
Storeless Semantics and Separation Logic
(many preliminary ideas, few technical results!)

David Schmidt (conversations with Anindya Banerjee)

Computing and Information Sciences Department
Kansas State University

Storeless semantic models

Jonkers and then Deutsch proposed “storeless” semantic models for heap
storage. Example: A heap of three pair objects,

`1 7→ `1, `2

`2 7→ k1, k2

`3 7→ `2, k3

where k1, k2, k3 are non-pointer “constants” and x binds to `3 and y binds
to `2. This might be modelled by

– a directed graph, where nodes represent objects and arcs represent fields
held within the objects:

k1 k2

k3

snd
fst snd

fst

x

y

it

fst snd

– a partitioned set of paths from the heap’s “entry point,” it, where each
partition identifies an object:

{fst i | i ≥ 0} {fst i.snd | i ≥ 0}
{fst i.snd.fst | i ≥ 0} {fst i.snd2 | i ≥ 0}

– a set of paths from the heap’s objects of interest to its entry point:

{y.snd−1.(fst−1)i | i ≥ 0} ∪ {x.fst .snd−1.(fst−1)i | i ≥ 0}

These modellings hide the locations that name the objects.
The semantic models can be abstracted to finite-node “shape graphs”

[Sagiv,Reps,Wilhelm] or to regular expressions that denote path sets [Deutsch]
or to state names in finite automata, one automaton for the entry and each
named object of interest [Blanchet].

Axiomatic logic is a storeless semantic model

Hoare logic hides the store in its assertions, e.g.,

{[E/x]P} x:= E {P}

defines the semantics of assignment while hiding x’s location.
Perhaps a Hoare logic of pointers and objects will help us understand

and formalize “storeless semantics” and its abstractions?
For

k1 k2

k3

snd
fst snd

fst

x

y

it

fst snd

we can use the assertion language of Reynolds’s and O’Hearn’s separation
logic to assert the heap shape. Here are some assertions that describe the
graph with respect to it:

∃`.∃m. (it 7→ it, `) ∗ (` 7→ k1, k2) ∗ (m 7→ `, k3)

∃`.∃m. (it 7→ it, `) ∗ (` 7→ k1, k2) ∗ true

The assertion language of separation logic is a language for defining
storeless semantic models.

Separation logic of heap storage

Developed by Ishtiaq, O’Hearn, Pym, Reynolds, and Yang, separation-logic
is a Hoare logic for reasoning about imperative programs that use heap
storage, in terms of Hoare triples, {p}S{p′}.

S ::= x := E | x := E.i | E.i := E′ | x := newC(E1, E2) | · · ·
E ::= k | E op E′ | x | · · ·
p ::= α | false | p ⊃ p ′ | ∃x .p | emp | p ∗ p ′ | p −∗ p ′

α ::= E1 = E2 | E 7→ E1, E2

For simplicity, assume that objects, a, hold exactly two fields, fst and snd,
e.g, (a 7→ b, c) where a.fst = b and a.snd = c.

Predicates, p, express properties about heap shape. Here is a sample Hoare
triple, which asserts pre- and post-conditions about a two-object heap:

{∃a.(x 7→ a, b) ∗ (a 7→ b, b)} x.fst := x {∃a.(x 7→ x, b) ∗ (a 7→ b, b)}

Here, x and b are free identifiers — local variables or “dangling pointers.”
Intuitions about the new logical connectives:

– E 7→ E1, E2 holds for heap, h, iff h consists of just one cell whose
address is E and whose contents are E1, E2.

– p1 ∗ p2 holds for heap, h, iff h can be partitioned into h = h1 · h2, and
pi holds for hi.

– p′ −∗ p holds for heap h iff when h is extended by some h′ that makes
p′ hold, then p holds for the extended heap, h′ · h.

– ∗ and −∗ are categorical adjoints.

Separation logic proves correctness properties

Because we can assert disjointness of objects, we can write assertions, like
this one, which defines (tail-)noncircular lists:

ncList(`) ifflfp (`
.
= null) ∨ ((` 7→ hd , tl) ∗ ncList(tl))

The asterisk ensures that all objects in the list’s tail are disjoint from the
front object, addressed at `. We might prove that a copy function constructs
a noncircular list:

copy(C x) {
{ncList(x)}
y := if x = null

then x
else new C(x.fst, copy(y.snd));

return y;
{ncList(y)}
}

Concrete semantics of statements

A statement, S, operates on a state:

State = Stack ×Heap
Stack = V ar → Value
Heap = Location→ Object
Object = Value × Value
V alue = Constant ∪ Location

[[E]] : Stack → Value

[[S]] : State→ State

Here are some tersely stated semantics definitions:

[[x := E]]s, h = [s|x = [[E]]s], h

[[x := E.i]]s, h = [s|x = h([[E]]s).i], h

[[E.fst := E′]]s, h = s, [h|h([[E]]s) 7→ ([[E′]]s, h([[E]]s).snd)]

[[x := newC(E1, E2)]]s, h = [s|x = `fresh], [h|`fresh 7→ ([[E1]]s, [[E2]]s)]

Semantics of predicates

Let h#h′ denote that (the domains of) heaps h and h′ are disjoint.

s, h |= false never

s, h |= p ⊃ p′ iff s, h |= p implies s, h |= p′

s, h |= ∃x.p iff exists v ∈ Value s.t. [s|x 7→ v], h |= p

s, h |= E=E′ iff [[E]]s = [[E′]]s

s, h |= E 7→ E1, E2 iff {[[E]]s} = dom(h), h([[E]]s) = r,
r.fst = [[E1]]s, and r.snd = [[E2]]s

s, h |= emp iff dom(h) = {}

s, h |= p ∗ p′ iff there exist h0, h1 such that h0#h1,
h = h0 · h1, s, h0 |= p, and s, h1 |= p′

s, h |= p−∗ p′ iff for all h′, if h′#h and s, h′ |= p,
then h · h′ |= p′

Remember that

– E 7→ E1, E2 holds only for a one-object heap whose domain is address
E

– emp holds only for the empty heap
– assertions p and p′ about disjoint regions of heap are composed as p∗p′
– p′ −∗ p describes possible future worlds, say, due to object allocation

A language of pairs

We use separation-logic assertions to define a concrete semantics for a
language of pair objects (let k ∈ Const):

e ::= k | (e1, e2) | e.i i ∈ {fst , snd}

(This language is much simpler to study than the imperative language.)
A expression evaluates to a Value and constructs objects in the heap:

Value = Const ∪ Location
Heap = Location→ Object
Object = V alue× V alue

Here are the big-step concrete semantics rules, where a configuration, `
e ⇓ v, h, asserts that expression e evaluates to v and constructs subheap
h:

` k ⇓ k, {}

` ei ⇓ vi, hi i ∈ 1..2

` (e1, e2) ⇓ `fresh , (`fresh 7→ v1, v2) ∗ h1 ∗ h2

` e ⇓ `, h (` 7→ v1, v2) ∈ h
` e.fst ⇓ v1, h

Note: ∗ is used as heap concatenation, and ` 7→ v1, v2 represents an object.
We can read a pair, v, h, as the state, [it = v], h.
For example, we can deduce that

` ((k1, k2).snd, (k3, k4)) ⇓ `3, (`1 7→ k1, k2) ∗ (`2 7→ k3, k4) ∗ (`3 7→ k2, `2)

Garbage sensitivity

When we deduce ` e ⇓ v, h, we can read this

– operationally, as “e computes to the state, [it = v], h”
– axiomatically, as “e has the property that ∃̄`i.it = v ∧ h”

Example:
` (k1, k2).snd ⇓ k2, (`1 7→ k1, k2)

— which computes the state, [it = k2], (`1 7→ k1, k2);
— which asserts ∃`1.it = k2 ∧ `1 7→ k1, k2.

(Of course, if ` e ⇓ v, h, then [it = v], h |= ∃̄`i.it = v ∧ h.)

When we read the concrete semantics as an axiomatic logic, we see it
is “garbage sensitive,” that is, assertions can be invalidated by garbage
collection.

For example, if we garbage-collect the above heap, producing the state,
[it = k2], [], we see that

[it = k2], [] 6|= ∃`1.it = k2 ∧ `1 7→ k1, k2

This warns us: An axiomatic logic for the pairs language should derive
“garbage insensitive” assertions.

Paths semantics of the pairs language

We write the big-step definition of the paths semantics for the language:
A expression evaluates to a Pathset:

Pathset = P(Path)
Path = Const.Selector∗

Selector = {fst−1, snd−1, fst , snd}

We use Blanchet’s presentation: a path travels from a point of interest
(here, the constants) to the result of the expression (“it”):

` k ⇓ {k}

` ei ⇓ Si i ∈ 1..2

` (e1, e2) ⇓ S1 ◦ fst−1 ∪ S2 ◦ snd−1

` e ⇓ S
` e.fst ⇓ S ◦ fst

Note: ◦ is path composition,

S ◦ i = {s · i | s ∈ S}, i ∈ {fst , snd , fst−1, snd−1}

where destructors cancel constructors:

p · fst−1 · fst = p

The analysis calculates a semantics that lists the “paths of interest” to it
and is a sound semantics with respect to the concrete semantics.

The definition of ◦ implies a kind of “garbage collection.” For example,

` ((k1, k2).snd, (k3, k4)) ⇓ {k2.fst−1, k3.fst−1.snd−1, k4.snd
−1.snd−1}

because

` (k1, k2).snd ⇓ {k1.fst−1, k2.snd
−1} ◦ snd = {k2}

But more precisely, the definition of ◦ makes the assertions garbage insen-
sitive.

Paths semantics translated into separation logic

We can use separation logic to better understand paths analysis, by trans-
lating the paths into assertions in the logic. For example, the path k.fst−1

will be written hereon as k.fst−1 = it,

which will abbreviate the assertion, (it 7→ k,)

where a 7→ b, abbreviates ∃c.a 7→ b, c. The assertion holds true for a heap
region that holds the object named by it whose first component is k.

The abbreviations generalize to finite sequences, e.g., k.fst−1
1 . · · · .fst−1

n =
it abbreviates

∃`1 · · · ∃`n−1.(it 7→ `n−1,) ∗ (`n−1 7→ `n−2,) ∗ · · · ∗ (`1 7→ k,)

Such a path identifies a heap region in which one can traverse from k to
the entry location, it.

Dually, a path with a destructor, like a.fst = it, is expressed

(a 7→ it,)

Destructors should cancel constructors, e.g.,

k.fst−1.fst = it lets us deduce that k = it

and we must give a translation into separation logic that supports this. Let
p ∈ Path; translate p = it as [[p]]it, where

p ::= k | p.fst | p.fst−1

[[k]]it = (k = it)
[[p.fst−1]]it = ∃`.(it 7→ `,) ∗ [`/it][[p]]it
[[p.fst]]it = ∃m.[m/it][[p]]it ∧ ((m 7→ it,) ∗ true)

The first clause asserts no objects are needed to proceed from k to it; the
second clause asserts that the objects that constitute p are augmented by
one more; the third clause asserts that the objects along path p include a
head object, m.

For example,

[[k.fst−1.fst]]it = (∃m∃`.((m 7→ `,)∗k = `)∧((m 7→ it,)∗true)) ⇒ k = it

A set of paths, S, is translated to
∧
p∈S [[p]]it

Now, we might formalize the definition of ◦ in separation logic as an
assertion-normalization operation and prove it sound and prove its results
as garbage insensitive.

Inserting heap regions into the paths semantics

We can analyze the heap’s internal structure in finer detail. For example,
the construction, (e1, e2), assembles the subheap constructed by e1 with
that constructed by e2 and a new object. We revise the semantics to show
the subheaps.

Now, assertions will have this normal form:

Sx1 ∗ Sx2 ∗ · · · ∗ Sxn
where each Sxi has the form, {v.s∗ = xi}, describing paths from values to
the heap region entry point, xi. (The ∗ asserts that the paths in a region,
Sx, are using objects that are disjoint from all other heap regions, Sy,
Y 6= x.)

The entry points can be it or an entry point of a disjoint heap region.

k ∈ Const
v ∈ Leaf = Const ∪ Id
x ∈ Entry = Id ∪ {it}
s ∈ Selector = {fst , snd, fst−1, snd−1}
p ∈ Path = Leaf .Selector∗ = Entry

Here are the revised rules:

` k ⇓ {k = it}

` e1 ⇓ S1 ` e2 ⇓ S2

` (e1, e2) ⇓ {m.fst−1 = it, n.snd−1 = it} ∗ [m/it]S1 ∗ [n/it]S2

(Note: m and n are implicitly existentially quantified.)
The third rule remains the same:

` e ⇓ S
` e.fst ⇓ S ◦ fst

where
(Sx1 ∗ Sx2 ∗ · · · ∗ Sxn ∗ Sit) ◦ i

= Sx1 ∗ Sx2 ∗ · · · ∗ Sxn ∗ (Sit ◦ i)

Suspended paths

When we introduced subregions, we introduced possible “suspended” paths.
For example, this heap description,

{k.fst−1 = m} ∗ {m.fst = it}

should reduce to k = it, by merging the two regions.
But if m is free, e.g., the interface point to an external region, then

the path, m.fst = it, is “suspended” — the destructor cannot cancel a
constructor.

To understand suspended paths and region merging, we provide a more
detailed translation of paths into the assertion language of separation logic:

p ::= k | x | p.fst | fst−1

A path, p = x, is translated as [[p]]x:

[[k]]x = (k = x)

[[p.fst−1]]x = ∃`.(x 7→ `,) ∗ [`/x][[p]]x

[[p.fst]]x = ∃m. ([m/x][[p]]x) ∗ (∀v. (m 7→ v,)−∗ ((m 7→ x,) ∧ v = x))

Recall the semantics of p−∗ p′:

s, h |= p−∗ p′ iff for all h′, if h′#h and s, h′ |= p, then h · h′ |= p′

The point is: (m 7→ ,)’s presence is not guaranteed; the path is “sus-
pended” until the antecendent object is supplied.

Since ∗ and −∗ are adjoints, the cancellation properties of paths are
preserved. For example,

[[k.fst−1.fst]]it
= ∃m.(m 7→ k,) ∗ (∀v.(m 7→ v,)−∗ ((m 7→ it,) ∧ v = it))
⇒ ∃m.(emp ∗ (m 7→ k,)) ∗ ((m 7→ k,)−∗ ((m 7→ it,) ∧ k = it))
⇒ ∃m.emp ∗ ((m 7→ k,) ∗ ((m 7→ k,)−∗ ((m 7→ it,) ∧ k = it)))

The adjunction, A ∗ (A−∗B)⇒ B, lets us deduce that

[[k.fst−1.fst]]it ⇒ ∃m.(m 7→ it,) ∧ k = it⇒ k = it

The translation as a concretization map

The translation of a path into a separation-logic assertion suggests that
the latter is a concretization of the former.

This suggests that the translation, [[·]]m, induces an upper adjoint of a
Galois connection between P(SeprationLogicAssertion) and P(Path).

This also suggests that the lower adjoint of the Galois connection defines
a “reachability analysis” of a set of assertions in separation logic.

But the details are not yet developed.

Escape analysis and garbage collection with suspended paths

Let x ∈ Identifier label an object of interest or an extry point into a heap
region. We might “suspend” x to learn which components of an expression’s
answer use x’s storage components:

If ` e ⇓ S and there exists a path, x.s∗ ∈ S, then x escapes from e’s
computation.

Example: let x and z label objects of interest, and let y name a sus-
pended region of heap objects. We can deduce that

` x: ((y: (k1, k2)).snd, (z: (k3, k4)).fst)
⇓ {x = it, y.snd.fst−1 = it, k3.snd

−1 = it}
∗ {k1.fst−1 = y, k2.snd

−1 = y}

Hence, object x escapes and objects within region y is needed to compute
the result.

Because path assertions are garbage-insensitive, object z can be garbage
collected. Indeed, if we prove a “soundness” result (namely, that paths
analysis generates all paths that might appear in the computation’s result),
then we can argue that z’s absence justifies garbage-collecting the object
z names.

Adding identifiers

Syntax:

e ::= k | (e1, e2) | e.i | x | let x = e1 in e2

Store = Identifier → Value
Heap = Location → Object

A configuration has the format

s, h ` e ⇓ v, h′

where v, h′ can be read as [it = v], h′.
The concrete semantics:

s, h ` k ⇓ k, []

s, h ` ei ⇓ vi, hi i ∈ 1..2

s, h ` (e1, e2) ⇓ `fresh , (`fresh 7→ v1, v2) ∗ h1 ∗ h2

s, h ` e ⇓ `, h′ (` 7→ v1, v2) ∈ h′ ∗ h
s, h ` e.fst ⇓ v1, h

′

s, h ` x ⇓ s(x), []

s, h ` e1 ⇓ v1, h1 [s|x = v1], h1 ∗ h ` e2 ⇓ v2, h2

s, h ` let x = e1 in e2 ⇓ v2, h1 ∗ h2

Paths semantics (Blanchet)

` k ⇓ {k = it} ` x ⇓ {x = it}

` e1 ⇓ S1 ` e2 ⇓ S2

` let x = e1 in e2 ⇓ [S1/x]S2

This makes let into a syntactic device and generates suspended paths
whenever a let-defined identifier is referenced.

Beyond paths

Let’s try to write a sound-and-relatively-complete axiomatic semantics for
the pairs language that derives assertions in full separation logic. Configu-
rations take the form,

M ` e ⇓ S
where M is an assertion about the state in which e computes, and S is
an assertion about the result state generated by e. That is, M ` e ⇓ S is
sound iff, for all s, h,

if s, h |= M
and s, h ` e ⇓ v, h′ in the concrete semantics ,

then [s|it = v], h′ |= S

Syntax:

e ::= k | x | let x = e1 in e2 | (e1, e2) | x.i

Let E1
.
= E2 abbreviate E1 = E2 ∧ emp.

emp ` k ⇓ it .= k

[x/it]P ∧ emp ` x ⇓ P ∧ emp

M ` e1 ⇓ S1 (∃x.M) ∗ [x/it]S1 ` e2 ⇓ S2

M ` let x = e1 in e2 ⇓ ∃x.[x/it]S1 ∗ S2

(When evaluating the body of the let, we must remember that some
existing paths might reference the hidden name, x, and not the local one.)

M ` e1 ⇓ S1 M ` e2 ⇓ S2

M ` (e1, e2) ⇓ ∃m.∃n.(it 7→ m,n) ∗ [m/it]S1 ∗ [n/it]S2

(x 7→ E1, E2) ` x.fst ⇓ it .= E1

These rules can generate garbage-sensitive assertions; indeed, we can com-
pute the concrete semantics with them.

We require some structural rules to aid the basic ones; first, there is a
Consequence Rule:

M ′ ⇒M M ` e ⇓ S S ⇒ S′

M ′ ` e ⇓ S ′

where S ⇒ S ′ iff for all s, h, s, h |= S implies s, h |= S′.
Next, there is a Frame Rule:

M ` e ⇓ S
M ′ ∗M ` e ⇓ S

There is also quantifier rule:

M ` e ⇓ S
∃`.M ` e ⇓ ∃`.S ` not free in e

and a substutution rule:

M ` e ⇓ S
[Ei/xi](M ` e ⇓ S)

Garbage sensitivity

It is inconvenient to prove explicitly that an assertion is garbage insensis-
tive. O’Hearn and his colleagues have shown that this restricted syntax of
assertions:

p ::= α | false | p ⊃ p ′ | ∃x .p
α ::= E1 = E2 | E 7→ E1, E2

is garbage insensitive, when the above formulas are translated by the dou-
ble negation translation and interpreted in an intuitionistic model theory.
(Heaps are partially ordered: h v h′ iff graph(h) ⊆ graph(h′).)

Future research

This work is not yet completed; many basic results must be proved.

Our long-term objective is to develop a methodology for modular static
analysis, where the modularity can be based on either

– program component (class or function)
– storage region (storage hierarchies or encapsulation levels)

We want to analyze languages that dynamically allocate storage and
use a “controlled” assignment — assignment restricted to a storage region.
Since assignment does a free-wheeling “swing” of a pointer variable, we
had big trouble adapting path-based analyses to storage regions named by
source-program identifiers. So, we are starting from scratch to understand
what we can do with named regions and “pointer swing.”

References

The slides for this talk: http://www.cis.ksu.edu/~schmidt/papers

Peter O’Hearn’s web page:
http://www.dcs.qmul.ac.uk/~ohearn/

John Reynolds’s web page (his course notes and LICS2002 paper, in par-
ticular):
http://www-2.cs.cmu.edu/afs/cs.cmu.edu/user/jcr/www/

Bruno Blanchet’s PhD thesis:
http://www.di.ens.fr/~blanchet/escape-eng.html

