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Abstract. We redevelop and extend Dams’s results on over- and under-
approximation with higher-order Galois connections:
(1) We show how Galois connections are generated from U-GLB-L-LUB-
closed binary relations, and we apply them to lower and upper powerset
constructions, which are weaker forms of powerdomains appropriate for
abstraction studies.
(2) We use the powerset types within a family of logical relations, show
when the logical relations preserve U-GLB-L-LUB-closure, and show that
simulation is a logical relation. We use the logical relations to rebuild
Dams’s most-precise simulations, revealing the inner structure of over-
and under-approximation.
(3) We extract validation and refutation logics from the logical relations,
state their resemblance to Hennessey-Milner logic and description logic,
and obtain easy proofs of soundness and best precision.

Almost all Galois-connection-based static analyses are over-approximating: For
Galois connection, (P(C),⊆)〈αo, γ〉(A,vA), an abstract value a ∈ A proclaims a
property of all the outputs of a program. For example, even ∈ Parity (see Figure
2 for the abstract domain Parity) asserts, “∀even” — all the program’s outputs
are even numbers, that is, the output is a set from {S ∈ P(Nat) | S ⊆ γ(even)}.

An under-approximatingGalois connection, (P(C),⊇)〈αu, γ〉A
op, whereAop =

(A,wA), is the dual. Here, even ∈ Parityop asserts that all even numbers are
included in the program’s outputs — a strong assertion. Also, we may reuse
γ : A → P(C) as the upper adjoint from Aop to P(C)op iff γ preserves joins in
(A,vA) — another strong demand.

Fortunately, there is an alternative view of under-approximation: a ∈ Aop

asserts an existential property — there exists an output with property a. For
example, even ∈ Parityop asserts “∃even” — there is an even number in the
program’s outputs, which is a set from {S ∈ P(Nat) | S ∩ γ(even) 6= ∅}.

Now, we can generalize both over- and under-approximation to multiple prop-
erties, e.g., ∀{even, odd} ≡ ∀(even ∨odd) — all outputs are even- or odd-valued;
and ∃{even, odd} ≡ ∃even ∧ ∃odd — the output set includes an even value and
an odd value. These examples “lift” A and Aop into the powerset lattices, PL(A)
and PU (A), respectively, and set the stage for the problem studied in this paper.
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Fig. 1. An example mixed transition system

Concrete transition system:

Σ = {c0, c1, c2}
R = {(c0, c1), (c1, c2)}

c0 c1 c2

Approximating the state set, Σ, by A = {⊥, a0, a12,>}; α : P(Σ)→ A is:

α{c0} = a0, α{c1} = a12 = α{c2} = α{c1, c2}, α{c1, c2, c3} = >, etc.

Over-approximating (“may” : ∃∃) transition system:

A = {⊥, a0, a12,>}
R] = {(a0, a12), (a12, a12), (>, a12)} a0 a12

Under-approximating (“must” : ∀∃) transition system:

A = {⊥, a0, a12,>}
R[ = {(a0, a12), (⊥,⊥)} a0 a12

The mixed transition system is (A,R[, R]).

1 Dams’s mixed-transition systems

In his thesis [10] and in subsequent work [11], Dams studied over- and under-
approximations of state-transition relations, R ⊆ C×C, for a discretely ordered
set, C, of states. Given complete lattice (A,vA) and the Galois connection,
(P(C),⊆)〈α, γ〉(A,vA), Dams defined an over-approximating transition rela-
tion, R] ⊆ A×A, and an under-approximating transition relation, R[ ⊆ A×A,
as follows:

aR]a′ iff a′ ∈ {α(Y ) | Y ∈ min{S′ | R∃∃(γ(a), S′)}}
aR[a′ iff a′ ∈ {α(Y ) | Y ∈ min{S′ | R∀∃(γ(a), S′)}}1

such that R] ρ-simulates R (that is, all R-transitions are mimicked by R], modulo
ρ ⊆ C × A, where c ρ a iff c ∈ γ(a)), and R ρ−1-simulates R[. See Figure 1 for
an example of R and its mixed transition system, R[, R].

For the branching-time modalities 2 (∀R) and 3 (∃R),

a |= 2φ iff for all a′, aR]a′ implies a′ |= φ

a |= 3φ iff there exists a′ such that aR[a′ and a′ |= φ

Dams proved soundness: a |= φ and c ρ a imply c |= φ. With impressive work,
Dams also proved “best precision” [11]: For all ρ- (and ρ−1-) simulations, R]

and R[ preserve the most 23-(mu-calculus [20, 21]) properties.

1 R∃∃, R∀∃, and the definitions themselves are explained later in the paper.



1.1 Can we derive Dams’s results within Galois-connection theory?

Given that Dams begins with a Galois connection, it should be possible to re-
construct his results entirely within a theory of higher-order Galois connections
and gain new insights in the process. We do so in this paper.

First, we treat R ⊆ C × C as R : C → P(C). This makes R] : A → PL(A),
where PL(·) is a lower (⊆-ordered) powerset constructor.2

Given the Galois connection, P(C)〈ατ , γτ 〉A, on states, we “lift” it to a Galois
connection on powersets, F [P(C)]〈αF [τ ], γF [τ ]〉PL(A), so that

1. R] ρ-simulates R iff extF [τ ](R) ◦ γτ vA→F [P(C)] γF [τ ] ◦R
]

2. the soundness of a |= 2φ follows from Item 1

3. R]
best = αF [τ ] ◦ extF [τ ](R) ◦ γτ

We do similar work for R[
best : A → PU (A) and 3φ, where PU (·) is an upper

(⊇-ordered) powerset constructor.3

The crucial question is: What is F [P(C)]? That is, how should we concretize
a set T ∈ PL(A)? First, we write c ρτ a to assert that c ∈ C is approximated
by a ∈ A. (For example, for Galois connection, P(C)〈ατ , γτ 〉A, define c ρτ a iff
c ∈ γτ (a).) Then, S ∈ P(C) is approximated by T ∈ PL(A) iff S ρPL(τ) T , where

S ρPL(τ) T iff for every c ∈ S, there exists a ∈ T such that c ρτ a
4
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This might suggest that F [P(C)] is just P(C), and the concretization, γP(ρτ ) :
PL(A) → P(C), is γP(ρτ )(T ) = ∪{S | S ρPL(τ) T}, which concretizes T to the
largest set that is approximated by T .

But, as suggested by this paper’s prelude, an alternative is to define F [P(C)]
as PL(P(C)), because if an abstract state a ∈ A concretizes to a set of states,
γτ (a) ⊆ C, then set T ∈ PL(A) should concretize to a set of sets of states:
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That is, S̄ ∈ PL(P(C)) is approximated by T ∈ PL(Aτ ) iff for every set S ∈ S̄,
S ρPL(τ) T . This makes γP̄L(τ)(T ) = {S | S ρPL(τ) T}, which concretizes T to
the set of all sets approximated by T .

For over-approximation, both approaches yield the same definition of R]
best :

A→ PL(A), but a sound under-approximation utilizes the second approach:

2 Think of the elements of PL(A) as sets of properties, like ∀{even, odd}, as described
in the prelude to Section 1.

3 Think of the elements of PU (A) as sets of properties, like ∃{even, odd}.
4 This is the lower half of the Egli-Milner ordering, such that when ρτ ⊆ C×C equals
vτ , freely generates the lower (“Hoare”) powerdomain.



Fig. 2. An under-approximation of sets of natural numbers by sets of parities

Let Nat be the discretely ordered set of natural numbers,
and let complete lattice any

even

none

odd
=Parity

We have the obvious Galois connection, P(Nat)〈αPar, γPar〉Parity ,
where γPar(even) = {2n | n ∈ Nat}, γPar(any) = Nat, etc. We can lift this to:

γP̄U (Par) : P↑(Parity)→ P↓(P(Nat)op)

where P↑(Parity) are the superset-ordered, up-closed subsets of Parity ,
and P↓(P(Nat)op) are the subset-ordered, superset-closed subsets of P(Nat).
γP̄U (Par) is defined as follows:

γP̄U (Par){} = all subsets of Nat

⊇
γP̄U (Par){any} = nonempty subsets of Nat

⊇
γP̄U (Par){even, any} = all sets with

an even number ⊇
γP̄U (Par){even, odd , any} = all sets with

an even and an odd number ⊇
γP̄U (Par){none, even, odd , any} = {}

P (Par)U

{any}

{ }

{even,odd,any}

{even,any} {odd,any}

{none,even,odd,any}

P Parity

γ

=
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S̄ is under-approximated by T iff for every set S ∈ S̄, S ρPU (τ) T , where

S ρPU (τ) T iff for every a ∈ T , there exists some c ∈ S such that c ρτ a.
5

Thus, γP̄U (τ) : PU (A)→ PL(P(C)op), and γP̄U (τ)(T ) = {S | S ρPU (τ) T}, which
is crucial to Dams’s results. Figure 2 gives an example of the construction.

1.2 Outline of Results

Applying the just-stated approach, we redevelop and extend Dams’s results [10,
11] within a higher-order Galois-connection framework [9]:

5 This is the upper half of the Egli-Milner ordering, and when ρτ ⊆ C×C is vτ , freely
generates the upper (“Smyth”) powerdomain.



1. We show how Galois connections are generated from U-GLB-L-LUB-closed
binary relations (cf. [8, 23, 28]).

2. We define lower and upper powerset constructions, which are weaker forms
of powerdomains appropriate for abstraction studies [9, 15, 25].

3. We use the powerset types within a family of logical relations, show when
the logical relations preserve the closure properties in Item 1., and show
that simulation can be proved via logical relations. We incrementally re-
build Dams’s most-precise simulations with the logical relations, revealing
the inner structure of under- and over-approximation on powersets.

4. We extract validation and refutation logics from the logical relations (cf. [2]),
state their resemblance to Hennessey-Milner logic [17] and description logic
[3, 6], and obtain easy proofs of soundness and best precision.

2 Closed binary relations generate Galois connections

The following results are assembled from [4, 8, 14, 23, 24, 28]: Let C and A be
complete lattices, and let ρ ⊆ C ×A, where c ρ a means c is approximated by a.

Definition 1. For all c, c′ ∈ C, for a, a′ ∈ A, for ρ ⊆ C ×A, ρ is

1. L-closed iff c ρ a and c′ v c imply c′ ρ a
2. LUB-closed iff t{c | c ρ a} ρ a
3. U-closed iff c ρ a and a v a′ imply c ρ a′

4. GLB-closed iff c ρ u{a | c ρ a}

Proposition 2. For L-U-LUB-GLB-closed ρ ⊆ C × A, C〈αρ, γρ〉A is a Galois
connection, where αρ(c) = u{a | c ρ a} and γρ(a) = t{c | c ρ a}.

ac
ρ

C A

{ c’ | c’ ρ a } = { a’ | c ρ= a’ }
c’

a’

As the diagram above suggests, U- and L-closure make γρ and αρ monotonic,
and LUB- and GLB- closure make the functions select the most precise answers.
Note that c ρ a iff c vC γρ(a) iff αρ(c) vA a.

Proposition 3. For Galois connection, C〈α, γ〉A, define ραγ ⊆ C ×A as
{(c, a) | αc v a}. Then, ραγ is L-U-LUB-GLB-closed and 〈αραγ , γραγ 〉 = 〈α, γ〉.

2.1 Completing a U-GLB-closed ρ ⊆ C ×A

Often one has a discretely ordered set, C, a complete lattice, A, and an obvious
approximation relation, ρ ⊆ C × A. But there is no Galois connection between
C and A, because ρ lacks LUB-closure. We complete C to a powerset:

Proposition 4. For set C, complete lattice A, and ρ ⊆ C × A, define ρ̄ ⊆
P(C)×A as S ρ̄ a iff for all c ∈ S, c ρ a. If ρ is U-GLB-closed, then ρ̄ is U-GLB-
L-LUB-closed and γρ̄ : A→ P(C) is γρ̄(a) = {c | c ρ a}.

Figure 3 shows an application. There is no implementation penalty in apply-
ing Proposition 4, because the abstract domain retains its existing cardinality.



Fig. 3. Completing ρ ⊆ Int × Sign to ρ̄ ⊆ P(Int)× Sign

ρ ⊆ Int × Sign

nρneg , for n < 0

0 ρ zero
p ρ pos, for p > 0

i ρ any , for i ∈ Int

ρ{ n | n < 0 }
neg zero pos

none

SignP(Int) any

Fig. 4. Complete lattice Int>⊥ and one possible join completion

Int

−1 1. . . . . .0

{ }

0 1−1

{ n | n<0 } { p | p>0 }

. . . . . .

3 Powersets

Definition 5. For complete lattice, D, a powerset of D is
PD = (E ,vE , {| · |} : D → E ,] : E × E → E ), such that

– (E,vE) is a complete lattice

– {| · |}, the singleton operation, is monotone

– ], union operation, is monotone, absorptive, commutative, and associative

– For every monotone f : D → L, there is a monotone ext(f) : E → L such
that ext(f){|d|} = f(d), for all d ∈ D.

Here are examples of powersets from Cousot and Cousot [9]:

Down-set (order-ideal) completion: For d ∈ D, S ⊆ D, define ↓d = {e ∈
D | e v d} and ↓S = ∪{↓d | d ∈ S}. Define P↓(D) = ({↓S |S ⊆ D},⊆, ↓,∪).

Join completion (subsets of P↓(D)): (M,⊆, ↓,tM), where M ⊆ {↓S |S ⊆
D} is a Moore family (that is, closed under intersections). 6

Figure 4 presents an example. For monotone f : D → L, let ext(f) : P↓(D)→
L be ext(f)(S) = td∈Sf(d).

Up-set (filter) completion: For d ∈ D and S ⊆ D, define ↑d = {e ∈ D | d v e}
and ↑S = ∪{↑d | d ∈ S}. Define P↑(D) = ({↑S |S ⊆ D},⊇, ↑,∪).

Dual-join completion: subsets of P↑(D): (M,⊇, ↑,uM), where M ⊆ {↑
S |S ⊆ D} is a Moore family.

For monotone f : D → L, let ext(f) : P↑(D)→ L be ext(f)(S) = ud∈Sf(d).

6 Join completions “add new joins” to D; the trivial join completion is ({↓d | d ∈
D},⊆, ↓, ↓◦tD), which is isomorphic to D, and the most detailed join completion is
P↓(D).



3.1 Lower and strongly lower powersets

For powerset PD , for d ∈ D and S ∈ PD , define d∈̃S iff {|d|}]S = S.

Definition 6. Powerset PL(D) = (E,vE , {| · |},]) is

1. a lower powerset iff ((for all x∈̃S1, there exists y∈̃S2 such that x vD y)
implies S1 vE S2).

2. a strongly lower powerset iff ((for all x∈̃S1, there exists y∈̃S2 such that
x vD y) iff S1 vE S2).

Although lower powersets are the starting point for powerdomain theory [15,
25]7, we work with strongly lower powersets8, because

Proposition 7. For every strongly lower powerset, PL(D) = (E,vE , {| · |},]),
(i) ] = tE; and
(ii) PL(D) is order-isomorphic to a join-completion of D, where ∈̃ is ∈.

Strongly lower powersets let us generalize Proposition 4:

Theorem 8. For complete lattices C and A, let ρ ⊆ C × A and let PL(C) =
(E,⊆, {| · |},]) be a join completion (strongly lower powerset). Recall that ρ̄ ⊆
PL(C)×A is defined S ρ̄ a iff for all c ∈ S, c ρ a.

If (i) ρ is U-L-GLB-closed, and (ii) for all a ∈ A, {c | c ρ a} ∈ E, then ρ̄ is
U-L-GLB-LUB-closed and γρ̄(a) = {c | c ρ a}.

Thus, P↓(C)〈αρ̄, γρ̄〉A is always a Galois connection for U-L-GLB-closed ρ ⊆
C ×A, but the minimal join completion of sets {c | c ρ a}, a ∈ A, also suffices to
generate a Galois connection.

For example, say that Int and ρ in Figure 3 are replaced by Int>⊥ from Figure
4 and by ρ ⊆ Int>⊥ × Sign, which is defined to be ρ augmented by > ρ any and
⊥ ρ a, for all a ∈ Sign. Figure 4 shows ρ’s minimal join completion.

3.2 Upper powersets

As Plotkin [25] notes, the upper and strongly upper powersets coincide, so

Definition 9. Powerset PU (D) = (E,vE , {| · |},]) is an upper powerset iff
(S1 vE S2 iff for all y∈̃S2, there exists x∈̃S1 such that x vτ y).

For an upper powerset, ] = u, and every upper powerset is isomorphic to a
dual-join completion.

7 which requires functions to be Scott-continuous
8 which allows non-Scott-continuous, monotone functions



4 Logical relations

We attach these typings to the relations introduced in Section 2:

τ ::= b | τ1 → τ2 | PL(τ) | PU (τ) | τ̄

Only typing τ̄ is nonstandard; it is a special case of PL(τ) that we retain for
convenience, because it appears so often in the practice of generating Galois
connections.

We attach the typings to concrete and abstract domains, D, as follows:

Db is given, for base type b
Dτ1→τ2 are the monotone functions from Dτ1 to Dτ2 , ordered pointwise
DPL(τ) is a strongly lower powerset generated from Dτ

DPU (τ) is an upper powerset generated from Dτ

Since ρ̄ ⊆ PL(C)×A is the completion of ρ ⊆ C ×A (cf. Theorem 8), we define

Cτ̄ is CPL(τ), for concrete domain Cτ

Aτ̄ is Aτ , for abstract domain Aτ

Now, we can define this family of logical relations, ρτ ⊆ Cτ ×Aτ :

ρb is given, for base type b
f ρτ1→τ2 f

] iff for all c ∈ Cτ1 , a ∈ Aτ1 , c ρτ1 a implies f(c) ρτ2 f
](a)

S ρPL(τ) T iff for all c∈̃S, there exists a∈̃T such that c ρτ a
S ρPU (τ) T iff for all a∈̃T, there exists c∈̃S such that c ρτ a
S ρτ̄ a iff for all c ∈ S, c ρτ a

Again, note that ρτ̄ ⊆ CPL(τ) × Aτ is an instance of ρPL(τ) ⊆ CPL(τ) × APL(τ),
where CPL(τ) is treated as a join completion and APL(τ) is restricted to the
trivial join completion, ({↓a | a ∈ Aτ},⊆, ↓, ↓◦tAτ

), which is isomorphic to Aτ .

4.1 Simulations are logical relations

The standard definition of simulation goes as follows:

Definition 10. For ρ ⊆ C×A and transition relations, R ⊆ C×C, R] ⊆ A×A,
R] ρ-simulates R, written R¢ρ R

], iff for all c, c′ ∈ C, a ∈ A,

c ρ a and cR c′ imply there exists a′ ∈ A such that aR] a′ and c′ ρ a′.

When we represent R and R] as R : C → PL(C) and R] : A → PL(A), respec-
tively, we have

Theorem 11. R¢ρb R
] iff Rρb→PL(b)R

]. 9

A dual simulation, R[¢ρ−1
b

R, is beautifully characterized as Rρb→PU (b)R
[. We

employ these characterizations of simulation and dual-simulation to construct
optimal over- and under-approximating transition relations from Galois connec-
tions generated from closed, logical relations. 10

9 The proof assumes that R and R] behave monotonically.
10 Please see Section 8 for a summary of Loiseaux, et al. [22], which also characterizes

simulations as Galois connections.



Fig. 5. An L-LUB-closed relation between strongly lower powersets
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5 Closure properties of logical relations

Proposition 12. For ρτ ⊆ Cτ×Aτ and for F [τ ] ∈ {τ ′ → τ, PL(τ), PU (τ), τ̄},
If ρτ is L-closed, then so is ρF [τ ].
If ρτ is U-closed, then so is ρF [τ ].
If ρτ is U-GLB-closed, then so are ρτ ′→τ , ρτ̄ , and ρPL(τ).
If ρτ is L-LUB-closed, then so are ρτ ′→τ and ρPU (τ).

Preservation of LUB-closure for ρPL(τ) and GLB-closure for ρPU (τ) depend on
the specific powersets used (cf. Backhouse and Backhouse [4]).

Here are some additional useful properties:

Proposition 13. Let ρτi ⊆ Cτi × Aτi , for i ∈ 1..2, be U-GLB-L-LUB-closed.
For f : Cτ1 → Cτ2 , f

] : Aτ1 → Aτ2 ,

f ρτ1→τ2 f
] iff αρτ2

◦ f vA1→A2
f ] ◦ αρτ1

.

In particular, f ρτ1→τ2 f
]
best, where f ]best(a) = αρτ2

◦ f ◦ γρτ1 .
If ρτ ⊆ Cτ ×Aτ is L-LUB-closed, then so is ρPL(τ) ⊆ P↓(Cτ )× PL(Aτ ), for

any choice of PL(Aτ ); this follows from

Proposition 14. For all T ∈ PL(Aτ ), let LT = {S ∈ PL(Cτ ) | S ρPL(τ) T}. If

1. ρτ is L-LUB-closed; and
2. for all c∈̃ t LT , there exists a∈̃T such that c = tSa, where Sa ⊆ {c

′∈̃S ∈
LT | c

′ ρτ a}

then ρPL(τ) ⊆ PL(Cτ )× PL(Aτ ) is LUB-closed.

That is, given the lower powerset PL(Cτ ), we require tLT ρPL(τ) T , for all
T ∈̃APL(τ). Item 2 says that every element, c∈̃ t LT , is a join of elements that
are all related to some a∈̃T . By L-LUB closure of ρτ , we have c ρτ a, giving
LUB-closure for ρPL(τ).

Often we can use a coarser join completion than P↓(Cτ ) to get LUB-closure.

For example, for CInt = Int>⊥ from Figure 4 and AInt = Sign from Figure 3, the
version of PL(Sign) in Figure 5(right), requires merely the PL(Int

>
⊥) in Figure

5(left), for LUB-closure of ρPL(Sign) ⊆ PL(Int
>
⊥)× PL(Sign).

11

11 Of course, for PL(Cτ ) to be useful for giving the semantics of transition relation
R ⊆ Cτ × Cτ , we require that ↓{c′ | cRc′} ∈ PL(Cτ ), for all c ∈ Cτ .



Proposition 15. For all S ∈ PU (Cτ ), let GS = {T ∈ PU (A) | S ρPU (τ) T}. If

1. ρτ is U-GLB-closed, and
2. for all a∈̃ uPU (A) GS, there exists c∈̃S such that a = uATc, where Tc ⊆
{a′∈̃T ∈ GS | c ρτ a

′},

then ρPU (τ) ⊆ PU (Cτ )× PU (rAτ ) is GLB-closed.

For all choices of PU (Cτ ), Proposition 15 successfully applies to P↑(Aτ ), the
filter completion of Aτ . But often a coarser, dual-join completion of Aτ will do:
When giving semantics to transition relation R ⊆ Cτ ×Cτ , we require only that
R’s image lies in PU (Cτ ): ↑{c

′ | cRc′} ∈ PU (Cτ ), for all c ∈ Cτ . This coarser
domain for PU (Cτ ) lets us use a coarser PU (Aτ ) with Proposition 15.

6 Synthesizing a most-precise simulation

Dams [10, 11] proves, for Galois connection P(C)〈α, γ〉A and relation R ⊆ C×C,

that the most precise, sound, abstract transition relation R
]
0 ⊆ A×A is

R
]
0(a, a

′) iff a′ ∈ {α(Y ) | Y ∈ min{S′ | R∃∃(γ(a), S′)}}

where R∃∃(M,N) holds iff there exist m ∈ M and n ∈ N such that mRn.

Recoded as a function, R]
0 : A→ PL(A), and simplified, this reads

R
]
0(a) = {α(s

′) | ∃s ∈ γ(a), s′ ∈ R(s)}

Our machinery gives us the same result: Given U-GLB-closed ρb ⊆ C × A

and transition function R : C → P(C), we generate the Galois connections,
P(C)〈αρb̄ , γρb̄〉A and P(C)〈αρPL(b)

, γρPL(b)
〉PL(A), and synthesize the most pre-

cise, sound abstract transition function, R]
best : A→ PL(A),

R
]
best(a) = (αρPL(b)

◦ ext b̄(R) ◦ γρb̄)(a) = t{{|αρb̄{s
′}|} | ∃s ∈ γρb̄(a), s

′ ∈ R(s)}

which is Dams’s definition, when PL(A) is P↓(A). We have Rρb̄→PL(b)R
]
best.

As suggested in Section 1.1, we might also derive an abstract transition re-
lation that is sound with respect to sets of sets: We generate the Galois con-
nection, P↓(P(C))〈αρP̄L(b)

, γρP̄L(b)
〉PL(A), and for R : C → P(C), we generate

R
]
best : A→ PL(A),

R
]
best = αρP̄L(b)

◦ ext b̄({| · |}P↓(P(C)) ◦R) ◦ γρb̄

where ext b̄({|·|}P↓(P(C))◦R)(S) =↓{R(c) | c ∈ S}, and αρP̄L(b)
(S̄) = u{T | for all S ∈

S̄, S ρPL(b) T}. That is, ext b̄({| · |}P↓(P(C)) ◦ R) maps a set of arguments to the
set of R-successor sets, and αρP̄L(b)

produces the smallest abstract set that over-

approximates each of the successor sets. We have Rρb̄→P̄L(b)R
]
best, and R

]
best

equals the definition seen earlier.
This development is notational overkill, but there is an important point:

Simulation equivalence is preserved when a concrete transition function is lifted
to a function that maps a set of arguments to a set of sets of answers:



Theorem 16. R¢ρ R
] iff Rρb→PL(b)R

] iff ext b̄(R) ρb̄→PL(b)R
]

iff ext b̄({| · |}P̄L(b) ◦R) ρb̄→P̄L(b)R
].

This idea will prove crucial when working with under-approximations.

6.1 Synthesizing a most-precise dual simulation

There is a good use for ρPU (τ): defining a sound, over-approximation analysis of
under-approximations.

Consider ρP̄U (τ) ⊆ P↓(PU (C)) × PU (A); it says that S̄ ρP̄U (τ) T iff for each

set S ∈ S̄, S ρPU (τ) T , that is, T under-approximates each S ∈ S̄:

.. c0 .. .. c1 ..
.. ci ..

P 
U

τ
ρ

P CP U

P AU

.. a ..

We can readily construct ρP̄U (τ):

1. Begin with a U-GLB-closed ρτ ⊆ C ×A;
2. lift it to a U-L-GLB-closed ρPU (τ) ⊆ PU (C)× PU (A);
3. complete it to a U-GLB-L-LUB-closed ρP̄U (τ) ⊆ P↓(PU (C))× PU (A).

The resulting Galois connection, P↓(PU (C))〈αρP̄U (τ)
, γρP̄U (τ)

〉PU (A), is

γρP̄U (τ)
T = {S | S ρPU (τ) T}

αρP̄U (τ)
S̄ = u{T ∈ PU (A) | for all S ∈ S̄, S ρPU (τ) T}

Figure 2 presents an example.
Dams proves, for Galois connection P(C)〈α, γ〉A and transition relation R ⊆

C × C, that the most precise, sound, underapproximating abstract transition
relation, R[

0 ⊆ A×A is

R[
0(a, a

′) iff a′ ∈ {α(Y ) | Y ∈ min{S′ | R∀∃(γ(a), S′)}}

where R∀∃(M,N) holds iff for all m ∈ M , there exists n ∈ N such that mRn.
Recoded as a function and simplified, this reads

R[
0(a) = {α(Y ) | Y ∈ min{S′ | for all s ∈ γ(a), R(s) ∩ S′ 6= {} }}

Our machinery gives us the same result: We generate the Galois connection,
P↓((P(C)op))〈αρP̄U (b)

, γρP̄U (b)
〉P↑(A). Note that C is a set, so P(C)op is an upper

powerset. For transition function, R : C → P(C), we generate this most precise,
sound under-approximating abstract transition function, R[

best : A→ P↑(A),

R[
best = αρP̄U (b)

◦ ext({| · |} ◦Rop) ◦ γρb̄



where {| · |} ◦ Rop : C → P↓(P(C)op) is ({| · |} ◦ Rop)(c) =↑R(c) = R(c), and
ext({| · |} ◦Rop) : P(C)→ P↓(P(C)op) is ext({| · |} ◦Rop)(S) =↓P(C)op {R(c) | c ∈
S} = {S ⊇ R(c) | c ∈ S}, and αρP̄U (b)

(S̄) = u{T | for all S ∈ S̄, S ρPU (b) T}.

That is, ext({| · |} ◦ Rop) maps a set of arguments to the set of sets of R-
successors, and αρ̄PU (b)

produces the largest abstract set that under-approximates

each successor set R(c), for c ∈ γρ̄b(a). We simplify and obtain

R[
best(a) = u{T ∈ P↑(A) | for all a

′ ∈ T, for all s ∈ γρb̄(a), R(s) ∩ γρb̄(a
′) 6= {} }

which is provably equal to Dams’s definition.12

Finally, dual simulation lifts to sets of arguments:

Theorem 17. R[ ¢ρ−1 R iff Rρb→PU (b)R
[ iff ext({| · |} ◦Rop) ρb̄→P̄U (b)R

[.

It is a good exercise to attempt to define a Galois connection from a ρPU (b);
the result is usually degenerate because LUB-closure is over-constraining.13

7 Validation and refutation logics

Hennessey and Milner proved that 23-propositions (Hennessey-Milner logic)
characterize transition relations up to bisimilarity [17]. Loiseaux, et al. [22],
proved that all 2-properties true of an over-approximating transition relation
are preserved in the corresponding concrete transition relation and that when
one over-approximating transition relation is more precise than another, then
the first preserves all the 2-properties of the second. Dams extended this result
to under-approximations and 3-properties and proved that his definitions of
R

]
best and R

[
best possess the most 23-propositions of any sound, mixed transition

system.
In this section, we manufacture Hennessey-Milner logic from our family of

logical relations (cf. [2]) and obtain the above results as corollaries of Galois-
connection theory. Recall that these are the typings of the logical relations,

τ ::= b | τ1 → τ2 | PL(τ) | PU (τ) | τ̄

where τ̄ is an instance of PL(τ). For each of the first four typings, we define a
corresponding assertion form, producing this assertion language,

φ ::= pb | f.φ | ∀φ | ∃φ

and the following semantics of typed judgements (let Dτ be either Cτ or Aτ ):

d |=b p is given, for d ∈ Db

d |=τ1→τ2 f.φ if f(d) |=τ2 φ, for d ∈ Dτ1 and f ∈ Dτ1→τ2

S |=PL(τ) ∀φ if for all d∈̃S, d |=τ φ, for S ∈ DPL(τ)
S |=PU (τ) ∃φ if there exists d∈̃S such that d |=τ φ, for S ∈ DPU (τ)

12 R[
0(a) belongs to and is v all elements in R[

best(a).
13 Consider Figure 2 and ρPU (Parity) ⊆ P(Nat)op × P↑(Parity): What is the least set

of natural numbers that “witnesses” {even, any}? {0}? {2}? LUB-closure fails.



Since τ̄ is an instance of PL(τ), we define its judgements for abstract values as

a |=τ̄ φ if a |=τ φ, for a ∈ Aτ .

and for concrete values as

S |=τ̄ φ if c |=τ φ, for all c ∈ S, S ∈ PL(Cτ )

We might abbreviate d |=τ→PL(τ) R.∀φ by d |= ∀Rφ (as in description
logic [3]) or by [R]φ (Hennessey-Milner logic [17]) or by 2φ when the system
studied has only one transition relation, R ⊆ Dτ ×Dτ (CTL [7]). This hides the
reasoning on sets. Similarly, d |=τ→PU (τ) R.∃φ can be abbreviated by d |= ∃Rφ
or 〈R〉φ or 3φ.

The judgements for ∀φ and ∃φ employ R] and R[, respectively, to validate
the assertions, motivating Dams’s mixed transition systems.14

7.1 Soundness of judgements

Assume for all types, τ , that the logical relations, ρτ ⊆ Cτ × Aτ , are defined.
Assume also, for all function symbols, f , typed τ1 → τ2, that there are interpre-
tations f : Cτ1 → Cτ2 , and f ] : Aτ1 → Aτ2 , such that f ρτ1→τ2 f

]. (Functions f
and f ] are used in the semantics of |=τ1→τ2 f.φ.)

Definition 18. Judgement form |=τ ′ φ is sound iff for all c ∈ Cτ , a ∈ Aτ ,
(a |=τ ′ φ holds true and c ρτ a) imply that c |=τ ′ φ holds true.15

Assume that |=b p is sound for the choice of ρb ⊆ Cb ×Ab.

Theorem 19. For all types, τ , all judgement forms, |=τ φ, are sound.

The proof is an easy induction on the structure of τ .
We can add the logical connectives,

d |=τ φ1 ∧ φ2 if d |=τ φ1 and d |=τ φ2
d |=τ φ1 ∨ φ2 if d |=τ φ1 or d |=τ φ2

and prove these sound, but we will require a dual logic, a refutation logic, to
define a sound semantics for ¬φ; we do so momentarily.

7.2 Best precision of judgements

Say that a judgement form, |=τ ′ φ, is monotone if a |=τ ′ φ and a′ vτ a imply
a′ |=τ ′ φ, for all a, a

′ ∈ Aτ .
16 We assume that all base-type judgements, |=b pb,

are monotone, and from this it follows that all judgement forms are monotone.
As a consequence, we have immediately Dams’s best-precision result:

Theorem 20. For Galois connection, P(C)〈α, γ〉A, and every R : C → P(C),

R
]
best : A → PL(A) and R[

best : A → PU (A) soundly prove the most typed
judgements, a |=τ φ, for all a ∈ A and choices of PL(A) and PU (A).

14 For set, Cτ , P(Cτ ) is a strongly lower powerset and P(Cτ )
op is an upper powerset,

so we can readily validate ∀φ and ∃φ-properties on concrete sets, also.
15 The judgement form, |=τ1→τ2 f.φ, shows that τ

′ need not be τ .
16 The intuition is that γρτ (a

′) ⊆ γρτ (a) ⊆ [[φ]] ⊆ Cτ .



7.3 Validating ¬φ requires a refutation logic

For c ∈ C, we define c |=τ ¬φ iff c 6|=τ φ.
The logic in Section 7 validates properties, so we might have also a logic that

refutes them: Read a |=¬pos
τ ′ φ as “it is not possible that any value modelled by

a ∈ Aτ has property φ.”

a |=¬pos

b p is given, for a ∈ Ab

a |=¬pos
τ1→τ2

f.φ if f ](a) |=¬pos
τ2

φ, for a ∈ Aτ1 , f
] ∈ Aτ1→τ2

T |=¬pos

PU (τ)
∀φ if exists a∈̃T, a |=¬pos

τ φ, for T ∈ APU (τ)

T |=¬pos

PL(τ)
∃φ if for all a∈̃T, a |=¬pos

τ φ, for T ∈ APL(τ)

a |=¬pos
τ̄ φ if a |=¬pos

τ φ, for a ∈ Aτ

In the refutation logic, the roles of PL(τ) and PU (τ) are exchanged.

Definition 21. |=¬pos
τ ′ φ is sound iff for all c ∈ Cτ , a ∈ A, c ρτ a and a |=¬pos

τ ′ φ

imply c 6|=τ ′ φ.

Proposition 22. For all types, τ , |=¬pos
τ φ are sound and monotone, assuming

that the base-type judgements, |=¬pos

b pb, are.
17

Corollary 23. The judgement definitions,
a |=τ ¬φ if a |=¬pos

τ φ

a |=¬pos
τ ¬φ if a |=τ φ

are both sound and monotone.

The Sagiv-Reps-Wilhelm TVLA system simultaneously calculates validation
and refutation logics[27]. Indeed, we might combine ρPL(τ) and ρPU (τ) into ρPτ ⊆
P(C) × (PL(A) × PU (A)). This motivates sandwich- and mixed-powerdomains
in a theory of over-under-approximation of sets [5, 13, 16, 18, 19].

8 Related work

In addition to Dams’s work [10, 11], three other lines of research deserve mention:
Loiseaux, et al. [22] showed an equivalence between simulations and Galois
connections: For sets C and A, and ρ ⊆ C ×A, they note that
P(C)〈post[ρ], ˜pre[ρ]〉P(A) is always a Galois connection.18

For R ⊆ C × C and R] ⊆ A × A, simulation is equivalently defined as R is
ρ-simulated by R] iff R−1 ·ρ ⊆ ρ · (R])−1 Treating R−1 and (R])−1 as functions,
we can define Galois-connection soundness as

(R])−1 is a sound over-approximation for R−1 with respect to γ iff
pre[R] ◦ γ vP(A)→P(C) γ ◦ pre[R

]]

17 The intuition is that a |=¬pos

τ ′
φ implies γρτ (a) ∩ [[φ]] = {}.

18 ˜pre[ρ] = λT.{c | {a | c ρ a} ⊆ T} is ρ “reduced” to an under-approximation function,
and post[ρ] = λS.{a | exists c ∈ S, c ρ a}. A’s partial ordering, if any, is forgotten.



For ρ, R, R], Loiseaux, et al. prove
1. R is ρ-simulated by R] iff (R])−1 is sound for R−1 w.r.t. ˜pre[ρ].
2. a |= φ ∈ ACTL [7] implies c |= φ, for c ρ a.

Backhouse and Backhouse [4] saw that Galois connections can be character-
ized within relational algebra, and they reformulated key results of Abramsky
[1]: ρ ⊆ C × A is a pair algebra iff there exist α : C → A and γ : A → C such
that {(c, a) | αc vA a} = ρ = {(c, a) | c vC γa}.

For the category, C, of partially ordered sets (objects) and binary relations
(morphisms), if an endofunctor, σ : C ⇒ C, is also
1. monotonic: for relations, R,S ⊆ C × C ′, R ⊆ S implies σR ⊆ σS

2. invertible: for all relations, R ⊆ C × C ′, (σR)−1 = σ(R−1),
then σ maps pair algebras to pair algebras, that is, σ is a unary type constructor
that lifts a Galois connection between C and A to one between σC and σA.

The result generalizes to n-ary functors and applies to the standard functors,
τ × τ , τ → τ , List(τ), etc. But the result does not apply to PL(τ) nor PU (τ) —
invertibility (2) fails.
Ranzato and Tapparo [26] studied the completion of upper closure maps,
µ : P(C) → P(C).19 Given a logic, L, of form, φ ::= opi(φj)0<j<|opi|, its
semantics, [[ · ]] ⊆ P(C), has format

[[opi(φj)]] = fi([[φj ]])0<j<|opi|

where each fi : P(C)|opi| → P(C) gives the semantics of connector opi. The
abstract semantics has form, [[opi(φj)]]

µ
= (µ ◦ fi)([[φj ]]

µ
), and [[φ]]

µ ∈ µ[P(C)].
Upper closure µ is L-preserving if, for all S ⊆ C, µS ⊆ [[φ]]

µ
implies S ⊆ [[φ]],

and it is L-strongly preserving if the implies is replaced by iff.
Given an L-preserving µ, Ranzato and Tapparo apply the domain-completion

technique of Giacobazzi and Quintarelli [12] to complete µ to its coarsest, strongly
preserving form: complete(µ) = gfp(λρ.µ uM(R{fi}(ρ))),
where u operates in the complete lattice of upper closures, M is the Moore
completion, and RF (µ) = {f(x̄) | f ∈ F, x̄ ∈ µ[P(C)]|f |} adds the image points
of the logical operations, fi, to the domain.

This technique can be applied to the present paper to generate strongly
preserving, over- and under-approximating Galois connections.
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