΣA, where γ0(a) = {s0, s1}. This forces
IA(a) = {}. It is easy to check that [[p]]M∅ = {sω0} 6= {} = γTrSet[[p]]A∅, where
[[p]]A∅ = {κ | γTrace(κ) ⊆ [[p]]M∅}.

4.2 Checking abstract transition relations

Despite our substantial efforts at moving from the world of concrete states,
Σ, to abstract states, ΣA, we have done little to formalize the set of abstract
traces, A, themselves, merely assuming that A = ΣA

ω.

In practice, we must devise a finite representation of A; this usually takes the
form of a finite transition relation, τA ⊆ ΣA × ΣA, which we use to define an
abstract transition system, 〈ΣA, τA, IA〉. The model of the abstract transition
system isA = wft(τA). Now we must define abstract operations, opA : A → A,
such that soundness holds, that is, αTrSet ◦ op ◦ γTrSet v opA.
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One would expect that τA must be derived from τ ⊆ Σ × Σ, the transition
relation for concrete states. But we will see the surprising result that soundness
of the standard definitions for the abstract operations, nextA, andA, and orA,
are unaffected by the choice of abstract transition relation—any τA will suffice
for abstracting τ soundly.

We begin with the technical results and follow with examples. Let τA ⊆ ΣA×
ΣA be an arbitrary transition relation. We write a → a′ ∈ τA to denote that
(a, a′) ∈ τA. Here are the definitions of the three abstract operations we use
to define [[ · ]]A:

Definition 21 For τA ⊆ ΣA × ΣA, define A = wft(τA), and define nextA′ :
P(A)→ P(A), andA′ : P(A)×P(A)→ P(A), orA′ : P(A)×P(A)→ P(A),
as follows:

nextA′(T ) = {κ ∈ A | κ(0)→ κ(1) ∈ τA, κ1 ∈ T}
andA′(T1, T2) = T1 ∩ T2

orA′(T1, T2) = T1 ∪ T2

Figure 4 documents the semantics with the abstract operations commonly
used. Alas, these operations are not guaranteed to be complete [21,35], but we
can readily prove their soundness:

Theorem 22 Given the Galois connection, 〈αTrSet : P(wft(τ))→ P(wft(τA)),
γTrSet : P(wft(τA))→ P(wft(τ))〉 from Corollary 18, the operations in Defi-
nition 21 are sound with respect to their concrete counterparts in Figure 2.

Hence, Theorem 19 holds for the abstract semantics of Figure 4.

PROOF. For operation nextA′ , consider some κ′ ∈ nextA′(αTrSet(S)); it must
have form, aκ, for some a ∈ ΣA, κ ∈ αTrSet(S), and a→ κ(0) ∈ τA.

To show that aκ is contained in (αTrSet ◦ next)(S), consider an arbitrary
sπ ∈ wft(τ) such that sπ Rω aκ. Of course, π Rω κ, and by hypothesis,
all π′ such that π′ Rω κ are in S. Also, s R a holds, and s → π(0) ∈ τ .
This places sπ ∈ next(S). Hence, the image of γTrace(aκ) ⊆ next(S), and
aκ ∈ αTrSet(next(S)).

For orA′, κ ∈ αTrSet(S1)∪αTrSet(S2) iff γTrSet(κ) ⊆ S1 or γTrSet(κ) ⊆ S2. This
implies γTrSet(κ) ⊆ S1 ∪ S2.

The proof for andA′ is equally simple and shows an equality.
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ρ ∈ AbsEnv = Var→ P(A)
[[φ]]A ∈ AbsEnv→ P(A)

[[p]]Aρ = {κ ∈ A | p ∈ IA(κ(0))}

[[¬p]]Aρ = {κ ∈ A | ¬p ∈ IA(κ(0))}

[[φ1 ∧ φ2]]Aρ = andA′([[φ1]]Aρ, [[φ2]]Aρ)

where andA′(S1, S2) = S1 ∩ S2

[[φ1 ∨ φ2]]Aρ = orA′([[φ1]]Aρ, [[φ2]]Aρ)

where orA′(S1, S2) = S1 ∪ S2

[[Xφ]]Aρ = nextA′([[φ]]Aρ)

where nextA′(T ) = {κ ∈ A | κ(0)→ κ(1), κ1 ∈ T}

[[µZ.φ]]Aρ =
⋂{S ⊆ A | F (S) ⊆ S}

[[νZ.φ]]Aρ =
⋃{S ⊆ A | S ⊆ F (S)},

where F (S) = [[φ]]A(ρ+ [Z 7→ S])

[[Z]]Aρ = ρ(Z)

Fig. 4. Abstracted LMC semantics with finitely computable operations

Because the proof of Theorem 22 does not refer to the structure of τA, the
result holds for any τA. This happens because the concretization map, γTrace :
P(wft(τA))→ P(wft(τ)) maps nonsensical (spurious [5,15,21]) abstract traces
to the empty set. A badly chosen τA generates many spurious traces.

Here are some examples, based on the model in Example 3. For Σ = {si |
0 ≤ i ≤ 100}, the transition relation for that example can be defined as

τ = {(si, si+1) | 0 ≤ i ≤ 99} ∪ {(s100, s100)}

Recall that the state interpretation is

I(s2i) = {even,¬odd,¬halt}, 0 ≤ i ≤ 49

I(s2i+1) = {odd,¬even,¬halt}, 0 ≤ i ≤ 49

I(s100) = {even,¬odd, halt}

This model’s abstraction is in Example 7, where ΣA = {isEven, isOdd, isHalted},
and IA(isEven) = I(s0), IA(isOdd) = I(s1), and IA(isHalted) = I(s100).
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The abstraction relation for the state sets goes

s2i R isEven, when 0 ≤ i ≤ 49

s2i+1 R isOdd, when 0 ≤ i ≤ 49

s100 R isHalted

Here are four possible transition relations for ΣA; each is drawn in diagram-
matic form.

Example 23
isEven isOdd isHaltedτA =

This definition is appealing because, for all π ∈ wft(τ), there exists some
κ ∈ wft(τA) such that π Rω κ, and τA is “minimal” in the sense that, for any
other wft(τA′) that “covers” wft(τ), wft(τA) ⊆ wft(τA′).

wft(τA) also contains spurious traces, e.g., (isEven isOdd)ω, but soundness is

unharmed when (isEven isOdd)ω ∈ [[φ]]wft(τA)ρ because γTrace((isEven isOdd)ω)
= {}.

Example 24

isEven isOddτB =

isHalted

Here, wft(τB) = ΣA
ω, and [[φ]]A∅ defines all possible patterns of abstract traces

that satisfy φ.

Example 25 isEvenτC = isOdd isHalted

wft(τC) does not cover wft(τ), meaning that some traces (e.g., s0s1s2 · · ·)
cannot be studied by means of wft(τC). But the abstract model has the property
that, for all κ ∈ wft(τC), there exists some π ∈ wft(τ) such that κ R τ .

Example 26 isEvenτD = isOdd isHalted

wft(τD) = {}, and soundness vacuously holds, because no π ∈ wft(τ) is
approximated by a trace in wft(τD).
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4.3 Universal and existential soundness

Although Corollary 20, the soundness property, is insensitive to the selection of
abstract transition system, the computation of universal properties is affected.
Recall that a universal property assertion takes the format, s |=M ∀φ, for
s ∈ Σ, and asserts that π |=M φ for all π ∈M ↓ s (that is, for all π such that
π(0) = s). Universal soundness asserts, for all s ∈ Σ, a ∈ ΣA, such that s R a
(equivalently, s ∈ γ(a))) and a |=A ∀φ implies s |=M ∀φ.

Clearly, the abstract transition systems in Examples 25 and 26 violate univer-
sal soundness. (The latter Example makes a |=wft(τD) ∀φ hold for all a and φ.)
We can repair the situation with the following definitions.

Definition 27 For abstraction relation, R ⊆ Σ× ΣA, a model, M ⊆ Σω, is
R-simulated by A ⊆ Σω

A iff for all s ∈ Σ, a ∈ ΣA, π ∈M,

s R a and π(0) = s imply there exists κ ∈ A

such that κ(0) = a and π Rω κ

The notion of simulation is the usual one [32]: when s R a, then every trace
inM starting at s is reproduced by a corresponding trace in A that starts at
a. This property implies universal soundness:

Theorem 28 If R ⊆ Σ×ΣA reflects atomic properties (that is, s R a implies
I(s) ⊇ IA(a)) and M ⊆ Σω is R-simulated by A ⊆ Σω

A, then for all a ∈
ΣA, s ∈ Σ such that s R a,

a |=A ∀φ implies s |=M ∀φ

We say that A is a universally sound model of M.

PROOF. To show s |=M ∀φ from the assumptions, consider an arbitrary
π ∈ M such that π(0) = s. By definition of simulation, there exists κ ∈ A
such that π Rω κ and κ(0) = a. By assumption, κ |=A φ; by Corollary 20
(soundness), π |=M φ.

When models M and A are characterized by transition relations, τ and τA,
respectively, we can employ a definition of simulation that is stated in terms
of the transition relations:
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Definition 29 For abstraction relation,R ⊆ Σ×ΣA, and transition relations,
τ ⊆ Σ×Σ and τA ⊆ ΣA×ΣA, relation τ is R-simulated by τA iff for all s ∈ Σ,
a ∈ ΣA,

s R a and s→ s′ ∈ τ imply

there exists a′ ∈ ΣA such that a→ a′ ∈ τA and s′ R a′

This notion of R-simulated is due to Park [33,36]. The following consequence
is well known:

Theorem 30 If R ⊆ Σ×ΣA reflects atomic properties and τ is R-simulated
by τA, then wft(τ) is R-simulated by wft(τA); hence, when s R a,

a |=wft(τA) ∀φ implies s |=wft(τ) ∀φ

We say that τA is a universally sound transition relation of τ .

When there is a Galois connection between P(Σ) and ΣA, we can use the
definition of τ to directly formulate this universally sound transition relation,
→β:

s R a and s→ s′ ∈ τ imply a→β βR(s′), where βR(s′) = u{a | s R a}

This definition lets τ be R-simulated by →β, while preserving as much preci-
sion as possible in the target states. 15 When a Galois connection is unavail-
able, a less precise but universally sound transition relation is merely

a→ a′ ∈ τA if there exist s, s′ ∈ Σ such that s R a, s′ R a′, and s→ s′ ∈ τ

Example 31 Recall the system of readers and writer processes in Example
4 and its abstract state set from Example 10, {readOnly, writeOnly, atRest,
readWrite}. Based on the transition-relation scheme in Example 4, we define
this universally sound abstract transition relation, τA:

τA = readOnly atRest writeOnly

readWrite

15 Dams, et al. [14] prove this transition relation to be the most expressive abstract
relation with respect to ΣA—any universal property that can be proved with a
sound abstract transition relation can be proved with →β also. Dams’s result was
proved with respect to branching-time logic, which we study in the next section.
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(Note that IA(readOnly) = {read,¬write}, etc.) We can validate atRest |=τA

∀G(¬(read∧write)) (that is, ∀G(¬read∨¬write)) holds, hence all paths from
the concrete system’s initial state, 〈sleep, · · · , sleep, wait〉, make G(¬(read ∧
write)) hold.

The dual notion to universal soundness is existential soundness: For all s ∈
Σ, a ∈ ΣA, s R a (equivalently, s ∈ γ(a)) and a |=A ∃φ imply s |=M ∃φ. One
example of an existentially sound abstract transition relation is Example 25,
where the only trace defined by the abstract relation is isHaltedω.

Universal soundness does not imply existential soundness: Reconsider Example
23 which satisfies the hypotheses of Theorem 28 and is universally sound.
Within that example, we have that (isEven isOdd)ω |=wft(τA) GFodd, that is,
the path (isEven isOdd)ω makes odd hold true infinitely often. But the path
is spurious— γTrace((isEven isOdd)ω) = {}— so isEven |=wft(τA) ∃GFodd
does not imply s0 |=wft(τ) ∃GFodd, even though s0 R isEven.

Indeed, the dual result holds when R preserves atomic properties:

Proposition 32 If R ⊆ Σ× ΣA preserves atomic properties (that is, s R a
implies I(s) ⊆ IA(a)) and M ⊆ Σω is R-simulated by A ⊆ Σω

A, then for all
a ∈ ΣA, s ∈ Σ such that s R a,

s |=M ∃φ implies a |=A ∃φ

Thus, checking a |=A ∃φ “overapproximates” ∃φ on the concrete model’s
states. This situation can be used to refute existential properties: If a 6|=A ∃φ,
then s 6|=M ∃φ as well. But this is not existential soundness.

As hinted by the previous Proposition, to obtain existential soundness, we
must dualize the simulation itself: Given M ⊆ Σω and A ⊆ Σω

A, we require
that A is R−1-simulated by M. 16 That is, s R a implies that every trace in
A starting at a is reproduced by a trace in M starting at s— no trace in A
is spurious with respect to a and s.

The reverse simulation gives existential soundness:

Theorem 33 If R−1 ⊆ ΣA × Σ reflects atomic properties and A is R−1-
simulated by M, then for all s ∈ Σ and a ∈ ΣA such that s R a,

a |=A ∃φ implies s |=M ∃φ

We say that A is an existentially sound model of M.

16 Define R−1 ⊆ ΣA × Σ as (a, s) ∈ R−1 iff (s, a) ∈ R.
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As before, this result applies to the transition relations: For τ ⊆ Σ×Σ, τA ⊆
ΣA × ΣA, and R ⊆ Σ× ΣA, if R−1 reflects atomic properties and τA is R−1-
simulated by τ , then we have

s R a and a |=wft(τA) ∃φ imply s |=wft(τ) ∃φ

and we say that τA is an existentially sound transition relation for τ .

When there is a Galois connection available, we can define from τ this most
precise existentially sound transition relation, →α [14]:

a→α α(S) iff AE(a, S) and Minimal(a, S),

where AE(a, S) iff for all s R a, there exists s′ ∈ S such that s→ s′ ∈ τ

and Minimal(a, S) iff for all S′ 6= S,AE(a, S ′) implies S ′ 6⊆ S

When a Galois connection is unavailable, the following less precise relation
guarantees existential soundness:

a→ a′ ∈ τA if AE(a, γ(a′))

where, as always, γ(a′) = {s ∈ Σ | s R a′}.

Example 34 Returning again to the readers-writer system in Example 4, we
extend its abstract state set in Example 10 with an extra state, >, such that
s R >, for all s ∈ Σ; the new state represents complete loss of read-write
information: IA(>) = {}. Here is the resulting existentially sound transition
system, τE:

τE = readOnly atRest writeOnly

readWrite>

The > state ensures that all traces in wft(τE) have infinite length. The transi-
tion, readOnly → >, is included in τE because it is the only transition that is
guaranteed to be simulated by all concrete states, s, such that s R readOnly.

The previous example should be contrasted with its universally sound coun-
terpart in Example 31— different transition systems are used. 17 Indeed, when

17 We should add the > state to Example 31 as well; this can be done with little
effort.
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one and the same abstract transition relation ensures both universal and exis-
tential soundness, then the abstract transition system is said to be (strongly)
bisimular to its corresponding concrete transition system [33]. Bisimularity is
a strong property that is rarely encountered in abstraction examples. For this
reason, we wish to develop a single abstraction framework that can accom-
modate both a universally sound abstract transition system along with an
existentially sound abstract transition system; we develop this framework in
the remainder of the paper.

5 Abstracting trace checking to state checking

Although the theory of linear-time logic is simple and even elegant, many
practitioners do not use LTL or LMC to validate properties of execution traces.
As noted by Vardi [50], one reason is the time complexity of LTL model
checking: Given an LTL proposition of size m and a transition relation of
cardinality n, to validate a universal property, ∀φ, takes time complexity n ·
2O(m) and is PSPACE-complete [30,42].

Given this result and the strong culture based on iterative data-flow analysis,
where properties are calculated based on information flow from state to state
in a transition relation, there is the natural urge to simplify the validation
process by computing only on states—not traces. That is, we wish to abstract
further the inductive definition of LMC model checking in Figure 3 so that the
valuation function, [[φ]]wft(τA) ∈ AbsEnv → P(wft(τA)), which computes sets
of traces, is abstracted to [[φ]]τA ∈ AbsEnv′ → P(ΣA), which computes sets of
states. Then we concretize the calculated set of states to determine the set of
traces for which φ holds.

Of course, precision might be lost, but under reasonable assumptions, there is
an abstraction that loses no precision when universal properties are checked:
a |=wft(τA) ∀φ iff a ∈ [[φ]]τA∅. There is a dual result for existential-property
checking. These results let us do linear-time model checking with so-called
branching-time techniques.

The results that follow apply to any transition relation, τ ⊆ Σ × Σ, and its
generated model, wft(τ), regardless of whether τ defines a set of “concrete”
or “abstract” transitions— our goal is to perform state checking with τ that
is as precise as trace checking with wft(τ).
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5.1 Universal abstraction of traces to states

How do we abstract an infinite trace to a single state? Crude as it may seem,
we use the trace’s initial state as its abstraction. As noted by Cousot and
Cousot [12], we retain some precision if we abstract sets of traces to sets of
states: Here is the first Galois connection that formalizes such an abstraction:

Definition 35 [12] For model A = wft(τ), where τ ⊆ Σ × Σ, the model’s
universal trace abstraction is defined as this Galois connection,

〈α∀ : 〈P(A),⊇〉 → 〈P(Σ),⊇〉, γ : 〈P(Σ),⊇〉 → 〈P(A),⊇〉〉
α∀(T ) = {a ∈ A | (A ↓ a) ⊆ T}

γ(S) = {κ ∈ A | κ(0) ∈ S}

(Recall that A ↓ a = {κ ∈ A | κ(0) = a}.) The abstraction is “universal”
in the way it abstracts a set of paths— a state, a, appears in T ’s abstraction
only if all traces that begin with state a are contained in T . This implies
γ(α∀(T )) ⊆ T and α∀(γ(S)) = S, giving a Galois connection (when superset
inclusion is used for ordering the two powersets).

We employ the universal trace abstraction to derive a semantics for LMC that
does its checking directly on states. Recall, for operation, op : P(A)→ P(A),
its most precise abstraction must be op∀ = α∀ ◦ op ◦ γ : P(Σ) → P(Σ). We
have these pleasant results:

Proposition 36 For A = wft(τ) and the three operations from Definition
21, the most precise abstract operations with respect to the universal trace
abstraction are

next∀(S) = {a′ ∈ Σ | for all a ∈ Σ, a′ → a ∈ τ implies a ∈ S}

and∀(S1, S2) = S1 ∩ S2

or∀(S1, S2) = S1 ∪ S2

Using these operations, we obtain the universal state-checking semantics in
Figure 5. A semantics like the one in the Figure is called a branching-time
semantics [18,27], because the semantics of a next-state transition, Xφ, checks
the “branches” defined by τ :

a |=∀τ Xφ iff for all a′ ∈ Σ, a→ a′ ∈ τ implies a′ |=∀τ φ
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ρ ∈ AbsEnv = Var→ P(Σ)
[[φ]]∀τ ∈ AbsEnv→ P(Σ)

[[p]]∀τρ = {a ∈ Σ | p ∈ IA(a)}

[[¬p]]∀τρ = {a ∈ Σ | ¬p ∈ IA(a)}

[[φ1 ∧ φ2]]∀τρ = and∀([[φ1]]∀τρ, [[φ2]]∀τρ)

where and∀(S1, S2) = S1 ∩ S2

[[φ1 ∨ φ2]]∀τρ = or∀([[φ1]]∀τρ, [[φ2]]∀τρ)

where or∀(S1, S2) = S1 ∪ S2

[[Xφ]]∀τρ = next∀([[φ]]∀τρ)

where next∀ = {a ∈ Σ | for all a′ ∈ Σ, a→ a′ ∈ τ implies a′ ∈ S}

[[µZ.φ]]∀τρ =
⋂{S ⊆ Σ | F (S) ⊆ S}

[[νZ.φ]]∀τρ =
⋃{S ⊆ Σ | S ⊆ F (S)},

where F (S) = [[φ]]∀τ (ρ+ [Z 7→ S])

[[Z]]∀τρ = ρ(Z)

Fig. 5. Universally abstracted LMC semantics

The semantics of X rebuilds the next state(s) in the path(s) abstracted by state
a. Indeed, to reflect this, the modality’s syntax is often written as ∀Xφ— the
logic in the Figure is the branching-time logic, ACTL [7] with recursion.

5.2 Implementing the state-checking semantics

To compute [[φ]]∀τρ, we can use the semantics definition in Figure 5 as an algo-
rithm that inductively calculates the sets of states, [[φ′]]∀τρ, for all subformulas,
φ′ of φ [19].

This straightforward approach can be done with time complexity, O(m · n),
where φ has size m and τ has cardinality n [4]. To obtain this complexity
bound, we must assume that φ contains no alternating fixed points, that is, no
subformulas of the form, µZ. · · · (νZ ′. · · ·Z · · ·) · · · (or similarly, with µ and ν
swapped) [34].

When τ has finite cardinality, then the semantics of the two fixed-point forms
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can be calculated as

[[µZ.φ]]∀τρ =
⋃
i≥0 Si, where

S0 = ∅
Si+1 = [[φ]]∀τ ([Z 7→ Si]ρ)

[[νZ.φ]]∀τρ =
⋂
i≥0 Si, where

S0 = Σ

Si+1 = [[φ]]∀τ ([Z 7→ Si]ρ)

meaning that the traditional iterative technique calculates the state sets that
satisfy the fixed points. This iterative approach resembles the one taken by
iterative data-flow analysis [9,23,26], and an overt connection will be made
later in the paper [39,41,43,44].

When φ contains alternating fixed points, a tableau method [34,46] can be
used to decide specific goals of form, a |=∀τ φ.

5.3 Soundness and completeness of universal state checking

Because the universal trace abstraction, 〈α∀, γ〉, is a Galois connection, the
standardized soundness result of Cousot and Cousot [12] applies to the se-
mantics of Figure 5:

Theorem 37 [12]: For A = wft(τ) and ρ : Var→ P(A), define α∀ρ : Var→
P(Σ) as (α∀ρ)(Z) = α∀(ρ(Z)). Then, for all ρ and φ, soundness holds:

[[φ]]∀τ (α∀ρ) ⊆ α∀([[φ]]Aρ)

This result is important, because

a |=A ∀φ iff a ∈ α∀([[φ]]A∅)

meaning that the semantics of Figure 5 does universal soundness checking
directly on states.

Alas, the subset inclusion in Theorem 37 is not an equality, so precision can
be lost by checking states rather than traces, as can be seen in this counterex-
ample:

Example 38 Let Σ = {a0, a1, a2} such that IA(a0) = IA(a1) = {p} and
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IA(a2) = {q}, and define τ as

a2

a1

a0τ =

We can easily check that a0 |=wft(τ) ∀(Xp∨Xq), but [[Xp∨Xq]]∀τ∅ = {}, because
[[Xp]]∀τ∅ = {} = [[Xq]]∀τ∅— universal quantification does not distribute across
disjunction.

Since the next modality, X, is implicitly universally quantified, we can obtain
completeness by limiting the syntax of LMC so that modalities do not appear
in both operands of a disjunction:

Theorem 39 [12] : For this restricted syntax of linear-time logic, ∀LMC,

p,¬p ∈ AtomProp Z ∈ Var ψ ∈ StateProp φ ∈ PathProp
φ ::= ψ | ψ ∨ φ | φ ∨ ψ | φ1 ∧ φ2 | Xφ | µZ.φ | νZ.φ | Z

ψ ::= p | ¬p | ψ1 ∨ ψ2 | ψ1 ∧ ψ2

the universal state-checking semantics is complete: [[φ]]∀τ (α∀ρ) = α∀([[φ]]Aρ)

For ∀LMC, checking states for universal properties is exactly as precise as
checking traces. The new syntactic category, StateProp, merely defines propo-
sitional properties of states. (There is no need for recursion in StateProp, since
X is disallowed there.)

Example 40 We can employ the universal state-checking semantics to val-
idate mutual exclusion for the readers-writer system in Example 31. For the
transition relation, τA, given in the Example, we wish to validate that

atRest |=wft(τA) ∀G¬(read ∧ write)

that is, ∀(νZ.(¬read∨¬write)∧XZ). This proposition fits the syntax of ∀LMC,
and we can apply the universal state-checking semantics and indeed validate
the result.
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5.4 Existential abstraction of traces to states

The sequence of steps that derived the universal state-checking semantics can
be repeated for an existential state-checking semantics. The key ingredient is
this Galois connection:

Definition 41 [12] For model A = wft(τ), where τ ⊆ Σ × Σ, the model’s
exitential trace abstraction is this Galois connection,

〈α∃ : 〈P(A),⊆〉 → 〈P(Σ),⊆〉, γ : 〈P(Σ),⊆〉 → 〈P(A),⊆〉〉
α∃(T ) = {a ∈ A | κ(0) = a, κ ∈ T}

γ(S) = {κ ∈ A | κ(0) ∈ S}

The operations used for the existential state-checking semantics are defined
as op∃ = α∃ ◦ op ◦ γ : P(Σ)→ P(Σ):

Proposition 42 For A = wft(τ) and the three operations from Definition
21, the most precise abstract operations with respect to the universal trace
abstraction are

next∃(S) = {a′ ∈ Σ | there exists a ∈ Σ such that a′ → a ∈ τ and a ∈ S}
and∃(S1, S2) = S1 ∩ S2

or∃(S1, S2) = S1 ∪ S2

These operations define the existential state-checking semantics in Figure 6.
The operator, X, is often written as ∃Xφ— the logic in the Figure is the
branching-time logic, ECTL with recursion.

5.5 Co-soundness and completeness of existential state checking

The (co)soundness theorem for existential abstraction gives a reverse inclusion:

Theorem 43 [12]: For A = wft(τ) and ρ : Var→ P(A), define α∃ρ : Var→
P(Σ) as (α∃ρ)(Z) = α∃(ρ(Z)). For all ρ and φ,

[[φ]]∃τ (α∃ρ) ⊇ α∃([[φ]]Aρ)
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ρ ∈ AbsEnv = Var→ P(Σ)
[[φ]]∃τ ∈ AbsEnv→ P(Σ)

[[p]]∃τρ = {a ∈ Σ | p ∈ IA(a)}

[[¬p]]∃τρ = {a ∈ Σ | ¬p ∈ IA(a)}

[[φ1 ∧ φ2]]∃τρ = and∃([[φ1]]∃τρ, [[φ2]]∃τρ)

where and∃(S1, S2) = S1 ∩ S2

[[φ1 ∨ φ2]]∃τρ = or∃([[φ1]]∃τρ, [[φ2]]∃τρ)

where or∃(S1, S2) = S1 ∪ S2

[[Xφ]]∃τρ = next∃([[φ]]∃τρ)

where next∃ = {a ∈ Σ | exists a′ ∈ Σ, a→ a′ ∈ τ and a′ ∈ S}

[[µZ.φ]]∃τρ =
⋂{S ⊆ Σ | F (S) ⊆ S}

[[νZ.φ]]∃τρ =
⋃{S ⊆ Σ | S ⊆ F (S)},

where F (S) = [[φ]]∃τ (ρ+ [Z 7→ S])

[[Z]]∃τρ = ρ(Z)

Fig. 6. Existentially abstracted LMC semantics

Co-soundness overestimates the states that possess a trace with the desired
property. Like before, we have that

a |=A ∃φ iff a ∈ α∃([[φ]]A∅)

and as before, the inclusion in Theorem 43 is not an equality. Consider again
the transition relation in Example 38: We have that a0 6|=wft(τ) ∃(Xp ∧ Xq),
but [[Xp∧Xq]]∃τ∅ = {a0}, because existential quantification does not distribute
across conjunction.

Theorem 44 [12] : For this restricted syntax of linear-time logic, ∃LMC,

p,¬p ∈ AtomProp Z ∈ Var ψ ∈ StateProp φ ∈ PathProp
φ ::= ψ | ψ ∧ φ | φ ∧ ψ | φ1 ∨ φ2 | Xφ | µZ.φ | νZ.φ | Z

ψ ::= p | ¬p | ψ1 ∨ ψ2 | ψ1 ∧ ψ2

the existential state-checking semantics is complete: [[φ]]∃τ (α∃ρ) = α∃([[φ]]Aρ)

For ∃LMC, checking states for existential properties is exactly as precise as
checking traces.

36



5.6 Example: data-flow analysis as model checking

The development of linear-time logic into LMC and its state-checkable vari-
ants, ∀LMC and ∃LMC, has an important precedent in the data-flow analy-
sis community: Classic program analyses are intuitively understood and for-
mulated as meet-over-all-paths (that is, linear-time) properties but are im-
plemented as iterative, maximal fixed point (branching-time) state-checking
algorithms. When an analysis problem is distributive, then the meet-over-all-
paths semantics equals the maximal-fixed-point semantics (the state-checking
semantics is complete) [26]. 18

We present one well-told example of an existential data-flow property: live-
variables analysis [1,12,39]. Given a sequential program, a variable, x, is live
at a program point, p, if some trace proceeding from p references x’s value
before overwriting it. A compiler can use the results of live-variable analysis
to improve data locality— values of live variables are retained in registers
when possible.

Figure 7 displays a program in flow-graph format, where the program’s “states”
are the statements, pi. The flow graph defines an abstract transition rela-
tion τA, where wft(τA) are considered legal executions. This is an inexact
approximation— p0p1p2p4p5p

ω
6 ∈ wft(τA), but this is not an actual execution.

(Indeed, the statement at p5 is dead code.) The atomic properties, usev and
killv, denote whether a state references v’s value or overwrites it, respectively.

When the definition of “live variable” is applied to the graph at state p1, x is
live (it is used in x = 1) and y is live, because the path, p1p3p4p5 · · ·, leads to
a reference. Live variables at other states can be determined similarly.

The definition of “live variable” is a meet-over-all-paths specification, because
all execution traces (paths) from state p are considered when determining a
variable’s liveness at p. But a compiler implements the analysis not by gener-
ating traces, but by propagating information from program point to program
point by means of flow equations, one per program point. The flow-equation
schema that calculates the set of variables that are live at point p, LV (p),
reads as follows:

LV(p) = Used(p) ∪ (notModified(p) ∩ (
⋃
p′∈succ p LV(p′)))

where Used(p) = {v | usev ∈ I(p)}

and notModified(p) = {v | ¬killv ∈ I(p)}

18 Note that lattice distributivity states, in order-theoretic terms, that univer-
sal/existential abstraction distributes over the disjunction/conjunction connective
used to join/meet flow information.
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p0 : read x, y;

p1 : if x = 1

p2 : then y:= x p3 : else x:= 2

p4 : if x < 1

p5 : then x:= y

p6 : exit

I(p0) = {killx, killy ,¬usex,¬usey}, I(p1) = {¬killx,¬killy, usex,¬usey}

I(p2) = {¬killx, killy, usex,¬usey}, I(p3) = {killx,¬killy,¬usex,¬usey}

I(p4) = {¬killx,¬killy, usex,¬usey}, I(p5) = {killx,¬killy,¬usex, usey}

I(p6) = {¬killx,¬killy,¬usex,¬usey}

Fig. 7. Program flow graph and atomic properties

The variables that are live at entry to p are those variables that are used in
p’s statement or are live at one of p’s immediate-successor states and are not
modified within p’s statement.

A flow equation is generated for each state in the graph, and a least-fixed point
solution is calculated. The flow equations and their solution for the example are
listed in Figure 8. Since the solution to the live-variables analysis is computed
on the program’s states and not upon its traces, we might question if the result
is sensible. There is a standard result that shows that live-variables analysis is
a distributive analysis [26], meaning that the solution calculated by the flow
equations equals the solution calculated from checking the execution traces.

Live-variables analysis can be elegantly formulated as a model-checking exer-
cise: Figure 5 defines an abstract transition relation, τA, whose traces define an
abstract model. The assertion that variable v is live at state p is this existential
LTL property:

p |=wft(τA) ∃(¬killv U usev)

The LTL formula translates to the LMC coding, µZ. usev ∨ (¬killv ∧ XZ).
Compare this coding to that of LV (p), which has virtually identical logical
structure [39]:

v ∈ LV (p) iff p |=wft(τA) µZ. usev ∨ (¬killv ∧ XZ)
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Equations:

LV(p0) = Used(p0) ∪ (notModified(p0) ∩ LV(p1))

LV(p1) = Used(p1) ∪ (notModified(p1) ∩ (LV(p2) ∪ LV(p3))

LV(p2) = Used(p2) ∪ (notModified(p2) ∩ LV(p4))

LV(p3) = Used(p3) ∪ (notModified(p3) ∩ LV(p4))

LV(p4) = Used(p4) ∪ (notModified(p4) ∩ (LV(p5) ∪ LV(p6))

LV(p5) = Used(p5) ∪ (notModified(p5) ∩ LV(p6))

LV(p6) = Used(p6) ∪ (notModified(p6) ∩ {})

Solutions:

LV (p0) = {} LV (p1) = {x, y}

LV (p2) = {x} LV (p3) = {y}

LV (p4) = {x, y} LV (p5) = {y}

LV (p6) = {}

Fig. 8. Live-variables data-flow analysis of program flow graph

The formula falls within ∃LMC (where existential abstraction distributes across
the restricted form of conjunction), and by completeness of ∃LMC, the exis-
tential state-checking semantics can be used to compute exactly the same
solution as that calculated by the trace semantics. This foundational develop-
ment justifies using data-flow equations to compute live-variables analysis.

One background issue remains: The program’s concrete model, M, contains
exactly the legal executions built from states of format, 〈p, x, y〉, consisting of
an instruction counter and values of the variables. For example, 〈p0, ?, ?〉〈p1, 1, 4〉
〈p2, 1, 1〉〈p4, 1, 1〉〈p6, 1, 1〉ω ∈M.

Model M is R-simulated by wft(τA), where 〈p, x, y〉 R p— every concrete
execution in M is reproduced by a trace in wft(τA). (The converse fails to
hold.) This makes τA suitable for soundly validating universal properties and
for refuting— not validating— existential ones. Proposition 32 notes that the
result of validating an existential property on such a model can yield “false
positives,” and this is indeed the case for the example, which decides that
variable y is live at state p1, which is not the case for any execution in M.

Here, the live-variable false positive might cause an unnecessary program
transformation to be performed, but fortunately it does not harm the pro-
gram’s semantics. But false positives should never be accepted when program
validation is the goal.
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ρ ∈ Env = Var→ P(M)
[[ · ]]M ∈ Env→ P(M)

[[∀φ]]Mρ = {π ∈M | (M ↓ π(0)) ⊆ [[φ]]Mρ}

[[∃φ]]Mρ = {π ∈M | (M ↓ π(0)) ∩ [[φ]]Mρ 6= {}}

See Figure 2 for the semantics of the remaining syntax constructions.

Fig. 9. mu-CTL* semantics

6 A logic that mixes universal and existential properties

At this point, we have comprehensive understanding of checking properties
that are prefixed by a single universal or existential quantifier. Now we study
how to mix quantifiers within a single proposition. Here is the syntax of LMC
extended by quantification:

p,¬p ∈ AtomProp Z ∈ Var φ ∈ PathProp

φ ::= p | ¬p | ∀φ | ∃φ | φ1 ∨ φ2 | φ1 ∧ φ2 | Xφ

| µZ.φ | νZ.φ | Z

We call this logic, mu-CTL*, because it is the CTL* logic extended by recur-
sion [6]. Given a trace-set model,M, we define the semantics of mu-CTL* as
exactly the semantics of LMC in Figure 2 extended by the semantics of the
two new constructions, seen in Figure 9 [12]. The Figure states that a trace,
π ∈ M, has property ∀φ iff it and all of its “sibling traces” (those traces in
M that also start with π(0)), have property φ also. Trace π has ∃φ iff it or a
sibling trace has φ. The quantifiers define state properties about π(0), similar
to the state properties defined by the atomic properties, p and ¬p. In this
sense, mu-CTL* is a mix of linear-time time and branching-time logic [6,27].

We can use mu-CTL* to define universal-existential properties. For example,
consider again the readers-writer system in Example 4 and this property:

∀(write ⊃ (X(¬write ∧ ∃Fread)))

The property asserts, for all traces that begin by writing to the shared file, the
next transition is to a state that is not writing and has the possibility of reading
sometime in the finite future. (Recall that Fread abbreviates µZ.read ∨ XZ.)
The embedded existential quantifier does not demand that reading will occur—
only that there is a potential (“sibling”) path that reads.
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6.1 Applying mu-CTL* to an abstract transition relation

Say that a concrete system, as represented by a transition relation, τ ⊆ Σ×Σ,
has been abstracted to a transition relation, τA ⊆ ΣA ×ΣA, such that τ is R-
simulated by τA and R reflects atomic properties, as usual. From the previous
sections, we know that we can soundly check ∀φ propositions on wft(τA), but
we cannot do the same for propositions of form ∃φ.

For the sake of discussion, say that τA is R−1-simulated by τ also—that is, R
is a bisimulation between τ and τA. Now we can soundly check all of mu-CTL*
on wft(τA):

Theorem 45 For τ ⊆ Σ × Σ, τA ⊆ ΣA × ΣA, assume that R ⊆ Σ × ΣA

is a bisimulation and reflects atomic properties. Then, for all π ∈ wft(τ),
κ ∈ wft(τA), and closed φ ∈ mu-CTL*,

π Rω κ and κ ∈ [[φ]]wft(τA)∅ imply π ∈ [[φ]]wft(τ)∅

PROOF. The proof is the usual induction on the structure of φ, augmenting
the proof of Theorem 22 by those of Theorems 30 and 33 for the two new
quantified constructions.

6.2 Abstracting mu-CTL* trace checking into state checking

The next step is to abstract the trace checking defined by Figure 9 into a se-
mantics that does state checking of mu-CTL* properties. Let τ be a transition
relation such that we wish to use for state checking. We can apply the results
from Section 5 to devise a semantics that is the union of [[ · ]]∀τ (Figure 5) and
[[ · ]]∃τ (Figure 6). But we must take care to formulate a syntax that preserves
completeness of state checking for both semantics. Here is one result, which
unions the sublogics, ∀LMC and ∃LMC:

p,¬p ∈ AtomProp Z ∈ UnivVar Z ′ ∈ ExistVar

ψ ∈ StateProp φ ∈ UnivPathProp φ′ ∈ ExistPathProp

ψ ::= p | ¬p | ψ1 ∨ ψ2 | ψ1 ∧ ψ2 | ∀φ | ∃φ′

φ ::= ψ | ψ ∨ φ | φ ∨ ψ | φ1 ∧ φ2 | Xφ | µZ.φ | νZ.φ | Z

φ′ ::= ψ | ψ ∧ φ′ | φ′ ∧ ψ | φ′1 ∨ φ′2 | Xφ′ | µZ ′.φ′ | νZ ′.φ′ | Z ′
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The semantics of formulas, ψ ∈ StateProp, is [[ψ]]τρ = [[ψ]]∀τρ = [[ψ]]∃τρ. For
the quantified constructions, we use

[[∀φ]]τρ = [[φ]]∀τρ

[[∃φ′]]τρ = [[φ′]]∃τρ

Finally, we use [[φ]]∀τρ and [[φ′]]∃τρ for the semantics of universal and existential
path propositions, respectively.

The logic we have just derived is clumsy; its cumbersome syntax merely por-
trays those propositions, ∀φ, that can be equivalently rewritten so that the
outermost universal quantifier can be shifted inwards until it comes to rest
against φ’s X modalities, e.g.,

∀((∃(p ∧ Xq) ∨ Xr) ∧ ∀p)

iff (∀∃(p ∧ Xq) ∨ ∀Xr) ∧ ∀∀p
iff (∃(p ∧ Xq) ∨ ∀Xr) ∧ p

The same holds for propositions, ∃φ′: (∃(p ∧ Xq) ∨ ∀Xr) ∧ p

iff ((∃p ∧ ∃Xq) ∨ ∀Xr) ∧ p iff ((p ∧ ∃Xq) ∨ ∀Xr) ∧ p

This observation lets us simplify the subset of mu-CTL* that we use for sound
and complete state checking to the syntax of the modal-mu-calculus:

p,¬p ∈ AtomProp Z ∈ Var φ ∈ Prop
φ ::= p | ¬p | φ1 ∨ φ2 | φ1 ∧ φ2 | ∀Xφ | ∃Xφ

| µZ.φ | νZ.φ | Z

For documentation, the trace semantics of the modal-mu calculus appears in
Figure 10 and its corresponding, sound-and-complete state-checking semantics
follows in Figure 11.

Using the semantics definitions in those two Figures, we have this result:

Theorem 46 For all π ∈ wft(τ), closed φ ∈ modalMuCalculus,

π(0) ∈ [[φ]]τ∅ iff π ∈ [[φ]]wft(τ)∅
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ρ ∈ Env = Var→ P(M)
[[ · ]]M ∈ Env→ P(M)

[[∀Xφ]]Mρ = {π ∈M | (M ↓ π(0)) ⊆ [[Xφ]]Mρ}

= {π ∈M | for all π′ ∈M such that π′(0) = π(0), π′1 ∈ [[φ]]Mρ}

[[∃Xφ]]Mρ = {π ∈M | (M ↓ π(0)) ∩ [[Xφ]]Mρ 6= {}}

= {π ∈M | exists π′ ∈M such that π′(0) = π(0) and π′1 ∈ [[φ]]Mρ}

See Figure 2 for the semantics of the remaining syntax constructions .

Fig. 10. trace semantics of the modal-mu calculus

ρ ∈ Env = Var→ P(Σ)
[[φ]]τ ∈ Env→ P(Σ)

[[p]]τρ = {a ∈ Σ | p ∈ I(a)}

[[¬p]]τρ = {a ∈ Σ | ¬p ∈ I(a)}

[[φ1 ∧ φ2]]τρ = and([[φ1]]τρ, [[φ2]]τρ)

where and(S1, S2) = S1 ∩ S2

[[φ1 ∨ φ2]]τρ = or([[φ1]]τρ, [[φ2]]τρ)

where or(S1, S2) = S1 ∪ S2

[[∀Xφ]]τρ = next∀([[φ]]τρ)

where next∀(S) = {a ∈ Σ | for all a′ ∈ Σ, a→ a′ ∈ τ implies a′ ∈ S}

[[∃Xφ]]τρ = next∃([[φ]]τρ)

where next∃(S) = {a ∈ Σ | exists a′ ∈ Σ, a→ a′ ∈ τ and a′ ∈ S}

[[µZ.φ]]τρ =
⋂{S ⊆ Σ | F (S) ⊆ S}

[[νZ.φ]]τρ =
⋃{S ⊆ Σ | S ⊆ F (S)},

where F (S) = [[φ]]τ (ρ+ [Z 7→ S])

[[Z]]τρ = ρ(Z)

Fig. 11. state-checking semantics for modal-mu calculus

Implicit in the proof of the above Theorem is the Galois connection, 〈α• :
P(wft(τ)) → P(Σ), γ : P(Σ) → P(wft(τ))〉, where α•(T ) = {s | π(0) =
s, π ∈ T} and γ(S) = {π | π(0) ∈ S}. That is, π R s iff π(0) = s.

A close inspection of the trace semantics of the modal-mu calculus shows
that it is a logic of purely state checking, because each X-modality must be
prefixed by a quantifier. Also, the limitations on expressivity mean that simple
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quantified LTL formulas, such as ∀(FGp) (“for all paths, sometime in the finite
future, p generally holds”) have no natural translation into the modal-mu
calculus— the best one might do is ∀F(∀Gp), where ∀Gp = νZ.p ∧ ∀XZ and
∀Fφ = µZ ′.φ ∨ ∀XZ ′. This formula underapproximates the states that have
the desired property.

7 Mixed Transition Systems

The logics mu-CTL* and the modal mu-calculus let us mix universal and
existential quantifiers in the same proposition. But if we use these logics to
check properties of an abstract model, wft(τA), and we want the validated
properties to be sound for the corresponding concrete model, wft(τ), then we
appear to be limited to bisimulations between τ and τA (that is, there must
exist R ⊆ Σ× ΣA such that τ is R-simulated by τA and τA is R−1-simulated
by τ).

Dams noted that the bisimulation criterion between τ and τA can be weakened
so that τ is related to two transition relations, τmay and τmust, such that τ isR-
simulated by τmay and τmust is R−1-simulated by τ [13]; the resulting abstract
system is a mixed transition system:

Definition 47 [13,14]: A (Kripke) mixed transition system is a tuple, X =
〈ΣA, τmust, τmay, IA〉, where

• ΣA is a set of states and IA : ΣA → P(AtomProp) is an interpretation
mapping, as before;
• τmust ⊆ ΣA × ΣA and τmay ⊆ ΣA × ΣA are transition relations.

The set of traces generated by a mixed transition system, X , is wft(X ) =
wft(τmust) ] wft(τmay), where ] is disjoint union.

A mixed transition system is always intended to be an abstraction of a con-
crete transition system. τmust generates traces that must appear in the concrete
model, and τmay generates a cover of those traces that may appear. To be use-
ful, a mixed transition system must be soundly related to a concrete transition
system:

Definition 48 Given a transition system, C = 〈Σ, τ, I〉 (see Definition 6), a
mixed transition system, X = 〈ΣA, τmust, τmay, IA〉, is a sound abstraction of
C iff there is an abstraction relation, R ⊆ Σ× ΣA such that

(1) R reflects the atomic properties of I in IA;
(2) τ is R-simulated by τmay;
(3) τmust is R−1-simulated by τ .
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When X is a sound abstraction of C, then all traces generated by τmust are
guaranteed nonspurious. Similarly, every trace generated by τ is abstracted
by one generated by τmay. Theorem 30 states that we can use τmay to soundly
validate universal properties of C, and Theorem 33 states that we can use τmust
to soundly validate existential properties of C.

Example 49 We can assemble a sound mixed transition system for the readers-
writer example in Example 4 from the universally sound transition system in
Example 31 and the existentially sound transition system in Example 34. Here
is the system, where transitions in τmust are drawn as solid lines, and transi-
tions in τmay are drawn as dotted ones:

readOnly atRest writeOnly

readWrite

>

Recall that the > element was added to ensure that all traces generated by τmust
were infinite (where s R >, for all s ∈ Σ), hence, (>,>) ∈ τmay is added to
preserve soundness.

Not only can we compare a mixed transition system to a traditional transition
system, we can compare two mixed transition systems for relative precision:

Definition 50 Mixed transition system X1 = 〈Σ1, τmust1, τmay1, I1〉 refines
X2 = 〈Σ2, τmust2, τmay2, I2〉 iff there is an abstraction relation, R ⊆ Σ1 × Σ2,
such that

(1) R reflects the atomic properties of I1 in I2;
(2) τmay1 is R-simulated by τmay2;
(3) τmust2 is R−1-simulated by τmust1.

If X1 refines X2, then the former is more precise than the latter about certain-
ties (more of them) and possibilities (less of them) in traces. A most precise
mixed transition system is concrete:

Definition 51 〈Σ, τmust, τmay, I〉 is concrete when τmust = τmay.

When X1 is a concrete MTS, then it is a traditional transition system (Defini-
tion 6), and X1 refines X2 means that X2 soundly abstracts X1 (Definition 48).
When τmust2 of X2 is the empty set, then refinement degenerates to the sim-
ulation used for proving universal soundness of ordinary abstract transition
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systems.

The notion of refinement of a mixed transition system was originally proposed
by Larsen and Thomson for loose system specification [28,29], where step-
wise refinement is used to transform an imprecise mixed transition-system
specification into a concrete one. Larsen also proposed a restriction to mixed
transition systems that ensures internal consistency:

Definition 52 When τmust ⊆ τmay, a mixed transition system, 〈Σ, τmust, τmay, I〉,
is a modal transition system.

It is easy to prove that every modal transition system has a refinement to a
concrete system, whereas this is not the case for all mixed transition systems.

The mixed transition system in Example 49 can be made into a useful model
transition system by deleting those transitions in τmust that are not already
present in τmay:

readOnly atRest writeOnly

readWrite

This makes the > state unnecessary, and we delete it. Because τmust ⊆ τmay,
the system’s model can be defined as wft(X ) = wft(τmay ∪ τmust) and this
equals wft(τmay). This might suggest that τmust is unimportant, but this is
hardly the case, because τmust assigns a degree of extra confidence to tran-
sitions in a trace: A trace, s0s1s2 · · · sisi+1 · · ·, can be annotated with the
certainty of knowledge about its transitions, e.g.,

s0
must−→ s1

must−→ s2 · · · si
may−→ si+1 · · ·

We exploit this idea later.

7.1 Checking properties of mixed transition systems

We can adapt the mu-CTL* logic to checking properties of mixed transition
systems. For mixed transition system, X = 〈ΣA, τmust, τmay, IA〉, recall that its
model is wft(X ) = wft(τmay)]wft(τmust). The trace semantics for mu-CTL*
appears in Figure 12. The semantics for the quantifiers are a bit awkward, but
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Let M = wft(τmay) ] wft(τmust).
Define ρ ∈ Env = Var→ P(M)
and [[ · ]]M ∈ Env→ P(M):

[[∀φ]]Mρ = {π ∈M | (wft(τmay) ↓ π(0)) ⊆ [[φ]]Mρ}

[[∃φ]]Mρ = {π ∈M | (wft(τmust) ↓ π(0)) ∩ [[φ]]Mρ 6= {}}

See Figure 2 for the semantics of the remaining syntax constructions .

Fig. 12. mu-CTL* semantics for mixed transition systems

ρ ∈ Env = Var→ P(Σ)
[[φ]]τmay ,τmust ∈ Env→ P(Σ)

[[∀Xφ]]τmay ,τmustρ = nextτmay([[φ]]τmay,τmustρ)

where nextτmay(S) = {a ∈ Σ | for all a′ ∈ Σ, a→ a′ ∈ τmay implies a′ ∈ S}

[[∃Xφ]]τmay ,τmustρ = nextτmust([[φ]]τmay ,τmustρ)

where nextτmust(S) = {a ∈ Σ | exists a′ ∈ Σ, a→ a′ ∈ τmust and a′ ∈ S}

The remaining semantics clauses for [[φ]]τmay,τmust are taken from Figure 11.

Fig. 13. state-checking semantics for modal-mu calculus on mixed transition systems

they expose that a quantified proposition must be checked on the appropriate
subsystem of the mixed system [8].

The two simulations of the mixed transition system do the same work as a
bisimulation, meaning that the proof of Theorem 45 applies here as well:

Theorem 53 For transition system, C = 〈Σ, τ, I〉 and mixed transition sys-
tem, X = 〈ΣA, τmust, τmay, IA〉, assume C is soundly abstracted by X by means
of abstraction relation, R ⊆ Σ × ΣA. Then, for all π ∈ wft(τ), κ ∈ M =
wft(τmust) ] wft(τmay), and closed φ ∈ mu-CTL*,

π Rω κ and κ ∈ [[φ]]M∅ imply π ∈ [[φ]]wft(τ)∅

We can continue the development and obtain a completeness result for state
checking, analogous to Theorem 46. The semantics for state checking modal
mu-calculus properties on mixed transition systems is defined in Figure 13.
This semantics, which is a simple adaptation of the one in Figure 11, gives us
the completeness result:
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Let M = wft(τmay ∪ τmust). Define ρ ∈ Env = Var→ P(M) and
[[ · ]]Mm ∈ Env→ P(M), for m ∈ {must,may}:

[[Xφ]]Mmayρ = nextmay([[φ]]Mρ)

[[Xφ]]Mmustρ = nextmust([[φ]]Mρ)

where nextm : P(M)→ P(M) is defined as

nextm(S) = {π ∈M | π(0)→ π(1) ∈ τm and π1 ∈ S}

[[∀φ]]Mm ρ = {π ∈M | (M ↓ π(0)) ⊆ [[φ]]Mmayρ}

[[∃φ]]Mm ρ = {π ∈M | (M ↓ π(0)) ∩ [[φ]]Mmustρ 6= {}}

See Figure 2 for the semantics of the remaining syntax constructions, where
[[φ]]Mm = [[φ]]M, for m ∈ {may,must}

Fig. 14. mu-CTL* semantics for modal transition systems

Theorem 54 For all π ∈M = wft(τmust)]wft(τmay), closed φ ∈ modalMuCalc,

π(0) ∈ [[φ]]τmay ,τmust∅ iff π ∈ [[φ]]M∅

In the case that the mixed transition system is a modal transition system, then
the trace semantics of mu-CTL* should be changed to reflect that a trace is a
mix of must- and may-transitions. A valuation, [[φ]]Mm ρ calculates those traces
that possess property φ to a degree of confidence, m ∈ {may,must}; see
Figure 14.

The usual soundness theorem holds for this semantics, and the restriction of
the semantics to the modal-mu calculus gives the usual completeness result.

7.2 A logic tailored to modal-transition systems

We can better exploit the structure of modal-transition systems by slightly
altering the syntax of mu-CTL*: We annotate the X-modality so that it indi-
cates the degree of confidence we have about the next transition in a trace.
Xmustφ asserts that the next transition must make φ hold, whereas Xmayφ as-
serts that the transition may make φ hold. The annotated X-modality lets us
write assertions like this example:

∀(Xmay(unstable ⊃ Fmuststable)), where Fmustφ = µZ.φ ∨ XmustZ

That is, for all paths starting from a state, if the path possibly leads to an
unstable state at the end of the first transition, then that same path must
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Let M = wft(τmay ∪ τmust). Define ρ ∈ Env = Var→ P(M) and
[[ · ]]M ∈ Env→ P(M):

[[Xmφ]]Mρ = nextm([[φ]]Mρ), for m ∈ {may,must}

where nextm(S) = {π ∈M | π(0)→ π(1) ∈ τm and π1 ∈ S}

The remainder of mu-XCTL* matches mu-CTL*: See Figure 9 for the semantics
of ∀φ and ∃φ, and see Figure 2 for the semantics of the remaining constructions.

Fig. 15. mu-XCTL* semantics for modal-transition systems

continue to a stable state. The annotated X-modality provides an ease of
description that goes beyond mu-CTL*, and we call the resulting logic, mu-
XCTL*.

Figure 15 displays the semantics of mu-XCTL*, which is merely mu-CTL* plus
the annotated X. For a concrete transition system, that is, when τmay = τmust,

[[Xmustφ]]M = [[Xmayφ]]M, and mu-XCTL* becomes mu-CTL*.

The example mu-XCTL* formula seen a few lines earlier included an impli-
cation operator. If we understand φ ⊃ φ′ as ¬φ ∨ φ′, then we must devise
translation rules for shifting negations across annotated X-modalities; the re-
sults are striking:

¬Xmayφ⇒ Xmust¬φ

¬Xmustφ⇒ Xmay¬φ

For the semantics in Figure 15, we can extend Proposition 5 to show that
negation shifting is sound for the above rules. Theorem 53 can be reproved
also, but the free-wheeling use of existential quantification with Xmay means
that Theorem 54 must be rephrased.

Mu-XCTL* appears to be a useful linear-time logic for modal-transition sys-
tems, but it has not been intensively studied at the time of this writing.

8 Conclusion

Thanks to the application of stepwise abstract interpretation, the gulf be-
tween linear-time and branching-time logic has been bridged. Also, the duality
uncovered when formulating abstractions for sound universal and existential
property checking has motivated mixed- and modal-transition systems, where
two abstract models, rather than one, support analyses of interest.

49



Several outstanding issues remain, however:

• Galois connections between concrete state sets, Σ, and abstract state sets,
ΣA, play the key role in synthesizing sound and complete abstract semantics
of linear-time and branching-time logics. But the formalization of R- and
R−1-simulations, which induce the may- and must-transition relations for
a mixed transition system, do not have an obvious formulation as a Ga-
lois connection. What is the correct domain of transition systems so that
there are appropriate Galois connections that define simulations between
transition systems?
• The restriction that τmust ⊆ τmay of a modal transition system gives strong

logical properties that go beyond those of a mixed transition system [24].
These properties have been expressed in terms of branching-time logic, but
it is likely that they have stronger expression in linear-time logic and mu-
XCTL*; this should be investigated.
• The modal-transition system framework should, in principle, support intu-

itionistic logic rather than the three-valued logic given by a mixed transition
system [24]. (This would provide a range of possible worlds, m, for anno-
tating Xm in mu-XCTL*.) Huth has proposed an intuitionistic version of
modal transition system, based on a framework of Fitting [20], but there is
no obvious notion of refinement for his proposal.

These problems appear to be related, and a solution to one might well yield
a solution to one or both of the others.
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