
Natural Deduction Proof Checker

User’s Guide

Brian Mulanda and Rod Howell

Dept. of Computing and Information Sciences

Kansas State University

Manhattan, KS

USA

Version 0.2

January 30, 2007

Contents

1 Introduction 3

2 Installation 3

3 The User Interface 4

3.1 Starting a New Propositional Logic Proof 5

3.2 Starting a New Predicate Logic Proof 6

3.3 Editing a Proof . 8

3.3.1 Navigating the columns in a proof using the Tab key . 9

3.3.2 Navigating with the arrow keys 9

3.3.3 Adding new lines to the proof 10

3.3.4 Deleting lines from the proof 10

3.4 Using Proof Boxes . 11

3.4.1 Valid boxes . 12

3.4.2 Drawing a box . 12

3.4.3 Resizing a box . 12

3.4.4 Deleting a box . 14

3.5 Changing the Font Size . 14

3.6 Checking a Proof . 14

3.7 Clearing the Message Area . 15

3.8 Saving a Proof . 15

3.9 Exporting a Proof to LATEX 16

3.10 Opening an Existing Proof 17

3.11 Determining the Version Number 18

4 Propositional Logic Proofs 18

4.1 Propositional Logic Formulas 19

1

4.2 Boxes and Accessibility of Proof Lines 21

4.3 Proof Rules for Propositional Logic 21

5 Predicate Logic Proofs 24

5.1 Predicate Logic Formulas . 25

5.1.1 Constants and variables 25

5.1.2 Terms and functions 25

5.1.3 Predicates . 26

5.1.4 Formulas . 27

5.2 The Second Column . 28

5.3 Proof Rules for Predicate Logic 28

5.3.1 Free occurrences of variables 28

5.3.2 Substitution . 29

5.3.3 Applying proof rules in predicate logic 30

2

1 Introduction

This User’s Guide documents the installation and use of the Natural De-
duction Proof Checker, a program for checking the correctness of natural
deduction proofs. This is not a tutorial on natural deduction proofs. The
style of proofs acceptable to this program is patterned closely after the
presentation given in [1], which gives an excellent introduction to natural
deduction proofs.

Please submit all bug reports, including errors in this document, to

rhowell@ksu.edu

Include the following information regarding any software bug:

• A description of the cause of the error. If possible, provide enough
information so that the bug can be reproduced. If relevant, attach a
proof illustrating the bug.

• An explanation of why you believe this to be a bug (unless this is
obvious).

• The operating system you are using.

• The version of the JavaTM Runtime Environment your machine is Java and all

Java-based

marks are

trademarks or

registered

trademarks of

Sun

Microsystems,

Inc. in the U.S.

and other

countries.

using (if you know it).

The remainder of this document is organized as follows. Section 2 gives
instructions for installing the program. Section 3 describes the basic in-
teractions with the program, without going into the details of how correct
proofs are constructed. Section 4 then describes how propositional logic
proofs are constructed and checked. Section 5 extends this description to
predicate logic proofs.

2 Installation

The Natural Deduction Proof Checker is currently available only to students
of CIS 301 at Kansas State University. The program should run on any
platform with a graphical user interface and the Java Runtime Environment
(JRE), version 1.4 or later, installed. (The program has not been tested
under earlier versions of the JRE.)

3

rhowell@ksu.edu
mailto:rhowell@ksu.edu

If you are enrolled in CIS 301 at KSU, you may download the file ndpc.jar

from K-State Online to your desktop or another convenient location. Open-
ing this file (typically by double-clicking on its icon) will start the program.
Alternatively, the program can be started from a command line using the
following command:

java -jar ndpc.jar

If the program does not start, or if certain functionality appears to be absent,
it is likely that an appropriate version of the JRE is not installed on your
machine. To install the latest JRE, open

http://java.sun.com/javase/downloads/index.jsp

in a web browser, and click on the button labeled “Download” next to “Java
Runtime Environment”. Follow the instructions on the resulting page. If
you are installing the JRE on a Microsoft Windows operating system, you Windows is a

registered

trademark of

Microsoft

Corporation in

the United

States and other

countries.

should install the Offline Installation.

If you wish to install an earlier version of the JRE, open

http://java.sun.com/downloads/

and select your desired version of J2SE from the drop-down list entitled,
“Full Java SE Technology Downloads List”. On the resulting page, click
the link entitled, “Download J2SE JRE”, and follow the instruction on the
resulting page. Again, for a Microsoft Windows operating system, use the
Offline Installation.

3 The User Interface

The proof checker graphical user interface is composed of two main parts:
the proof area and the message area (see Figure 1). The proof area is where
you would key in the proof. This area will always be blank when you start
the program. The message area, located at the bottom of the interface,
is where messages — errors or information — are displayed during use of
the program. There is a movable divider between the proof area and the
message area. This divider can be move up or down by clicking and dragging
with the mouse. Also, clicking on the two triangles on the left-hand side of
the divider will cause the proof area or the message area to be hidden or
revealed.

4

http://public.online.ksu.edu/
http://java.sun.com/javase/downloads/index.jsp
http://java.sun.com/downloads/

propositional
logic proof

New
predicate
logic proof

Check
proof

Clear
message

area

Draw
box

Export
to LaTeX

Save
proof

Open
existing
proof

Message area

New

Proof area

Figure 1: The initial program window.

The remainder of this section describes all of the actions that can be taken
from this window. Because there is no proof in the window initially, only
three of these actions are enabled at this time:

• New Propositional Logic proof (Section 3.1);

• New Predicate Logic proof (Section 3.2); and

• Open existing proof (Section 3.10).

Once one of these actions is taken to begin or resume a proof, the remaining
actions are enabled.

3.1 Starting a New Propositional Logic Proof

A new propositional logic proof may be started in any of the following ways:

• Using the File menu: Select New, then Propositional Logic proof.

5

• Using pop-up menu: Right-click in the proof area, then select New,
then Propositional Logic proof.

• Using toolbar: Click the button shown in Figure 1.

• Using the shortcut key Ctrl+P.

If the proof area contains a proof that has not been saved, a confirmation
dialog is displayed asking whether the proof should be saved. If you click
Yes, the proof will be saved as described in Section 3.8. If you click No,
the old proof will not be saved before the new proof is started. If you click
Cancel or close the dialog box, a new proof will not be started, and the old
proof will not be saved.

Starting a new propositional logic proof causes the proof area to change,
as shown in Figure 2. In addition, the title of the window now gives the
following information:

• Propositional Logic proof: Indicates the type of logic you are using.

• Untitled: Indicates that no file is associated with this proof. Saving
the proof (see Section 3.8) will cause the file name to be displayed here
instead.

• The * at the end indicates that the proof has not been saved. Saving
the proof (see Section 3.8) will cause the * to disappear.

3.2 Starting a New Predicate Logic Proof

A new predicate logic proof may be started in any of the following ways:

• Using the File menu: Select New, then Predicate Logic proof.

• Using pop-up menu: Right-click in the proof area, then select New,
then Predicate Logic proof.

• Using toolbar: Click the button shown in Figure 1.

• Using the shortcut key Ctrl+D.

6

Formulas Rules Line
References

Line
numbers

Figure 2: A new propositional logic proof.

7

Formulas Rules Line
References

Line
numbers

Variables

Figure 3: A new predicate logic proof.

If the proof area contains a proof that has not been saved, a confirmation
dialog is displayed asking whether the proof should be saved. If you click
Yes, the proof will be saved as described in Section 3.8. If you click No,
the old proof will not be saved before the new proof is started. If you click
Cancel or close the dialog box, a new proof will not be started, and the old
proof will not be saved.

Starting a new predicate logic proof causes the proof area to change, as
shown in Figure 3. The window title also contains information about the
proof, as described in Section 3.1.

3.3 Editing a Proof

Text may be typed into any of the columns of the proof area except the first
(i.e., the line numbers column) in order to construct a proof. In most cases
the text will appear exactly as typed. There are three characters, however,

8

that will be displayed differently from their appearance on the keyboard:

Key Appearance Usage

Upper-case A ∀ Universal quantifier (predicate logic)
Upper-case E ∃ Existential quantifier (predicate logic)
Underscore () ⊥ Contradiction, or “bottom”

See Sections 4 and 5 for details on how valid proofs are constructed.

You may move the text cursor from one position to another in the proof using
either the keyboard or the mouse. Using the mouse, you may click on any
of the editable columns of an existing line to position the text cursor within
that column and on the chosen row. Keyboard navigation is described in
what follows.

3.3.1 Navigating the columns in a proof using the Tab key

Pressing the Tab key only moves the cursor to the next column to the right.
If the cursor is currently on the last (extreme right) column, pressing the
Tab key moves the cursor to the first editable column of the next row down.
The Tab key will have no effect if the cursor is on the last column of the last
row in the proof.

Pressing Shift+Tab moves the cursor to the previous column to the left.
If the cursor is currently on the first editable column, pressing the Tab key
moves the cursor to the last column of the previous row up. Shift+Tab will
have no effect if the cursor is on the first editable column of the first row in
the proof.

3.3.2 Navigating with the arrow keys

Normally, the left and right arrow keys will move the text cursor one charac-
ter to the left or right, respectively. When the text cursor is positioned after
the last character in a column, pressing the right arrow key will have the
same behavior as pressing the Tab key. When the text cursor is positioned
at the beginning of a column, pressing the left arrow key will have the same
behavior as pressing Shift+Tab.

To move to the next row down, press the down arrow key. To move to the
previous row up, press the up arrow key.

9

3.3.3 Adding new lines to the proof

You add a new line in the proof by pressing the Enter key. Any text to
the right of the cursor at the time you press the Enter key will be moved
to the next row down. For example, to add a new blank line after a row,
position the text cursor to the right of all text on that row. Then press
Enter. Alternatively, to add a new blank line prior to a row, position the
text cursor at the beginning of the first editable column in that row. Then
press Enter.

Whenever a new line is added, it is given a line number in the first column,
and the line numbers of all succeeding lines are incremented by 1. In the
last column, line numbers referring to lines following the line containing the
cursor are incremented by 1. Note that this means that if the cursor is
placed at the beginning of line i and Enter is pressed, references to line i in
the last column will not be incremented. For this reason, it usually works
better to insert new lines by placing the cursor at the end of the previous
line whenever possible.

In both propositional and predicate logic proofs, when a new line is added,
the cursor is placed in the formula column.

3.3.4 Deleting lines from the proof

Only blank lines can be deleted from the proof. You use the Backspace or
Delete keys to delete text from lines in the proof. (Pressing the Backspace

key at the beginning of a column in a non-blank row has the same effect as
pressing Shift+Tab; likewise, pressing Delete at the end of a column in a
non-blank row has the same effect as pressing Tab.) You can then delete the
blank line as follows.

To delete a blank line using the Backspace key, position the text cursor in
the first editable column of that line. Ensure that the line does not contain
any text. Then press the Backspace key. The blank line will be removed
and the text cursor will be positioned at the end of the previous row.

If the line to be removed is the first line in the proof, using the Backspace

key will not delete the line. Instead use the Delete key, as follows.

To delete a blank line using the Delete key, position the text cursor in the
last column of that line. Ensure that the line does not contain any text.
Then press the Delete key. The blank line will be removed and the text

10

Figure 4: A proof of ~P(b) ⊢ ∀ x(x = b -> ~P(x)).

cursor will be positioned at the beginning of the next row, which by now is
the current row.

If the line to be removed is the last line in the proof, using the Delete key
will not delete the line. Instead use the Backspace key.

Whenever a line is deleted, the line numbers in the first column for all
succeeding lines are decremented by 1. Line numbers in the last column are
also updated accordingly. Any references in the last column to the deleted
line are replaced by a question mark (?).

3.4 Using Proof Boxes

Boxes are an important part of most propositional and predicate logic proofs
(see, e.g., Figure 4). This section describes how these boxes may be drawn,
deleted, and modified. Refer to Sections 4 and 5 for details on the correct
use of boxes in proofs.

11

3.4.1 Valid boxes

Boxes may not overlap; i.e., they may be nested one completely inside of
another or completely separate, but one box cannot be both partly inside
and partly outside another box. If any of the operations described in this
section would result in an invalid box, that operation will fail and cause an
error message to be displayed in the message area.

3.4.2 Drawing a box

You can draw boxes in any of the ways described below.

• Using the mouse: First, click and hold down the left mouse button
anywhere within the proof area. Then drag the mouse upward or
downward and release. As you drag the mouse, the user interface
provides visual feedback of which rows will be enclosed by the box
when you release the mouse. To abort the drawing of the box, press
Esc prior to releasing the mouse button.

• Using the Proof menu: Select Draw Box.... This will open a dialog
box. In this dialog box, enter the start row and the end row of the
box. The rows numbers correspond to the line numbers in the proof.
The start and end rows can be the same to denote a box that encloses
a single row. The start row can also be either less than or greater than
the end row. The smaller of the two numbers will be used as the first
line in the box.

• Using the toolbar: Click the button shown in Figure 1, then proceed
in the same way as if using the Proof menu.

3.4.3 Resizing a box

To resize a box, first select the box by clicking on any of its edges. The box
will now be shown with thicker lines colored red, and containing “handles”
at the four corners and the midpoints of the two horizontal edges (see Figure
5). Next, move the mouse over any of the handles. When the mouse cursor
changes to a resize icon, click and drag the selected edge to set its new
position.

12

Handles

Figure 5: A selected box.

13

3.4.4 Deleting a box

To delete a box, first highlight the box by clicking on any of its edges, then
press the Delete key.

3.5 Changing the Font Size

You can change the font size for the proof area using the drop-down menu
labeled Font size: in the toolbar.

3.6 Checking a Proof

The correctness of a proof can be checked in any of the following ways:

• Using the Proof menu: Select Check.

• Using pop-up menu: Right-click in the proof area, then select Check

Proof.

• Using toolbar: Click the button shown in Figure 1.

• Using the function key F5.

If an error is found, a message describing the error is displayed in the message
area, and checking is terminated. If no errors are found, the message

Proof: OK

is displayed in the message area. This message indicates that the proof area
contains a correct proof of the sequent

φ1, . . . , φn ⊢ ψ

where φ1, . . . , φn are all of the formulas in the proof having a justification of
premise, and ψ is the last formula in the proof. For example, if you check
the proof if Figure 4, no errors will occur; hence, it is a valid proof of

~P(b) ⊢ ∀x(x = b -> ~P(x))

See Sections 4 and 5 for more details on the construction of correct proofs.

14

3.7 Clearing the Message Area

You can clear the message area in any of the following ways:

• Using the Proof menu: Select Clear Message Area.

• Using pop-up menu: Right-click in the proof area, then select Clear

Message Area.

• Using toolbar: Click the button shown in Figure 1.

• Using the function key F3.

3.8 Saving a Proof

The primary ways of saving a proof to a file are as follows:

• Using the File menu: Select Save.

• Using toolbar: Click the button shown in Figure 1.

• Using the shortcut key Ctrl+S.

In addition, whenever an action would cause changes to a proof to be lost
(e.g., starting a new proof or closing the program with an unsaved proof
in the proof area), a confirmation dialog asks whether that proof should
be saved. Clicking Yes also causes the proof to be saved using the same
mechanism.

If any of the above occur, the manner in which the proof is saved depends
upon whether the proof is associated with a file. If it is a new proof that has
never been saved, a file browser will be displayed to allow the selection of a
file name for the proof. If that file already exists, a warning to that effect
will be displayed. If the Continue button is clicked, the proof will be saved
in that file, overwriting the proof already stored there; otherwise the file
browser will remain displayed so that a different file name can be selected.
If Cancel is selected from the file browser, or if the file browser is closed, the
proof will not be saved.

If the proof to be saved is already associated with a file (i.e., because it has
been opened from that file or previously saved to that file), no file browser
will be displayed — the proof will simply be saved to the associated file.

15

This behavior may be overridden, forcing a file browser to be displayed,
using either of the following:

• Using the File menu: Select Save As....

• Using the shortcut key Ctrl+A.

3.9 Exporting a Proof to LATEX

LATEX is a markup language for producing documents in a variety of data
formats, including PDF, PostScript, and DVI. It is particularly adept at
formatting mathematical text. For example, LATEX was used to create this
document. The Natural Deduction Proof Checker provides a facility for
exporting a proof formatted using LATEX. The exported proof is in a form
suitable for inclusion into a larger LATEX document. For more information
on installing an using LATEX, see the following web site:

http://www.latex-project.org/

A LATEX export may be produced using any of the following:

• Using the File menu: Select Export to LaTeX....

• Using pop-up menu: Right-click in the proof area, then select Export

to LaTeX....

• Using toolbar: Click the button shown in Figure 1.

• Using the shortcut key Ctrl+E.

If any of the above are done, a file browser is displayed for the purpose of
obtaining a file name. This file browser operates in the same way as the file
browser described in Section 3.8.

Any LATEX file that includes the exported file must use the packages ams-

math, amssymb, array, and hhline. For example, suppose a proof is exported
to the file proof.tex. A minimal file for producing a document containing
this proof is shown in Figure 6. Figure 7 shows the LATEX-formated version
of the predicate logic proof shown in Figure 4.

A side-effect of including an exported proof is to set the LATEX length variable
extrarowheight to 0 points.

16

http://www.latex-project.org/

\documentclass{article}

\usepackage{amsmath,amssymb,array,hhline}

\begin{document}

\input{proof}

\end{document}

Figure 6: A LATEX driver for formatting an exported proof.

1 ¬P (b) premise

2 x0

3 x0 = b assumption

4 b = x0 Sym 3

5 ¬P (x0) =e 4, 1

6 x0 = b→ ¬P (x0) →i 3-5

7 ∀x(x = b→ ¬P (x)) ∀i 2-6

Figure 7: A proof formatted by LATEX.

3.10 Opening an Existing Proof

If you have saved a proof in your file system (see Section 3.8), you may open
it in one of the following ways:

• Using the File menu: Select Open....

• Using pop-up menu: Right-click in the proof area, then select Open....

• Using toolbar: Click the button shown in Figure 1.

• Using the shortcut key Ctrl+O.

In response to one of the above actions, a file browser will be displayed.
Using this file browser, you may navigate to the file containing the proof,
then click Open. If the proof area contains an unsaved proof, a confirmation
dialog will ask whether you want to save it first. If you click Yes, the existing
proof will first be saved (see Section 3.8). If you click Cancel or close the
confirmation dialog, the file will not be opened, and the existing proof will

17

Figure 8: A proof of p -> r ⊢ p v q -> q v r.

not be saved; otherwise, the proof in the selected file will be displayed in
the proof area.

3.11 Determining the Version Number

To determine the version number of your installation, select from the Help

menu, About Natural Deduction Proof Checker. A window with the version
number will open.

4 Propositional Logic Proofs

Figure 8 shows an example of a propositional logic proof in the proof checker.
The proof consists of lines of text and boxes. Each line of text has four
components, which correspond to the four columns in the proof checker:

• a line number, generated automatically;

• a propositional formula;

18

• a rule name; and

• a comma-separated list of 0 or more line numbers or ranges of line
numbers (which should refer to boxes).

The line numbers listed in the fourth column refer to lines which are used
to justify the given formula. For example, line 4 in Figure 8 contains the
formula r, which is justified by lines 1 and 3 using the rule named ->e.
The boxes in the proof determine which lines may be used to justify a given
formula.

In what follows, we will first describe what constitutes a valid propositional
logic formula. We will then discuss how boxes determine which lines may
be used to justify a given formula. Finally, we will present the proof rules
and show how they can be used to construct proofs.

4.1 Propositional Logic Formulas

Propositional formulas are made up of propositional variables and logical
connectives. The simplest formulas are propositional variables by them-
selves. A propositional variable is a string of alphanumeric characters of
length 1 or more such that

• the first character is either c, h, n, p, q, r, s, or t; and

• no character is either v or V (which are reserved as operators).

Let φ and ψ denote propositional formulas. We can then construct the
following propositional formulas:

Negation: ~φ

Conjunction: φ ^ ψ

Disjunction: φ v ψ (or alternatively φ V ψ)

Implication: φ -> ψ

Bi-implication: φ <-> ψ

The multi-character connectives -> and <-> must be typed with no inter-
vening blanks.

19

We use parentheses to denote the structure of a formula involving more that
one connective; e.g., to connect the formulas p ^ q and q -> r with the
connective v, we would write:

(p ^ q) v (q -> r)

In order to avoid an excess of parentheses, we introduce the following binding
precedence among the connectives, from highest to lowest:

1. ~

2. ^ and v (or equivalently V)

3. -> and <->

In addition, all binary connectives (i.e., all connectives except ~) associate
to the right. Thus, for example

~p v q -> q ^ ~r ^ s

is equivalent to

((~p) v q) -> (q ^ ((~r) ^ s))

Note that formulas such as

p ^ q v r

or

p -> q <-> r

are ambiguous, and are therefore disallowed.

There is one final propositional formula representing a contradiction and
denoted by the symbol ⊥, which is typed using the underscore () key.
Though it would make sense to combine ⊥ with other formulas, the proof
checker only allows ⊥ to be used by itself.

20

4.2 Boxes and Accessibility of Proof Lines

The general rule for accessibility of proof lines or boxes is that the formula at
line i may be justified by any preceding lines or boxes that are not contained
in a box that does not also contain line i. Consider the proof in Figure 8, for
example. Line 4 can use any preceding lines, because any box that contains
a preceding line (e.g., line 3) also contains line 4. However, line 7 can use
only lines 1, 2, and 6, as well as the box 3-5. Line 7 cannot use lines 3,
4, or 5, because they are contained in a box that does not contain line 7.
Likewise, line 8 can use only lines 1 and 2 and boxes 3-5 and 6-7, and line
9 can use only line 1 and box 2-8.

4.3 Proof Rules for Propositional Logic

We begin our presentation of the proof rules for propositional logic by intro-
ducing three rules that do not rely on the form of the formulas they justify.
These rules are as follows:

• premise — Any formula can be justified by this rule. It simply iden-
tifies the given formula as a premise for the proof. This rule does not
use any line numbers in the fourth column.

• assumption — Again, any formula can be justified by this rule; how-
ever, whenever this rule is used, the line containing it must be the first
line of a box. This rule also uses no line numbers in the fourth column.

• copy — Any accessible formula (see Section 4.2) can be copied using
this rule. When this rule is used, the line number of the copied formula
must be given in the fourth column.

For example, consider again the proof shown in Figure 8. First observe how
the premise rule is used on line 1 to identify the premise p -> r. Also, note
how the formulas on lines 2, 3, and 6 are justified by assumption, with each
of these lines being the first line of a box. It is important that each rule be
spelled correctly with no intervening blanks; however, case of the letters is
not important. Thus, we could use Premise as the rule on line 1. Recall
from Section 3.3, however, that typing an upper-case A or E produces the
symbol ∀ or ∃, respectively; hence, using all caps to justify a premise would
give PR∃MIS∃ (which, in fact, is legal, but not very readable).

21

φ ψ

φ ^ ψ
^i

φ ^ ψ

φ
^e1

φ ^ ψ

ψ
^e2

φ

φ v ψ
vi1

ψ

φ v ψ
vi2

φ v ψ

φ
...
χ

ψ
...
χ

χ
ve

φ
...
ψ

φ -> ψ
->i

φ -> ψ φ

ψ
->e

φ
...
⊥

~φ
~i

φ ~φ

⊥
~e

φ
...
ψ

ψ
...
φ

φ <-> ψ
<->i

φ <-> ψ φ

ψ
<->e1

φ <-> ψ ψ

φ
<->e2

⊥

φ
⊥e

~~φ

φ
~~e

φ -> ψ ~ψ

~φ
Mt

φ

~~φ
~~i

~φ
...
⊥

φ
Pbc

φ v ~φ
Lem

Figure 9: Proof rules for propositional logic.

22

The remaining proof rules are given in Figure 9. Each of these rules consists
of three parts surrounding a horizontal line, as follows:

• Above the line are zero or more formulas and/or boxes representing
the form of the premises of the rule.

• Below the line is a single formula representing the form of the conclu-

sion of the rule.

• To the right of the line is a string representing the name of the rule.

Now consider line 4 of Figure 8. This line is derived using the proof rule
named ->e (pronounced “arrow elimination”) — the name given in the third
column.

Looking at Figure 9, we see that the ->e rule has two premises above the
line — φ -> ψ and φ. The fourth column of line 4 must therefore contain a
comma-separated list of two line numbers. These line numbers must refer-
ence accessible lines having the same form as the two premises of the rule.
Line 1 contains the formula p -> r, which has the form of the first premise,
φ -> ψ. Because φ in the first premise matches p in line 1, the second
premise, φ, must also match p. We see that the second line referenced in
line 4 — namely, line 3 — does, in fact, contain the formula p. The premises
of the rule therefore match the given line numbers in line 4.

Finally, the formula given in line 4 (r) must match the conclusion of the rule
(ψ). Note that when we matched the first premise with line 1, ψ matched r.
Therefore, the given formula does indeed match the conclusion of the rule.
The rule has therefore been correctly applied to justify the formula on line
4. Using the same approach, we can easily see that the formulas on lines 5
and 7 are also properly justified.

Lines 8 and 9, however, are somewhat different in that they use boxes in
their justifications. Let’s consider line 9 first. It uses the rule named ->i

(pronounced “arrow introduction”). Referring again to Figure 9, we see that
the ->i rule has a single box as its premise. The top line of the box in this
rule is φ, and the last line is ψ. This means that the box in the proof used by
the rule must have as its first line a formula φ and as its last line a formula
ψ. Note that neither of these lines may be further nested within boxes inside
the box being referenced. Because φ and ψ do not have any restrictions on
what they can match, we can match φ with p v q and ψ with q v r. The
premise of the rule then matches the box 2-8.

23

Figure 10: A predicate logic proof.

We now need to match the conclusion of the rule (i.e., φ -> ψ) with the
formula p v q -> q v r. Because we have already matched φ with p v

q and ψ with q v r, we see that the conclusion does, in fact, match the
formula. Similarly, we can see that the formula on line 8 is properly justified.

5 Predicate Logic Proofs

Figure 10 shows an example of a predicate logic proof in the proof checker.
Many of the principles introduced in Section 4 carry over to predicate logic
proofs. However, predicate logic proofs differ from propositional logic proofs
in the following ways:

• Predicate logic proofs contain an extra column (the second column)
for introducing temporary variables.

• Predicate logic formulas are more complex than propositional logic
formulas.

• Predicate logic contains several new proof rules in addition to those of
propositional logic.

24

In what follows, we will first describe what constitutes a valid predicate
logic formula. We will then discuss how the introduction of variables in the
second column restricts their use in a proof. Finally, we will present the
proof rules and show how they can be used to construct proofs.

5.1 Predicate Logic Formulas

Predicate logic formulas are significantly more complex than propositional
logic formulas. Instead of propositions, predicate logic formulas may contain
constants, variables, function symbols, predicate symbols, and the special
predicate symbol =. They also may contain two additional connectives. In
what follows, we will define each of these components and how they are put
together to produce formulas.

5.1.1 Constants and variables

The simplest components of predicate logic formulas are constants and vari-
ables. A constant is a string of alphanumeric characters of length 1 or more
such that:

• the first character is either c, d, e, or m; and

• no character is A, E, v, or V (which are reserved as operators).

A variable is defined the same as a constant, except that the first character
must be either a, b, t, u, w, x, y, or z.

5.1.2 Terms and functions

The simplest terms are either constants or variables. More complex terms
can be constructed using function symbols, which are strings of alphanumeric
characters of length 1 or more such that:

• the first character is either f, g, h, or s; and

• no character is A, E, v, or V.

Suppose f is a function symbol and t1, . . . , tn are terms, where n ≥ 1. We
can then construct the function

f(t1, . . . ,tn)

25

This function is then said to have arity n. Within any proof, functions con-
taining the same function symbol must have the same arity. Each function
is then a term.

The following are examples of functions, together with their arities:

function arity

f(x0) 1
g(f(x0), c) 2

h(g(f(x0)), d, f(c)) 3

5.1.3 Predicates

Predicates are formed from terms and predicate symbols. A predicate symbol
is an alphanumeric string of length 1 or greater such that

• the first character is either F, G, H, P, Q, R, or S; and

• no character is A, E, v, or V.

Let P be a predicate symbol and t1, . . . , tn be terms, where n ≥ 1. Then we
can construct the following predicate:

P(t1, . . . ,tn)

This predicate is said to have arity n. In addition, we can construct a
predicate P with arity 0. Within any proof, predicates containing the same
predicate symbol must have the same arity.

The following are examples of predicates, together with their arities

predicate arity

P(x) 1
F(c, g(x0, y)) 2

R 0
S(h(g(f(x0)), d, f(c))) 1

In addition, we can construct predicates using the symbol =. Let t1 and t2
be terms. We can then construct the predicate

t1 = t2

For example, from the terms c and h(g(f(x0)), we can construct the pred-
icate

c = h(g(f(x0))

26

5.1.4 Formulas

We can now construct predicate logic formulas from predicates. The simplest
formulas are just predicates. Let φ and ψ be predicate logic formulas and x
be a variable. We can then construct the following predicate logic formulas:

Negation: ~φ

Conjunction: φ ^ ψ

Disjunction: φ v ψ (or alternatively φ V ψ)

Implication: φ -> ψ

Bi-implication: φ <-> ψ

Universal quantification: ∀xφ

Existential quantification: ∃xφ

As for predicate logic, we use parentheses to denote the structure of a for-
mula. To reduce the number of parentheses, we extend the binding prece-
dence given in Section 4.1 as follows (highest to lowest):

1. ~,∀, and ∃

2. ^ and v (or equivalently V)

3. -> and <->

As for propositional logic, all binary connectives associate to the right. Thus,
for example,

~∃x∀y P(x) ^ Q(y) -> R(x, y)

is equivalent to

(~(∃x(∀y P(x))) ^ Q(y)) -> R(x, y)

Note that because ~,∀, and ∃ are all unary operators, there is never any
ambiguity in precedence among them.

27

5.2 The Second Column

Certain of the proof rules for predicate logic (see Section 5.3) require that
a variable be placed in the second column. There are two rules relevant to
variables in this column.

• A variable may appear in the second column only as the first line of a
box.

• If a variable appears in the second column, it may not appear anywhere
outside the innermost box containing it.

Note that placing a variable in the second column requires no justification.
In particular, it is legal to have a line containing only a variable in the second
column and nothing in any of the following columns (see line 2 of the proof
in Figure 10).

5.3 Proof Rules for Predicate Logic

All of the propositional logic rules shown in Figure 9 may be used in predi-
cate logic proofs. In addition, the rules shown in Figure 11 may be used.

In order to be able to explain how these rules are applied, we must first
explain the concepts of free variables and substitution.

5.3.1 Free occurrences of variables

Informally, a free occurrence of a variable is one that is not within the scope
of a quantifier for that variable. In order to make this definition more precise,
let φ and ψ denote predicate logic formulas, let · denote one of the binary
connectives ^, v, V, ->, or <->, and let x and y denote distinct variables.

• If φ is a predicate, then all occurrences of x in φ are free.

• The free occurrences of x in ~φ are the those occurrences that are free
in φ.

• The free occurrences of x in φ · ψ are those occurrences that are free
in φ or ψ.

28

∀xφ

φ[t/x]
∀e

x0

...
φ[x0/x]

∀xφ
∀i

φ[t/x]

∃xφ
∃i

∃xφ

x0 φ[x0/x]
...
χ

χ
∃e

t = t
=i

t1 = t2 φ[t1/x]

φ[t2/x]
=e

t1 = t2
t2 = t1

Sym

Figure 11: Additional proof rules for predicate logic.

• There are no free occurrences of x in ∀xφ or ∃xφ; however, in both
of these formulas, the free occurrences of y are those occurrences that
are free in φ.

For example, in the formula

P(x) ^ ∀x (Q(x) -> P(y)) v ∃y R(x, y)

the first and last occurrences of x and the first occurrence of y are free, but
the other occurrences are not.

5.3.2 Substitution

Let φ denote a predicate logic formula, t denote a term, and x denote a
variable. We then use the notation φ[t/x] to denote the formula that results
when we replace every free occurrence of x in φ by t. We call this notation
a substitution. In order for a substitution to be valid, however, we add the
additional restriction that every free occurrence of any variable in t must
also be a free occurrence in φ[t/x]. Thus, for example, substituting f(x) for
y in ∀x P(x, y) is invalid because the free occurrence of x in f(x) is no
longer free in ∀x P(x, f(x)).

29

5.3.3 Applying proof rules in predicate logic

The proof rules given in Figure 9 are applied as described in Section 4. The
proof rules given in Figure 11 are applied in a similar way, but with more
complicated pattern matching.

In Figure 11, φ and χ represent predicate logic formulas, x and x0 represent
variables, and t, t1, and t2 represent terms. Consider first the rule ∃i. We
apply this rule in order to derive a formula of the form ∃xφ. In order to be
able to apply this rule, we need a formula φ[t/x] — i.e., formula φ with some
term t replacing every free occurrence of x, where every free occurrence of
any variable in t is also free in φ[t/x]. The form ∃xφ matches the formula

∃x (P(x) ^ f(x) = c)

on line 7 of the proof in Figure 10. In this case, φ matches

P(x) ^ f(x) = c

and x matches x. Furthermore, the formula on line 6 is just φ with all free
occurrences of x (i.e., both occurrences) replaced by the term x0. Note that
the only free occurrence of a variable in x0 is x0 itself, which remains free
everywhere it has been substituted into φ. Therefore, line 7 contains a valid
application of the rule ∃i.

Now consider the more complicated rule ∀i. This rule is used to derive a
formula of the form ∀xφ. The formula on line 11 of Figure 10 matches this
form with φ matching

P(x) -> ~(c = f(x))

and x matching x. This rule requires a box whose first line introduces
a variable x0 in the second column and whose last line is φ with all free
occurrence of x replaced by x0, where all of these substitutions leave x0

free. We see that the first line of the box 2-10 introduces the variable x0

in the second column. Furthermore, the last line of this box is φ with both
free occurrences of x replaced by x0. Finally, when this substitution is done,
all substituted occurrences of x0 remain free. Line 11 is therefore a valid
application of ∀i.

As a last example, consider the rule =e. An example of the use of this rule
can be found on line 5 of the proof in Figure 4. Both the formula that is
derived by this rule and one of the formulas required by this rule involve a

30

substitution for a variable x; however, x appears nowhere else in this rule.
This means that x represents a variable that does not occur in the proof —
it is simply a placeholder.

The easiest place to start when applying this rule is with the formula that
must match t1 = t2. In Figure 4, this formula is on line 4: b = x0. Here, t1
matches b and t2 matches x0. The conclusion in line 5 and the other formula
used (line 1) must both be derived by substitutions into some formula φ. In
the former case, the substitution must be x0 for x, and in the latter case,
the substitution must be b for x. We can obtain this matching by letting φ
represent ~P(x). We can then see that line 5 is a valid application of =e.

References

[1] Michael Huth and Mark Ryan. Logic in Computer Science: Modelling

and Reasoning about Systems. Cambridge University Press, 2nd edition,
2004.

31

	1 Introduction
	2 Installation
	3 The User Interface
	3.1 Starting a New Propositional Logic Proof
	3.2 Starting a New Predicate Logic Proof
	3.3 Editing a Proof
	3.3.1 Navigating the columns in a proof using the Tab key
	3.3.2 Navigating with the arrow keys
	3.3.3 Adding new lines to the proof
	3.3.4 Deleting lines from the proof

	3.4 Using Proof Boxes
	3.4.1 Valid boxes
	3.4.2 Drawing a box
	3.4.3 Resizing a box
	3.4.4 Deleting a box

	3.5 Changing the Font Size
	3.6 Checking a Proof
	3.7 Clearing the Message Area
	3.8 Saving a Proof
	3.9 Exporting a Proof to LaTeX
	3.10 Opening an Existing Proof
	3.11 Determining the Version Number

	4 Propositional Logic Proofs
	4.1 Propositional Logic Formulas
	4.2 Boxes and Accessibility of Proof Lines
	4.3 Proof Rules for Propositional Logic

	5 Predicate Logic Proofs
	5.1 Predicate Logic Formulas
	5.1.1 Constants and variables
	5.1.2 Terms and functions
	5.1.3 Predicates
	5.1.4 Formulas

	5.2 The Second Column
	5.3 Proof Rules for Predicate Logic
	5.3.1 Free occurrences of variables
	5.3.2 Substitution
	5.3.3 Applying proof rules in predicate logic

