
Abstract Models of Shape
Branching- and Linear-Time

David Schmidt

Kansas State University

(-: / 1

Outline

1. “branching time” models: graphs

2. abstraction of nodes via Galois connections; abstraction of

arcs via simulations

3. under- and over-approximations; mixed- and modal-transition

systems

4. assertion-based abstractions

5. “linear time” models: path sets and their abstraction

(-: / 2

Labelled Kripke transition systems

〈Σ, {τ` ⊆ Σ× Σ | ` ∈ Label}, IΣ : Σ → P(Atom)〉

Σ = {s0, s1, s2}

τα = {(s0, s1), (s1, s1)}

τβ = {(s0, s2), (s1, s2)}

IΣ(s0) = {happy}

IΣ(s1) = {sad}

IΣ(s2) = {happy, sad}

s0

s1

s2

α
α

β
β

happy

sad

happy, sad

We might identify initial states, Σ0 ⊆ Σ, also.

(-: / 3

Graph models apply to storage shapes

Σ = {c0, c1, c2}

τhead = {(c0, c0)}

τtail = {(c0, c2),

(c1, c1), (c1, c2)}

IΣ(c0) = {it}

IΣ(c1) = {}

IΣ(c2) = {x, y}

.

c0 c1

c2

tail
head

y

it

tail

tail

x

Rather than states, the nodes now represent cells.

(-: / 4

A Galois Connection abstracts the nodes

{c0,c1,c2}

{c0,c1} {c0,c2} {c1,c2}

{c0} {c1} {c2}

{}

P(C) A

a0 a12
γ

Typically, A’s elements are (i) correctness properties of interest,
or (ii) subsets of Atom. Then, γ : A → P(C) is de£ned so that
γ(a) produces all nodes/cells having property a.

γ’s image must be a Moore family:

¨ γ(>) = C

¨ for all a, a ′, there exists a ′′ such that γ(a) ∩ γ(a ′) = γ(a ′′).

Typical requirement: c ∈ γ(a) implies IC(c) ⊇ IA(a)

or c ∈ γ(a) implies IC(c) ⊆ IA(a) (more to say)

(-: / 5

What does an abstract transition denote?

what may possibly execute:

if b

...

elsethen

b !b

s1 s2

if b

...

elsethen

b

s1

what may possibly be pointed:

(-: / 6

What does “dashed” denote? a1a0

Overapproximation — 1/2 — may/possibly: The corresponding

concrete structure may or may not possess this transition, but all

concrete transitions are “covered” by transitions of this form.

In operational semantics and process algebra, this is formalized

as a simulation:

Given γ : A → P(C), KC = 〈C, τC, IC〉, KA = 〈A, τA, IA〉, KC is

γ-simulated by KA (written KC ¢γ KA)

iff for all a ∈ A, c ∈ γ(a), c ′ ∈ C,

1. IC(c) ⊆ IA(a)

2. c → c ′ implies there exists a ′ ∈ A such that c ′ ∈ γ(a ′) and

a− − → a ′.

That is, KA “mimicks” the transitions and atomic properties of KC.

(-: / 7

Example over-approximation: A = {⊥, a0, a12,>}

α{} = ⊥

α{c0} = a0

α{c1} = a12 = α{c2}

αS = >, otherwise

γ(⊥) = {}

γ(a0) = {c0}

γ(a12) = {c1, c2}

γ(>) = {c0, c1, c2}

IA(a) = ∪{IC(c) | c ∈ γ(a)}

γ(a)

γ(a’)

c εif

and then

εc’
a0 a12

c0

c1

c2

(-: / 8

De£ning the abstract transition relation, τA, so that
it gives a simulation

Recall the recipe for de£ning a functional transition:

opA = α ◦ op+

C ◦ γ

(Note: op+

C lifts opC to compute on sets.)

But here we have a relation, τC — not a function — to

approximate. Dams noted that, τA, the minimal overapproximation

of τC goes

a− − → α(s ′) iff s ∈ γ(a) and s −−→ s ′.

The challenge lies in £nitely computing τA.a, that is, the image of

a in τA.

(-: / 9

What properties can we safely check?

Aliasing — a is possibly tail-aliased:

isAliased(a) = ∃x.∃y.τtail(x, a) ∧ τtail(y, a) ∧ x 6= y

a |= (∃τ−1
tail.at x) ∧ (∃τ−1

tail.at y)

(recall a |= ∃R.φ iff exists a ′ such that R(a, a ′) and a ′ |= φ)

isAliased(a) = ∃x.∃y.(x 7→ , a) ∗ (y 7→ , a) ∗ true

that is, ∃x.∃y.τtail(x, a) ∗ τtail(y, a) ∗ true

Reachability — a is possibly reachable from x:

rx(a) = τ∗tail(x, a)

a |= µZ.at x∨ ∃τ−1
tail.Z

rx(a) =lfp (x = a) ∨ (∃a ′.τtail(x, a
′) ∗ ra ′(a))

These are branching-time properties.

(-: / 10

Reachability — necessarily, all nodes reached from a are “happy”:

Happy(a) = ∀y.τ∗tail(a, y) ⊃ happy ∈ IA(y)

a |= νZ.isHappy∧ ∀τtail.Z

(Assumes that IA(a) ⊆ IC(c), when c ∈ γ(a).)

That is, there does not exist a reachable node/cell that lacks

happy.

End cell — necessarily, there is no cell linked to a:

noTail(a) = ∀y.¬τtail(a, y)

a |= ∀τtail.false

That is, there does not exist a tail-transition from a.

With the over-approximation model, we validate “universal

properties” (by invalidating existential ones).

(-: / 11

What does an abstract transition denote (2)?

what must necessarily execute:

if b

...

elsethen

b

s1

if b

...

elsethen

b !b

s1 s2

what must necessarily be linked:

(-: / 12

What does “solid” denote? a1a0

Underapproximation — 1 — must/necessarily: All corresponding

concrete structures must possess this transition.

This is a (dual) simulation:

Given γ : A → P(C), KC = 〈C, τC, IC〉, KA = 〈A, τA, IA〉, KA is

dual-γ-simulated by KC (written KA ¢−1
γ KC)

iff for all a ∈ A, c ∈ γ(a), a ′inA,

1. IC(c) ⊇ IA(a)

2. a −−→ a ′ implies there exists c ′ ∈ C such that c ′ ∈ γ(a ′) and

c −−→ c ′.

That is, KC “mimicks” the must-transitions and atomic

must-properties of KA.

(-: / 13

Example under-approximation: A = {⊥, a0, a12,>}

α{} = ⊥

α{c0} = a0

α{c1} = a12 = α{c2}

αS = >, otherwise

γ(⊥) = {}

γ(a0) = {c0}

γ(a12) = {c1, c2}

γ(>) = {c0, c1, c2}

IA(a) = ∩{IC(c) | c ∈ γ(a)}

a0 a12 c0

c1

c2

(-: / 14

What properties can we safely check?

a is necessarily reachable from x:

rx(a) = τ∗tail(x, a)

a |= µZ.at x∨ ∃τ−1
tail.Z

rx(a) =lfp (x = a) ∨ (∃a ′.τtail(x, a
′) ∗ ra ′(a))

possibly, all cells reached from a are “safe”:

isSafe(a) = ∀y.τ∗tail(a, y) ⊃ happy ∈ IA(y)

a |= νZ.isHappy∧ ∀τtail.Z

(Assumes that IA(a) ⊇ IC(c), when c ∈ γ(a).)

That is, there does not exist a necessarily-reachable cell/node that
lacks happy — the possibility that all reachable cells are happy
still exists.

With an under-approximation model, we validate “existential
properties” (and refute universal ones).

(-: / 15

Mixed and modal transition systems

A mixed Kripke transition system is two systems, an under

approximation and an over approximation, with the same

node/cell/state set:

〈Σ, τmust, τmay, Imust, Imay〉

When τmust ⊆ τmay and Imust v Imay, the system is modal.

When τmust = τmay and Imust = Imay, the system is concrete —

an ordinary Kripke transition system.

a0 a12
a0 a12

(-: / 16

Simulation is replaced by re£nement:
Given MC = 〈C, τmust

C , τ
may
C , Imust

C , Imay
C 〉 and

MA = 〈A, τmust
A , τ

may
A , Imust

A , Imay
A 〉,

MC re£nesMA iff

〈C, τmay
C , Imay

C 〉¢γ 〈A, τ
may
A , Imay

A 〉

and

〈A, τmust
A , Imust

A 〉¢−1
γ 〈C, τmust

C , Imust
C 〉

That is, MA’s may-parts simulate MC’s, and MC’s must-parts
dual-simulate MA’s.

When MC re£nesMA,

¨ MC’s under-approximation is larger (more precise) than MA’s

¨ MC’s over-approximation is smaller (more precise) than MA’s.

When M is concrete, its under and over-approximations coincide;
they are exact.

(-: / 17

We can validate a full predicate logic on a MTS

We validate universal subformulae on the upper-approximation

and existential subformulae on the lower-approximation, jumping

“back and forth” as needed.

We validate a negated formula by refuting it on the dual

approximation.

Example: a12a0

a0 |=under ∃τ.∀τ.¬at a0

iff a12 |=over ∀τ.¬at a0

iff a12 |=over ¬at a0

iff a12 6|=under at a0

iff true

(-: / 18

For a MTS, where τmust ⊆ τmay, there are only three possible
outcomes: φ necessarily holds, φ possibly holds, φ not possibly
holds.

TVLA models have must-may nodes/cells such that (i) a
must-node can not be split (or merged) in a re£nement; (ii) a
may-node can not be merged in a re£nement. We might de£ne an
extension of MTS with such nodes. (We might also restrict γ!)

The re£nement relation, quotiented, is a partial ordering in a dcpo
of modal transition systems. Given MTS, M, its re£nements form
a Kripke model unto which we can apply a modal logic:

¨ M |= 2φ — all re£nements satisfy φ (intuitionistic)

¨ M |= 23φ — always possible to re£ne to satisfy (dense)

¨ Generalized model checking examines only the limit points of
M’s Kripke model. (Aprés Michael, these coincide.)

(-: / 19

Whaley and Rinard’s representation

class C {
 private C f;
 public void m(C x) {
 C y = new C();
 this.f = y;
 y.f = x.f; }
}

this x

y

f f

f

An invocation, like a.m(b), links the actual’s shape to the formal’s:

a b c

f f

f

f

f

a b c

f

(perhaps we know nothing
of b’s links)

Caller context: Result of binding:

(-: / 20

Application of separation logic to Whaley-Rinard
analysis

Consider this Whaley-Rinard shape analysis of m(C x){...}:

this x

y
sndfst

fst

function m(C x) {
C y := new C(this,x);
this.fst := y; }

class C {
C fst; C snd;

}

The shape analysis is neatly summarized as this Hoare triple:

m(C x){ {this 7→ a, b}

C y := new C(this, x); this.fst := y;

{∃y. (this 7→ y, b) ∗ (y 7→ this, x)}

}

(-: / 21

Say there is an invocation, g.m(h):

g

snd

snd

fst

fst

h
g

snd

fst

h
Caller context: Result

of binding:

The corresponding step in separation logic is

{g 7→ h, h} g.m(h) {∃y.(g 7→ y, h) ∗ (y 7→ g, h)}

because [this/g, h/x] into the previous triple for m(C x):

{this 7→ a, b}

C y := new C(this, x); this.fst := y;

{∃y. (this 7→ y, b) ∗ (y 7→ this, x)}

(-: / 22

Using separation logic as an abstract semantic
domain

There are precedents: CousotCousot79 used predicate logic
assertions as an abstract computation domain and used the sp
and wp rules as the abstract program operations for a
while-language.

Because sp and wp are sound and relatively complete, the
transformers, used as abstract operations on the assertions as
input data, do not lose precision.

That is, the transformers were complete with respect to the Galois
connection that mapped assertions to the store sets they denoted:

Forwards completeness: α(opC(S)) = opA(α(S)), where
opA = α ◦ opC ◦ γ.

If we start with an initial S0 in the image of γ, then all subsequent
abstract computation steps remain in the image of γ.

(-: / 23

“Store-less” models: Path sets

Jonkers and Deutsch proposed “storeless” (heap-less) models:

.

k3

k2k1

fst snd
fst

x

y

it

fst snd

snd

The heap shape is modelled by right-regular equivalence sets of
paths from the “entry point,” it:

{fsti | i ≥ 0} {fsti.snd | i ≥ 0}

{fsti.snd.fst | i ≥ 0} {fsti.snd2 | i ≥ 0}

Deutsch developed clever fsa over-approximations of the
equivalence classes.

(-: / 24

Blanchet’s path models

Many questions regarding escapes, leaks, and aliases are

answered by the paths from one object of interest to another, e.g.,

from a global variable to the heap’s entry point:

k1 k2

k3

.

snd
fst snd

fst

x

y

it

fst snd

{y.snd−1.fsti.(fst−1)j | i, j ≥ 0}

∪ {x.fst.snd−1.fsti.(fst−1)j | i, j ≥ 0}

The paths have been normalized by the cancellation law,

fst−1.fst ≡ ε

The cancellation law gives the paths a pleasant, regular format.

(-: / 25

The paths are traces through the heap, and questions about the

traces can be asked in the language of linear temporal logic. Let π

be a trace from variable x to it, the result/heap-entry.

In LTL, traces are assumed to be in£nite, so we can extend each

such (£nite) π by suf£xing (done−1)ω to it.

We can ask standard questions:

¨ Is part of x embedded in the result? π |= at x∧ F(des−1)

¨ Does x’s cell itself escape in the result? π |= at x∧G(des−1)

¨ Is part of x aliased to y? π |= F(at y)

¨ Is x a cyclic structure? π |= GF(at x)

(-: / 26

When the objects are ML-typed, Blanchet used the ML-types as

fsa’s and represented the in£nite-cardinality trace sets as a £nite

set of fsa-state names.

A model check can be performed on the state names by using the

ML-type-fsa’s as the £nite-state structures that are linear-time

model checked.

I do not know of a serious development of linear-time shape

analysis, but it makes good sense to try it!

(-: / 27

Paths semantics of the pairs language

A expression evaluates to a Pathset:

Pathset = P(Path)

Path = Const.Selector∗

Selector = {fst−1, snd−1, fst , snd}

A path travels from a point of interest (here, the constants) to the
result of the expression (“it”):

` k ⇓ {k}
` e ⇓ S

` e.fst ⇓ S ◦ fst

` ei ⇓ Si i ∈ 1..2

` (e1, e2) ⇓ S1 ◦ fst−1 ∪ S2 ◦ snd−1

Note: ◦ is path composition, S ◦ i = {s · i | s ∈ S},

i ∈ {fst , snd , fst−1, snd−1}, where destructors cancel constructors:
p · fst−1 · fst = p.

(-: / 28

Inserting regions into the paths semantics

Let assertions have the format, Sx1
∗ Sx2

∗ · · · ∗ Sxn , where each

Sxi
has form, {v.s∗ = xi}, describing paths from values, v, to the

region’s entry point, xi. (The ∗ asserts that the paths in region Sx
are use objects that are disjoint from all other heap regions, Sy,

Y 6= x.)

` k ⇓ {k = it}

` e1 ⇓ S1 ` e2 ⇓ S2
` (e1, e2) ⇓ {m.fst−1 = it, n.snd−1 = it} ∗ [m/it]S1 ∗ [n/it]S2

(Note: m and n are implicitly existentially quanti£ed.)

` e ⇓ S
` e.fst ⇓ S ◦ fst

where
(Sx1

∗ Sx2
∗ · · · ∗ Sxn ∗ Sit) ◦ i

= Sx1
∗ Sx2

∗ · · · ∗ Sxn ∗ (Sit ◦ i)

(-: / 29

Summary

¨ For analyses that deduce properties of paths, under- and

over-approximation issues are crucial.

¨ Branching-time models of heap are widely used, but maybe

Deutsch and Blanchet know better — end-users prefer

linear-time logic over branching time; shouldn’t we?

¨ Integration of spatial logics into heap abstraction and static

analysis seems worth a try.

(-: / 30

References

1. This talk: www.cis.ksu.edu/~schmidt/papers
Will be posted next week, with the following bib list completed:

2. Bruno Blanchet. Escape analysis: application to ML and Java.
PhD thesis, Ecole Polytechnique, Paris, 2000.

3. Patrick and Radhia Cousot. Systematic design of program
analysis frameworks. POPL 1979

4. D. Dams, R. Gerth, O. Grumberg. Abstract interpretation of
reactive systems. ACM TOPLAS (19) 1997.

5. Alain Deutsch. Operational semantics of programming
languages and representation in relations on rational
languages. PhD thesis, Univ. of Paris VI, 1992.

6. M. Huth, R. Jagadeesan, D. Schmidt. A domain equation for
re£nement of partial systems. MSCS, in print.

(-: / 31

7. Kim Larsen. Modal speci£cations. CAV’89, LNCS 407.

8. M. Sagiv, T. Reps, R. Wilhelm. Parametric shape analysis via

3-valued logic. POPL 1999.

9. Moshe Vardi. Branching vs. linear time: £nal showdown.

Invited talk, ETAPS 2001.

(-: / 32

