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Abstract. An abstraction is a property-preserving contraction of a pro-
gram’s model into a smaller one that is suitable for automated analy-
sis. An abstraction must be sound, and ideally, complete. Soundness and
completeness arguments are intimately connected to the abstraction pro-
cess, and approaches based on homomorphisms and Galois connections
are commonly employed to define abstractions and prove their soundness
and completeness.
This paper develops Mycroft and Jones’s proprosal that an abstrac-
tion should be stated as a form of structure-preserving binary rela-
tion. Mycroft-Jones-style relations are defined, developed, and employed
in characterizations of the homomorphism and Galois-connection ap-
proaches to abstraction.

1 Introduction

In program analysis (static analysis) [6]), the term, “abstraction,” describes a
property-preserving contraction of a program’s model into one that is smaller and
more suitable for automated analysis. Abstraction-generated models are used by
compilers to perform data-flow analysis [1, 16], by type-checkers to verify type
safety [29], and by model checkers to validate safety properties of systems of
processes [3].

An abstraction must be sound, in the sense that properties proved true of
the abstracted model must hold true of the original program model. Ideally,
the abstract model should be most precise, or complete, with regards to the
properties of interest. Soundness and completeness arguments are intimately
connected to the abstraction process.

Our intuitions tell us that a program’s model is a kind of algebra, and the
abstraction process is a kind of homomorphism, and indeed, the homomorphism
approach provides a simple means of devising sound abstractions [4].

A crucial insight from the abstract interpretation research of Cousot and
Cousot [7–9] is that an abstraction can be defined in terms of a homomorphism
and its “inverse” function, giving a Galois connection. The inverse function gives
us a tool for arguing the completeness of an abstraction.
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Galois connections possess a rich collection of properties that facilitate cor-
rectness proofs of static analyses. But as Mycroft and Jones noted in a seminal
paper in 1985 [26], there is a price to be paid for possessing these properties: Pro-
gram models employing data of compound and higher-order types require Galois
connections that operate on powerdomains of overwhelming complexity. Mycroft
and Jones suggest that an alternative framework, based on binary relations, can
be used to avoid much of this complexity.1 Then, reasoning techniques based
on logical relations [24, 27, 28, 31, 32] apply to the compound and higher-typed
values.

The intuition behind Mycroft and Jones’s proposal is simple: Given the set
of source program states, C, and the set of abstract program states, A, define
a binary relation, R ⊆ C × A, based on the intuition that c R a if a is an
acceptable modelling of c in the abstract model. For example, for a type-checking
abstraction, where concrete data values are abstracted to data-type tags, we
might assert that 3 R int and also 3 R real, but not 3 R bool. In practice, it is
relation R that is crucial to a proof of safety of abstraction.

But this seems too simple—can the homomorphism and Galois-connection
approaches be discarded so readily? And can any binary relation between C and
A define a meaningful property for a static analysis? Mycroft and Jones state
that a useful binary relation, R ⊆ C × A, must possess LU-closure: For all
c, c′ ∈ C, a, a′ ∈ A,

c′ vC c, c R a, and a vA a′ imply c′ R a′

But is this strong enough for proving soundness and completeness? Is it too
strong? Does LU-closure characterize homomorphisms or Galois connections?

This paper addresses these and other fundamental questions regarding the
homomorphism, Galois connection, and binary-relations approaches to abstrac-
tion, relating all three in terms of “structure preserving” binary relations.

The paper’s outline goes as follows: Section 2 defines the format of program
model—it is a Kripke structure, which is an automaton whose states possess
local properties of interest that can be preserved or discarded by abstraction. To
develop intuition, the Section gives examples of models and abstractions based
on Kripke structures.

Next, Section 4 demonstrates how to employ homomorphisms to abstract
one Kripke structure by another. The underlying notion of simulation is used
first to explain the homomorphism approach and next to relate homomorphisms
to Galois connections, which are developed in Section 6. Applications of Galois
connections to completeness proofs and synthesis of abstract Kripke structures
are developed in detail.

Finally, Section 7 introduces Mycroft-Jones-style binary relations and lists
crucial structure-preserving properties. These properties are used to state equiv-
alences between structure-preserving forms of binary relations, homomorphisms,
and Galois connections.

1 And in response, Cousot and Cousot proposed a variant, higher-order abstract in-
terpretation [10], that sidesteps most of the powerdomain machinery.



Fig. 1. Kripke structure of a process that uses a resource

K = 〈{s0, s1, s2}, {(s0, s1), (s1, s0), (s1, s2), (s2, s0), (s2, s2)}, IK〉
where IK(s0) = {}, IK(s1) = {own}, IK(s2) = {own, use}

s0 s2
own,use

s1
own

2 Kripke Structures

We represent a program model as a Kripke structure. Simply stated, a Kripke
structure is a finite-state automaton whose states are labelled with atomic, prim-
itive “properties” that “hold true” at the states [3, 25]. Kripke structures neatly
present program models based on operational semantics, such as flowcharts,
data-flow frameworks [16], statecharts [14], and process-algebra processes [23].

Definition 1. 1. A state-transition system is a pair, 〈ΣK ,→K〉, where

(a) ΣK is a set of states.

(b) →K⊆ ΣK × ΣK is the transition relation. We write s −→ s′ to denote
(s, s′) ∈→K .

2. A state-transition system is labelled if its second component is revised to

→K⊆ ΣK ×L×ΣK , where L is some fixed, finite set. We write s
`
−→ s′ to

denote (s, `, s′) ∈→K .

3. A state-transition system is a Kripke structure if it is extended to a triple,
〈ΣK ,→K , IK〉, where IK : ΣK → P(Atom) associates a set of atomic prop-
erties, IK(s) ⊆ Atom, to each s ∈ ΣK , for some fixed, finite set, Atom.

In this paper, we use (unlabelled) Kripke structures; Figure 1 presents a
process that requests ownership of and uses a resource. The Kripke structure is
presented as an automaton whose states are labelled by atomic properties from
Atom = {use, own}.

A program’s operational semantics can also be modelled as a Kripke struc-
ture; Figure 2 presents an infinite-state structure that results from a program
that computes upon an input, x. A state, (p, n), remembers the value of variable
x on entry to program point, p. The program’s transfer functions are coded as
the transition relation.

Atom lists the properties of interest to the model. Here, it is helpful to visu-
alize each p ∈ Atom as naming some Sp ⊆ ΣK such that p ∈ IK(s) iff s ∈ Sp,
e.g., isEven = {(p, 2n) | n ≥ 0}. Note that P(Atom) contains all possible com-
binations of the properties of interest—when we abstract the Kripke structure,
we will use a subset of P(Atom) as the state space for an abstract model.



p0 : while (true) do

p1 : if isEven(x)

p2 : then x:= x div2

p3 : else x:= x + 1

od

K = 〈ΣK ,→K , IK〉
where ΣK = ProgramPoint× Nat

ProgramPoint = {p0, p1, p2, p3}
→K= { p0, n −→ p1, n,

p1, 2n −→ p2, 2n,
p1, 2n+ 1 −→ p3, 2n+ 1,
p2, n −→ p1, n/2,
p3, n −→ p1, n+ 1
| n ∈ Nat}

Atom = {at(p) | p ∈ ProgramPoint}
∪{isEven, isOdd}

IK(p, 2n) = {at(p), isEven}
IK(p, 2n+ 1) = {at(p), isOdd}

Fig. 2. Infinite-state Kripke structure of a sequential program

p2 p3

p0

p1

IA1(pi) = {at(pi)}

p0, e p0, o

p1, e p1, o

p2, e p3, o

IA2(pi, e) = {at(pi), isEven},
IA2(pi, o) = {at(pi), isOdd}

Fig. 3. Two abstractions of a program

Abstractions of a Kripke structure Because of its infinite state set, the
structure defined in Figure 2 cannot be conveniently drawn pictorially nor can
it be easily analyzed mechanically. We must abstract the structure into a man-
ageably sized, finite-state Kripke structure, using the mapping, IK , to guide
us. Figure 3 shows two possible abstractions, represented pictorially. The first
abstraction, called a control abstraction, defines ΣA1

= ProgramPoint—data val-
ues are forgotten, as are the properties, isEven and isOdd. Control abstraction
generates the control-flow graph used by a compiler.

The second abstraction is a mixture of data and control abstraction: It sim-
plifies the program’s data domain (that is, x’s value) to EvenOdd = {e, o} and
defines ΣA2

= ProgramPoint × EvenOdd. In consequence, more precise knowl-
edge is presented about the outcomes of the test at program point p1 (cf. [38])
in contrast to a control abstraction.

The state sets for both abstractions in Figure 3 are just subsets of P(Atom)
from Figure 2: ΣA2

= IK(ΣK), and ΣA1
= IK(ΣK) \ {isEven, isOdd}, where

X \ Y denotes the sets of X ⊆ P(Atom) with occurrences of a ∈ Y removed.



The characterization of each a ∈ ΣAi
as a ⊆ Atom induces the abstract

structure’s property map—it is simply, IAi
(a) = a.

Derivation of abstract transitions Given the abstract state set, ΣA, we must
derive a transition relation, →A; we begin with examples for needed intuition.

The intuition behind the second structure in Figure 3 is that Nat, the set
of natural numbers, was abstracted to EvenOdd = {e, o}, such that even-valued
naturals are represented by e and odd-valued naturals are represented by o. The
addition and division-by-two operations, encoded in the transition relation in
Figure 2, must be restated to operate on the new set. By necessity, the semantics
of division-by-two is nondeterministic:

e+ 1 7→ o
o+ 1 7→ e

e/2 7→ e
e/2 7→ o

o/2 7→ e
o/2 7→ o

The operations above generate →A2
—in particular, we have these crucial tran-

sition rules for the decision point at p1:

p1, e −→ p2, e
p1, o −→ p3, o

The rules retain information about the properties of the data that arrive at
program points p2 and p3.

The above abstraction generates a finite set of states for the Kripke structure
in Figure 2. But the finite cardinality might be too huge for practical analysis,
and a more severe abstraction might be required. For this, one can partially order
the abstract-data domain—the partial ordering helps us merge similar abstract
states and so reduce the cardinality of the state set. For example, we might add
the data values, ⊥ (“no value at all”) and > (“any value at all”) to the EvenOdd
set and partially order the result as follows:

e

>

⊥

oEvenOdd>⊥ =

The ordering suggests precision-of-information-content—e.g., e is more precise
than > about the range of numbers it represents. (To rationalize this explana-
tion, ⊥ is the most “precise” of all, because it precisely notes no value at all.)
This particular partial ordering is no accident: It comes from our belief that
abstract values and abstract states are just sets of properties. Here, EvenOdd>⊥
is isomorphic to P{isEven, isOdd}, ordered by superset inclusion.

The arithmetic operations must be revised for the new domain:

e/2 7→ >
o/2 7→ >
>/2 7→ >

e+ 1 7→ o
o+ 1 7→ e
>+ 1 7→ >



p0,>

p1,>

p2, e

p3, o

p1, e
IA3(pi, e) = {at(pi), isEven}
IA3(pi, o) = {at(pi), isOdd}
IA3(pi,>) = {at(pi)}

Fig. 4. Kripke structure generated with partially ordered data domain

(Operations on ⊥ are ignored.) In particular, division by 2 produces > as its
result. Now, program states have the form, ProgramPoint × EvenOdd>⊥, where
p,⊥ denotes a program point that is never reached during execution (“dead
code”) and p,> represents a program point that may be reached with both even-
and odd-valued numbers. The presence of > suggests these transition rules for
the program’s decision point, p1:

2

p1,> −→ p2, e
p1,> −→ p3, o

We use EvenOdd>⊥ with the above transition rules for p1 to generate a new
Kripke structure for the example in Figure 2; see Figure 4. The resulting struc-
ture has one fewer state than its counterpart in Figure 3.

State merging We can generate a smaller structure from Figure 4 by merging
the two states, (p1, e) and (p1,>). This merge yields the result state, (p1,>),
because e t > = > in the ordering on the data values. The transitions to and
from (p1, e) are “folded” into (p1,>), and the resulting structure looks like this:

p2, e p3, o

p0,>

p1,>

In data-flow analysis, it is common to perform state-merging “on the fly” while
generating the Kripke structure: ΣK is defined as a subset of ProgramPoint ×
DataFlowInformation such that, if (pk, d1) ∈ ΣK and (pk, d2) ∈ ΣK , then d1 =
d2; that is, there is at most one state per program point. When the Kripke
structure is generated by executing the source program with the data domain,
DataFlowInformation, newly generated states of form (pk, di) are merged with
the existing state, (pk, d), giving (pk, di t d).

2 The following transition rules for p1 would also be acceptable, but they lose too
much precision: p1,> −→ p2,> and p1,> −→ p3,>.



Monotone Kripke Structures The structure in Figure 4 has “related” states:
(p1,>) and (p1, e) are related because e v >. To formalize this, we partially order
the state set, ΣA3

, such that pi, di vA3
pj , dj iff pi = pj and di vEvenOdd>

⊥
dj .

An expected consequence of this relationship should be that, if p1, e −→ q
then also p1,> −→ q′, where q vA3

q′—the less precise state should be consistent
with the more precise one. Similar thinking causes us to demand, if p1, e vA3

p1,>, then IA3
(p1, e) ⊇ IA3

(p1,>). These are monotonicity properties:

Definition 2. For Kripke structure, K = 〈ΣK ,→K , IK〉 such that ΣK is par-
tially ordered by vK⊆ ΣK ×ΣK ,

1. →K is monotone (with respect to vK) iff for all s, s′ ∈ ΣK , s vK s′ and
s −→ s1 imply there exists s2 ∈ ΣK such that s′ −→ s2 and s1 vK s2:

s

s1 vK

s′

s2

vK

2. IK is monotone (with respect to vK) iff s vK s′ implies IK(s) ⊇ IK(s
′).

A Kripke structure whose state set is partially ordered is monotone if both its
transition relation and property map are monotone.

Since a Kripke structure’s transitions encode a program’s transfer functions, it is
natural to demand that the transition relation be monotone. The property map
must be monotone to ensure that the partial ordering on states is sensible. We
work exclusively with monotone Kripke structures—the monotonicity is crucial
to proofs of soundness and completeness of abstractions.

3 Relating Models

Abstraction must relate a “detailed” Kripke structure with a “less detailed”
counterpart. We call the detailed Kripke structure the concrete structure and
name it C, and we call the less detailed structure the abstract structure and
name it A. When we compare two Kripke structures, C and A, we assume they
use the same set, Atom, as the codomain of their respective property maps. This
facilities easy definitions of soundness and completeness.

4 Homomorphisms

The classic tool for relating one algebraic structure to another is the homomor-
phism; here is the variant for Kripke structures:

Definition 3. For Kripke structures C = 〈ΣC ,→C , IC〉 and A = 〈ΣA,→A, IA〉,
a homomorphism from C to A is a function, h : ΣC → ΣA, such that



s0 s2
own,use

s1
own

a0 a1
own

h

h(s0) = a0, h(s1) = h(s2) = a1

Fig. 5. Example homomorphism

1. for all c ∈ ΣC , c −→ c′ implies there exists a transition, h(c) −→ a′ such
that h(c′) vA a′:

c

c′

h(c)

h(c′) vA a′
h

h

2. for all c ∈ ΣC , IC(c) ⊇ IA(h(c)).

Figure 5 displays a simple example of two structures and their relationship by
homomorphism. The Figure shows a homomorphism that preserves transitions
up to equality. But the Definition does not require this—h(c′) v a′ is stated,
rather than h(c′) = a′, to handle the situation where ΣA is nontrivially partially
ordered. For example, reconsider Figures 2 and 4, where ΣC is ProgramPoint×
Nat, ΣA is ProgramPoint×EvenOdd>⊥, and consider the transition, x := x div

2:

p2, e

h

h
p2, 6

p1, 3 p1, o v p1,>

x:= x div2x:= x div2

where h(pgmpoint, n) = (pgmpoint, polarity(n)) and polarity(2n) = e and polarity(2n+
1) = o.

Given a concrete (monotone) Kripke structure, C = 〈ΣC ,→C , IC〉, we can use
its property map, IC : ΣC → P(Atom), as a homomophism onto the monotone
Kripke structure, AIC = 〈ΣA,→A, IA〉:

ΣA = IC(ΣC)
→A= {a→A IC(c

′) | c→C c′, a ⊆ IC(c)}
IA(a) = a

As suggested earlier, we use the range of IC as the states for the abstract struc-
ture; the definition can be proved to be “complete” 3 for state set, IC(ΣC) [8,
12].

3 The formalization of “complete” must wait until the section on Galois connections,
where needed technical machinery is provided.



Standard uses of homomorphisms to relate concrete and abstract structures
can be found in papers by Clarke, Grumberg, and Long [5] and Clarke, et al. [2],
among others.

5 Simulations

A homomorphism between Kripke structures preserves the ability to transit
between states. This notion is better known as a simulation. Let R ⊆ ΣC ×ΣA

be a binary relation on the states of structures C and A, and write c R a when
(c, a) ∈ R.

Definition 4. For Kripke structures C = 〈ΣC ,→C , IC〉 and A = 〈ΣA,→A, IA〉,
a binary relation, R ⊆ ΣC ×ΣA, is a simulation of C by A, written C ¢R A, iff
for every c ∈ ΣC , a ∈ ΣA, if c R a, then

1. if c −→ c′, then there exists a′ ∈ ΣA such that a −→ a′ and c′ R a′:

c

c′

a

a′

R

R

2. IC(c) ⊇ IA(a).

In the above situation, we also say that A simulates C.4 When C ¢R A, then
c R a asserts that a is an acceptable abstraction of c—properties true for a hold
true for c, and a’s transitions mimick all transitions made by c. More generally,
any sequence of transitions in C can be mimicked by a sequence in A.5

If we reexamine Figure 5, we readily see the underlying simulation between
the concrete and abstract structures: R = {(s0, a0), (s1, a1), (s2, a1)}. And,
when we study the program flowgraph in Figure 2 and its two even-odd abstrac-
tions in Figures 3 and 4, we see this simulation relates states in the concrete
structure to those in the abstract structures:

R = { ((pi, 2n), (pi, e)),
((pi, 2n+ 1), (pi, o)),
((pi, n), (pi,>)) | i ≥ 0, n ∈ Nat}

We demand that simulations are left total:

Definition 5. A binary relation, R ⊆ S×T , is left total if for all s ∈ S, there
exists some t ∈ T such that s R t. The relation is right total if for all t ∈ T ,
there exists some s ∈ S such that s R t.

4 If labelled transitions are employed, the simulation must respect the labels: c R a

and c
`

−→ c′ implies that a
`

−→ a′ and c′ R a′.
5 Thus, properties that hold true for all paths starting at a also hold true for all paths
starting at c. This supports sound verification of LTL- and ACTL-coded properties
of temporal-logic on the abstract Kripke structure [4, 12, 34, 37].



A left-total simulation ensures that every state in the concrete structure can
be modelled in the abstract structure. Right totality ensures that there are no
superfluous abstract states.

Simulations play a crucial role in equivalence proofs of interpreters [20]: Each
execution step of interpreter, C, for a source-programming language is mimicked
by a (sequence of) execution steps of an interpreter, A, for the target program-
ming language, and mathematical induction justifies that sequences of transi-
tions taken by C can be mimicked by A. Coinductive reasoning [23, 30] extends
the proof to sequences of infinite length. More recently, correctness proofs of
hardware circuits, protocols, and systems of processes has been undertaken by
means of (bi)simulations [23].

It is easy to extract the simulation embedded within a homomorphism: For
h : ΣC → ΣA, define

c Rh a iff h(c) vA a

As before, h(c) vA a is stated, rather than h(c) = a, to take into account the
partial ordering, if any, upon ΣA.

Since we can extract a useful simulation from a homomorphism, we might
ask if the dual is possible: The answer is “no”—a homomorphism is a function,
and it takes little work to invent simulation relations that are not functions.

It is possible to synthesize a simulation for two Kripke structures, C and A,
from scratch: Define this hierarchy of binary relations, Ri ⊆ ΣC ×ΣA, for i ≥ 0:

R0 = ΣC ×ΣA

Ri+1 = {(c, a) | IC(c) ⊇ IA(a), and also
if c −→ c′, then there exists a′ ∈ ΣA such that
a −→ a′ and c′ Ri a

′}

c Ri a asserts that a mimicks c for up to i transitions, so we define the limit
relation, R∞ =

⋂

i≥0Ri. As shown by Park [30] and Milner [22], for finite-image
Kripke structures C and A, R∞ defines a simulation, and indeed, it is the largest
possible simulation on C and A: If C ¢ R A, then R ⊆ R∞.

Alas, the synthesis technique cannot produce a left-total simulation when one
is impossible: Consider C = 〈{c0, c1}, {c0 −→ c1}, IC〉 and A〈{a0}, {}, IA〉—we
calculate R∞ = {(c1, a0)}, which means there is no way to abstract c0 within
A—the abstract structure is unsuitable. In this fashion, the synthesis technique
can be used to decide whether one finite-state structure can be simulated by
another.

Simulations give the foundation for reasoning about the relationships be-
tween structures. We next consider a tool that lets us reason about “complete”
simulations.

6 Galois connections

Widely used for abstraction studies [7, 8, 17, 21], Galois connections are a form
of “invertible homomorphism” that come with powerful techniques for analyzing
the precision of abstractions.



Definition 6. For partially ordered sets P and Q, a Galois connection is a
pair of functions, (α:P → Q, γ:Q → P ), such that for all p ∈ P and q ∈ Q,
p vP γ(q) iff α(p) vQ q:

γ(q)

p α(p)

q

t|Q

γ

α
t|P

Equivalently, α, γ form a Galois connection iff

1. α and γ are monotone
2. α ◦ γ v idQ
3. idP v γ ◦ α.

We say that α is the lower adjoint and γ is the upper adjoint of the Galois
connection.

A plethora of properties can be proved about Galois connections; here are a
few:

Theorem 7. Say that (α:P → Q, γ:Q→ P ) is a Galois connection:

1. The adjoints uniquely determine each other, that is, if (α, γ ′) is also a Galois
connection, then γ = γ′ (similarly for γ, α, and α′).

2. α(p) = uγ−1(↑ p) and γ(q) = tα−1(↓ q), where ↑ p = {p′ ∈ P | p vP p′}
and ↓ q = {q′ ∈ Q | q′ vQ q}

3. α ◦ γ ◦ α = α and γ ◦ α ◦ γ = γ.
4. α is one-one iff γ is onto iff γ ◦ α = idP ; γ is one-one iff α is onto iff

α ◦ γ = idQ.
5. α[P ] and γ[Q] are isomorphic partially ordered sets.
6. α preserves all joins, and γ preserves all meets
7. If P and Q are complete lattices, then so are α[P ] and γ[Q], but they need

not be sublattices.

Proofs of these results can be found in [21] as well as in many other sources.
Result (ii) implies that one can validate when a function α (dually, γ) is a

component of a Galois connection by merely checking the wellformedness of the
definition of its partner: α is the lower adjoint of a Galois connection iff α−1(↓ q)
is a principal ideal in P , for every q ∈ Q. (A principal ideal is a set, S ⊆ P , such
that S =↓ p, for some p ∈ P .)

Say that an abstract Kripke structure, A, has a partially ordered state set,
(ΣA,vA). (For simplicity, say that it is a complete lattice.) We relate the concrete
structure, C, to A, by means of a Galois connection of this form:6

〈α : (P(ΣC),⊆)→ (ΣA,vA), γ : (ΣA,vA)→ (P(ΣC),⊆)〉

6 Assume that ΣC has no partial ordering of its own or that we ignore it [10].



We say that α is the abstraction map and γ is the concretization map [7]—α(S)
maps a set of states, S ⊆ ΣC , to its most precise approximation in ΣA—this
is ideal for performing control abstraction, where several states must be merged
into one. Of course, α{c} maps a single state, c, to its abstract counterpart, like
a homomorphism would do. Dually, γ(a) maps an abstract state to the set of
concrete states that a represents.

Figure 6 displays a Galois connection between the data values used in the
structures in Figures 2 and 4. In the Figure, a Galois connection is first defined

{}

{0} {1} {2} · · ·

{0, 1} {0, 2} {1, 2}

{2n | n ∈ Nat} {2n+ 1 | n ∈ Nat}

Nat
...

...

· · ·

{1, 3}

· · ·

· · ·

e

>

⊥

o

γN

αN

A Galois connection between the above sets:

αN : P(Nat) → EvenOdd>⊥
αN (S) =

⊔

({e | exists n ∈ Nat, 2n ∈ S}
∪{o | exists n ∈ Nat, 2n+ 1 ∈ S})

γN : EvenOdd>⊥ → P(Nat)
γN (a) = {2n | n ∈ Nat, e v a} ∪ {2n+ 1 | n ∈ Nat, o v a}

Examples: αN{2, 6} = e, αN{2, 3, 4} = >, γN (e) = {0, 2, 4, · · ·}, γN (>) = Nat.
Using (αN , γN ) to define a Galois connection between P(ΣC) and ΣA:

ΣC = ProgramPoint×Nat ΣA = (ProgramPoint× EvenOdd>⊥)
>
⊥

α : P(ΣC) → ΣA

α(T ) =

{

⊥, if T = {}
(pk, αN (T ↓ 2)), if T ↓ 1 = {pk}
>, if pi, pj ∈ T ↓ 1, i 6 =j

where T ↓ 1 = {p | (p, n) ∈ T}, T ↓ 2 = {n | (p, n) ∈ T}
γ : ΣA → P(ΣC)

γ(p, a) = {(p, n) | n ∈ γN (a)}
γ(⊥) = {}
γ(>) = ΣC

Fig. 6. Example Galois connection



between the sets of data values, P(Nat) and EvenOdd>⊥, used by the concrete
and abstract structures, respectively. Then, this Galois connection is used to
define a Galois connection between the state sets of the two structures. (To
make a complete lattice, ΣA is augmented by ⊥ and >. As a technicality, we
assume (>,>) ∈→A.)

The Galois connection in the Figure makes clear that the abstract structure
can remember at most one program point in its state. One might devise an
abstract structure that remembers more than one program point at a time, e.g.,
ΣA = P(ProgramPoint) × EvenOdd>⊥, or better still, ΣA = P(ProgramPoint ×
EvenOdd>⊥). Such state sets would be useful for defining abstract structures that
model nondeterministic computations.

Extracting the simulation within a Galois connection Thanks to Sec-
tion 5, we know that we relate Kripke structures by simulations. Given the
concrete Kripke structure, C, an abstract structure, A, and Galois connection,
(α:P(ΣC) → ΣA, γ:ΣA → P(ΣC))

7, we must prove a simulation exists, in the
sense of Definition 4. To do this, we extract the following relation, Rγ ⊆
ΣC ×ΣA, from the Galois connection:

c Rγ a iff c ∈ γ(a)

(Or, equivalently stated, c Rγ a iff α{c} vA a.) For example, it is easy to prove
that the relation extracted from the Galois connection in Figure 6 is a simulation.

Synthesizing an Abstract Kripke Structure from a Concrete Structure

and an Abstract Domain In practice, we use a Galois connection to synthesize
a “best” abstract Kripke structure for a concrete one: Say that we have C =
〈ΣC ,→C , IC〉, and a complete lattice A, and a monotone property map, IA :
A → P(Atom).8 We synthesize a Galois connection, and from it, an abstract
Kripke structure that is sound (there exists a simulation) and complete (any
other abstract structure that uses A as its state set and simulates C computes
less precise properties).

First, consider which element in Amay approximate some c ∈ Σc; the element
must come from this set:

Sc = {a
′ ∈ A | IC(c) ⊇ IA(a

′)}

Define β(c) = uSc; now, if for every c ∈ ΣC , β(c) is an element of Sc, we can
define a Galois connection between P(ΣC) and A (c.f. Theorem 7(2)):

α(S) = ts∈Sβ(s)
γ(a) = {c | IC(c) ⊇ IA(a)}

7 We omit the partial orderings to save space.
8 Of course, if A is a sublattice of P(Atom), we take IA(a) = a.



We use the Galois connection to define this transition relation on A:

→A= {a→A α{c′} | there exists c→C c′ and c ∈ γ(a)}

The abstract Kripke structure is defined as Aγ = 〈A,→A, IA〉. The definition of
→A ensures thatAγ can simulate C, that is, C¢ Rγ

Aγ , where c Rγ a iff c ∈ γ(a),
as usual. Note that IC(c) ⊇ IA(a) iff β(c) vA a.

We can prove that Aγ is complete in the following sense: Say that there is
another Kripke structure, A′ = 〈A,→′

A, IA〉 such that C ¢ R A′, where c R a
iff IC(c) ⊇ IA(a). But R is just Rγ . The Galois connection between P(ΣC)
and A lets us prove that Aγ ¢ RvA

A′, where a RvA
a′ iff a vA a′, implying

IA(a) ⊇ IA(a
′). Hence, Aγ is most precise.9

Defining a Kripke Structure from a Galois connection Given a state-
transition system, 〈ΣC ,→C〉, we can use a Galois connection to define an appro-
priate mapping, IC , to make the state-transition system into a Kripke structure.

Say we have a Galois connection, (α:P(ΣC) → A, γ:A → P(ΣC)), where
A is a complete lattice. A serves as the collection of expressible properties—use
IC(c) =↑ α{c} = {a′ | α{c} v a′} for c ∈ ΣC . Furthermore, we use the
techniques from the previous section to define a best abstraction of C:

A = 〈A, {a→A α(c′) | c→C c′, c ∈ γ(a)}, λa. ↑ a〉

Analyzing Nondeterminism with Galois Connections Galois connections
are well suited for studying the transitions that might be taken from a set of
concrete states. We can readily synthesize the appropriate Kripke structure that
represents the nondeterministic version of C: For S, S ′ ⊆ ΣC , write S

•
−→ S′ to

assert that for every c′ ∈ S′, there exists some c ∈ S such that c −→ c′. Next,
we define the monotone Kripke structure, PC, into which C embeds:

PC = 〈P(ΣC),
•
→, IPC〉, where IPC(S) = ∩{IC(c) | c ∈ S}

Given a Galois connection, (α : P(ΣC)→ ΣA, γ : ΣA → P(ΣC)), we readily
define this relation, R(α,γ) ⊆ P(ΣC)×ΣA:

S R(α,γ) a iff α(S) vA a

or equivalently,
S R(α,γ) a iff S ⊆ γ(a)

To verify that R(α,γ) is a simulation, we must “complete” the abstract struc-
ture, A, with all the abstract transitions it needs to model transitions from sets
of concrete states to sets of concrete states:

9 This reasoning is entirely analogous to the reasoning done with Galois connections
on abstractions of functional definitions to prove that the abstract transfer function,
α ◦ f ◦ γ, is the most precise abstraction of the concrete transfer function, f .



Definition 8. Given a monotone Kripke structure, A = 〈ΣA,→A, IA〉, such
that ΣA is a complete lattice, we define its closure as follows:

closure(A) = 〈ΣA,→CA, IA〉
where →CA = {a→ tT | T ⊆ {a′ | a→A a′} }

For example, if a0 →A a1 and a0 →A a2 in A, then these transitions, as well
as a0 →CA (a1 t a2), appear in closure(A). The closure construction builds a
monotone Kripke structure and shows us how the relation on elements of ΣC

naturally lifts into a relation on subsets of ΣC :

Theorem 9. If A is monotone, then C¢ Rγ
A implies PC¢ R(α,γ)

closure(A).

Lifting a homomorphism into a Galois connection An elegant alterna-
tive to writing a Galois connection directly is using a homomorphism as an
intermediary: Given Kripke structures C and A, prove that h : ΣC → ΣA is
a homomorphism, so that we have C ¢ Rh

A. Next, “lift” h into the Galois
connection, (αh : P(ΣC)→ ΣA, γh : ΣA → P(ΣC)), as follows [27]:

αh(S) = t{h(c) | c ∈ S}
γh(a) = {c | h(c) vA a}

Practitioners often find it convenient to map each state in ΣC to the state in
ΣA that best approximates it. Once function h is defined this way and proved a
homomorphism, then it “lifts” into a Galois connection.

Of course, one recovers h : ΣC → ΣA from the Galois connection, (α, γ), by
defining h(c) = α{c}.

Galois connections on lower powerdomains Stepwise abstractions might
require that ΣC be nontrivially partially ordered and that its ordering be incor-
porated in the construction of P(ΣC). In such a case, we suggest employing the
lower powerdomain construction, P[ [13]: For a complete partially ordered set,
(P,vP ),

P[(P,vP ) = ({ScottClosure(S) | S ⊆ P, S 6= {} },⊆)
where ScottClosure(S) = ↓ S ∪ {tC | C ⊆ S is a chain}
and ↓ S = {c | exists c′ ∈ S, c vP c′}

(Recall that a chain is a sequence, c0 vP c1 vP · · · vP ci vP · · ·.) The ele-
ments of the lower powerdomain are nonempty Scott-closed sets, which are those
nonempty subsets of P that are closed downwards and closed under least-upper
bounds of chains. An example of a lower powerdomain and its appearance in a
Galois connection appears in Figure 7.

When using a lower powerdomain with the constructions in this section,
we require that a homomorphism, h : ΣC → ΣA, be a Scott-continuous function
(that is, it preserves limits of chains: h(tC) = tc∈Ch(c) for all chains, C ⊆ ΣC).

Also, all the set-theoretic expressions in this section must be understood as
Scott-closed sets—as necessary, apply ScottClosure to a set to make it Scott-
closed.



a1

a0

c1

c0

c2 {c1, c0} ΣA ={c2, c0}

{c0, c1, c2}

ΣC = P[(ΣC) =

{c0}

α : P[(ΣC) → ΣA

α(S) =

{

a0, if S = {c0}
a1, otherwise

γ : ΣA → P[(ΣC)
γ(a0) = {c0}
γ(a1) = {c0, c1, c2}

Fig. 7. Lower powerdomain and Galois connection

7 Properties of Binary Relations

The previous sections showed that there are natural binary relations that un-
derlie homomorphisms and Galois connections: In the case of a homomorphism,
h : ΣC → ΣA, we extract the relation, Rh ⊆ ΣC ×ΣA:

c Rh a iff h(c) vA a

and in the case of a Galois connection, (α:P(ΣC) → ΣA, γ:ΣA → P(ΣC)), we
can extract the relation, Rγ ⊆ ΣC ×ΣA:

c Rγ a iff c ∈ γ(a)

In both cases, the intuition behind c R a is that a is an approximation of c or
that c is a possible refinement of a.

It is worthwhile to “disassemble” these and other binary relations and ex-
amine the properties that make the relations well behaved. Initial efforts in
this direction were taken by Hartmanis and Stearns [15], Mycroft and Jones
[26], Cousot and Cousot [9], Schmidt [33], and Loiseaux, et al. [19].10 In the
developments that follow, we employ the usual monotone Kripke structures,
C = 〈ΣC ,→C , IC〉 and A = 〈ΣA,→A, IA〉.

Here are four fundamental properties on relations on partially ordered sets:

Definition 10. For partially ordered sets P and Q, a binary relation, R ⊆
P ×Q, is

– L-closed (“lower closed”) iff for all p ∈ P , q ∈ Q, p R q and p′ vP p imply
p′ R q

– U-closed (“upper closed”) iff for all p ∈ P , q ∈ Q, p R q and q vQ q′ imply
p R q′

– G-closed (“greatest-lower-bound closed”) iff for all p ∈ P , u{q | p R q}
exists, and p R (u{q | p R q})

10 P. Cousot has remarked that the groundwork was laid by Shmuelli, but the appro-
priate references have not been located as of this date.



ap1
a0

cp,q1 cp,r2

c0

C = A =

R = {(c0, a0), (c0, a1), (c1, a1), (c2, a1)}

Fig. 8. Binary simulation relation

– inclusive iff for all chains {pi}i≥0 ⊆ P , {qi}i≥0 ⊆ Q, if for all i ≥ 0, pi R qi,
then both ti≥0pi and ti≥0qi exist, and ti≥0pi R ti≥0 qi.

L- and U-closure define monotonicity and antimonotonicity properties of the
binary relation [26]. G-closure states that the relation determines a function
from P to Q,11 and inclusive-closure states that the relation is Scott-continuous.

For the concrete and abstract state sets in Figure 7, Figure 8 displays two
structures that use these state sets and defines a binary relation between them.
One can readily verify that the binary relation in the Figure is a simulation that
is LUG-(and trivially inclusive)-closed. Homomorphisms and Galois connections
supply exactly these properties:

Proposition 11. Let h : ΣC → ΣA be a function, and define c Rh a iff h(c) vA

a. Then,

1. Rh is UG-closed;

2. if h is monotonic, then Rh is L-closed;

3. if h is Scott-continuous, then Rh is inclusive-closed.

Proposition 12. Let (α:P(ΣC) → ΣA, γ:ΣA → P(ΣC)) be a Galois connec-
tion, and define c Rγ a iff c ∈ γ(a). Then Rγ is LUG-inclusive-closed.

Momentarily, we will see that these properties let one lift a binary relation
into a function or Galois connection, but first we examine the properties one by
one and learn their value to proving simulations.

First, we must emphasize that the properties in Definition 10 do not ensure
that a relation is a simulation. Here is a trivial counterexample:

C = 〈{c0}, {c0 −→ c0}, IC〉
A = 〈{a0}, {}, IA〉

11 Cousot and Cousot [9] note that L-closure and U-closure can be viewed as duals,
meaning there is a dual to G-closure, which requires existence of least-upper bounds;
this dual (and the dual to inclusivity) will not be developed here.



A structure that encodes div2:

2 1 0

345

· · ·

Its abstract counterpart for EvenOdd>⊥:

e

>

o⊥
Note: e v >, o v >, ⊥ v a, for all a.

Fig. 9. Why U-closure is helpful for proving a simulation

The relation, c0 R a0, is LUG-inclusive-closed, but C ¢ R A does not hold.
Regardless of the Definition 10-properties of a relation, R, we must perform the
usual simulation proof with the relation.12

So, we must ask: How do the properties in Definition 10 aid us? To begin,
consider an arbitrary relation, R ⊆ ΣC × ΣA, where we hope to prove that
C¢ R A. The guiding intuition behind c R a is that a can act as an approximation
of c and that c can act as a refinement of a.

If it is the case that ΣA is nontrivially partially ordered, the simulation proof
will almost certainly require that R be U-closed, as suggested by the example
in Figure 9. Within its transitions, the Figure’s first structure encodes the div2
operation on the natural numbers, and similarly, the second structure encodes
the abstraction of div2 on the tokens e (“even”), o (“odd’), and > (“any value”).
To complete the proof that the second structure simulates the first, the obvious
binary relation, 2n R e, 2n + 1 R o, must be made U-closed by adding n R >,
for all n ∈ Nat.

We have this simple but useful property:

Proposition 13. If R is U-closed, then γ R (a) = {c | c R a} is monotonic.

The intuition behind γ R (a) is that it identifies the elements in ΣC that are
represented by a ∈ ΣA. Monotonicity ensures that, as abstract states become
less precise in vA, they represent more and more concrete states in ΣC .

In an obvious, dual way, if one considers the refinement of a structure, A, into
an implementation, C, where ΣC is nontrivially partially ordered, then L-closure
is likely to be needed. Figure 10 gives one example, where the abstract state, a1,
is refined into the pair of states, c1 and c2, such that c1 vC c2. The refinement
directs that the simulation relation be c0 R a0, and ci R a1, for i ∈ 1..2. This
relation is L-closed, and crucially so, in order to prove the simulation.

Proposition 14. If R is L-closed, then β R (c) = {a | c R a} is antimono-
tonic.

The intuition is that β R (c) identifies the states in ΣA that might approximate
c. The antimonotoncity result ensures that the more precisely defined concrete
states possess smaller, “more precise” sets of possible approximations from ΣA.

12 But a relation that lifts to a Galois connection defines a simulation that is sound
and complete.



Refine a1 into c1 and c2, where c1 vC c2:

mnA = mna1

mna0

mnc2
mnc1

mnC =

mnc0

Fig. 10. Why L-closure is helpful for proving a simulation

The β R map gives good intuition about the behaviour of R , but practi-
tioners desire to map a concrete state, c ∈ ΣC to the “most precise” state that
approximates it. G-closure yields these important results:

Proposition 15. For partially ordered sets P and Q, and binary relation, R ⊆
P ×Q, define β̂R(c) = u{a | c R a}:

1. if R is G-closed, then β̂R : P → Q is a well-defined function;

2. if R is LG-closed, then β̂ R is monotonic;

3. if R is LG-inclusive-closed, then β̂ R is Scott-continuous.

This tells us that a G-closed relation identifies, for each c ∈ ΣC , the element in
ΣA that best approximates it, namely, u{a | c R a}.

Corollary 16. If R ⊆ ΣC × ΣA is G-closed and C ¢ R A, then β̂ R is a
homomorphism from ΣC to ΣA.

The interaction of U- and G-closure brings us to Galois connections. For
R ⊆ ΣC ×ΣA, define γR : ΣA → P(ΣC) and αR : P(ΣC)→ ΣA as follows:

γR(a) = {c | c R a}

αR(S) = tc∈S β̂R(c)

where β̂R(c) = u{a | c R a}

Theorem 17. 1. If R is UG-closed, then (αR, γR) form a Galois connection
between P(ΣC) and ΣA;

2. If R is LUG-inclusive-closed and ΣC is nontrivially partially ordered, then
(αR, γR) form a Galois connection between P[(ΣC) and ΣA.

Since Galois connections synthesize simulations that are sound and complete
in the sense of Section 6, we conclude that UG- (or LUG-)closed relations are
best for abstraction studies. If G-closure is impossible, then soundness can be
ensured by U- (or LU-)closure, as noted by Mycroft and Jones [26] and Cousot
and Cousot [9].



8 Conclusion

We have seen how standard approaches for defining abstractions of program
models can be understood in terms of structure-preserving binary relations. The
crucial topics that follow the present work are: (i) the extraction of properties
from an abstract Kripke structure and (ii) the application of properties to trans-
formation of the corresponding concrete Kripke structure. Topic (i) can be best
understood as validating temporal-logic properties by model checking [34–37];
Topic (ii) is surprisingly underdeveloped, although Lacey, Jones, Van Wyk, and
Frederiksen [18] and Cousot and Cousot [11] give recent proposals.
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