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This paper presents an algorithm for arbitrary-precision division and shows
its worst-case time complexity to be related by a constant factor to that of
arbitrary-precision multiplication. The material is adapted from [1], pp. 264,
295-297, where S. A. Cook is credited for suggesting the basic idea.

We assume a smooth bound g(n) ∈ Ω(n) for the worst-case time complexity
of n-bit fixed-point multiplication. Furthermore, we assume that for some n0 ∈
N and some real c > 1, g(2n) ≥ cg(n) for all n ≥ n0. Intuitively, this condition
ensures that g(n) eventually maintains a growth rate of at least nε for some
ε ∈ R+ (i.e., it does not grow more slowly than this for arbitrarily long periods
of time).

In order to simplify the problem, we will restrict the input to positive integers
u ≥ v. In particular, we wish to find bu/vc. Suppose v is an m-bit integer; i.e.,
2m−1 ≤ v < 2m. Then ⌊u

v

⌋
=
⌊
u2−m

(
1

v2−m

)⌋
,

and 1/2 ≤ 1/(v2−m) < 1. We therefore begin by presenting an algorithm to
find a high-presision approximation for 1/x, where x is a fixed-point rational
number, 1/2 ≤ x < 1.

The idea is based on Newton’s method, which generates successive approxi-
mations according to the following rule:

zk+1 = 2zk − xz2
k

This method converges very quickly: if zk = (1− ε)/x, then

zk+1 =
2(1− ε)

x
− x

(
1− ε
x

)2

=
2− 2ε− 1 + 2ε− ε2

x

=
1− ε2

x
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However, the time for convergence depends upon the accuracy required. Thus,
the total time is not within a constant factor of the time to multiply. In order
accomplish this goal, we use roughly the high-order half of x to obtain recursively
an approximation of roughly half the needed accuracy, then apply Newton’s
method a single iteration to obtain the desired result.

We assume the following functions:

• trunc(x, p): returns the fixed-point x truncated to p bits to the right of
the radix point. Thus, 0 ≤ x− trunc(x, p) < 2−p.

• roundup(x, p): returns the fixed-point x rounded up to p bits to the right
of the radix point. Thus, 0 ≤ roundup(x, p)− x < 2−p.

We now define reciprocal(x, p) as follows:

function reciprocal(x, p)
begin

if p ≤ 2
then

return trunc(3/2, p)
else

z ← reciprocal(x, bp/2c+ 1)
return roundup(2z − trunc(x, p+ 2)z2, p)

fi
end

We will first show the correctness of the algorithm. The following theorem
follows from the definitions of trunc and roundup:

Theorem 1 reciprocal(x, p) returns a value with at most p bits to the right of
the radix point.

We need the following lemma in order to bound the error incurred by
reciprocal.

Lemma 1 The value returned by reciprocal(x, p) is at most 2.

Proof: The lemma clearly holds when p ≤ 2. Suppose p > 2. Consider the
expression

2z − trunc(x, p+ 2)z2.

Because z2 ≥ 0, the value of this expression is maximized when trunc(x, p+ 2)
is minimized. Thus, it suffices to show

2z − z2

2
≤ 2. (1)

Rearranging terms, we find that (1) holds iff

0 ≤ z2 − 4z + 4 = (z + 2)2,

which holds for all z ∈ R. �
The following theorem shows the accuracy of the value returned by reciprocal:
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Theorem 2 reciprocal(x, p) returns a value y such that∣∣∣∣ 1x − y
∣∣∣∣ ≤ 21−p

Proof: By generalized induction on p.

Base Case 1: p = 0. The value returned is 1. Because 1/2 ≤ x < 1,∣∣∣∣ 1x − 1
∣∣∣∣ =

1
x
− 1

≤ 1
≤ 21.

Base Case 2: 1 ≤ p ≤ 2. Because 3/2 requires only 1 bit to the right of the
radix point, the value returned is 3/2. Then∣∣∣∣ 1x − 3

2

∣∣∣∣ ≤ 1
2

= 2−1

≤ 21−p.

Induction Step: Let p > 2. Let 1/x+ α be the value returned by

reciprocal(x, bp/2c+ 1).

By Lemma 1,

1
x

+ α ≤ 2.

By the Induction Hypothesis,

|α| ≤ 2bp/2c

Let β be the value truncated by the call to trunc; i.e.,

β = x− trunc(x, p+ 2).

Then

0 ≤ β < 2−p−2.

Let γ be the value added by the call to roundup;. i.e.,

γ = roundup(2z − trunc(x, p+ 2), p)− (2z − trunc(x, p+ 2)).

Then

0 ≤ γ < 2−p.
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Then the value y returned is given by

y = 2
(

1
x

+ α

)
− (x− β)

(
1
x

+ α

)2

+ γ

=
2
x

+ 2α− 1
x
− 2α− xα2 + β

(
1
x

+ α

)2

+ γ

=
1
x
− xα2 + β

(
1
x

+ α

)2

+ γ.

We need to derive a bound on |β(1/x+ α)2 + γ − xα2|. First, we have

0 ≤ β

(
1
x

+ α

)2

+ γ ≤ 2−p−2 · 22 + 2−p

= 2−p + 2−p

= 21−p

Furthermore,

0 ≤ xα2 ≤ 2−2bp/2c

≤ 2−2(p−1)/2

= 21−p

Therefore, ∣∣∣∣∣β
(

1
x

+ α

)2

+ γ − xα2

∣∣∣∣∣ ≤ 21−p

�
We are now ready to show the worst-case time complexity of reciprocal.

Recall that g(n) is a bound on the worst-case time complexity for multiplying
two n-bit fixed-point numbers. We will show that the time complexity for
reciprocal satisfies a recurrence of the form

t(n) = t(n/2) + cg(n)

where n is a sufficiently large power of 2. We therefore need the following lemma.

Lemma 2 Let f : N → R
≥0 be a smooth function such that f(2n) ≥ cf(n)

for some c > 1 whenever n ≥ n0 ∈ N. Let t : N → R
≥0 be an eventually

nondecreasing function satisfying

t(n) = t(n/2) + f(n)

when n = n02k for some k ≥ 1. Then t(n) ∈ Θ(f(n)).
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Proof: Because f is smooth, it is eventually positive. Without loss of gener-
ality, we may assume that f(n) > 0 for n ≥ n0. Because f is smooth, it suffices
to show that

t(n) ∈ Θ(f(n) | n = n02k for some k ≥ 1).

Because t(n) ≥ 0 for all n, clearly,

t(n) ∈ Ω(f(n) | n = n02k for some k ≥ 1).

We will show by induction on k ≥ 1 that for n = n02k, t(n) ≤ df(n), where

d = max
{

1 + t(n0)
f(2n0)

,
c

c− 1

}
.

Base: k = 1. Then n = 2n0, and

t(n) = t(n0) + f(n)

Because d ≥ 1 + t(n0)/f(n), we have

df(n) ≥
(

1 +
t(n0)
f(n)

)
f(n)

= f(n) + t(n0)
= t(n)

Induction Hypothesis: Assume that for some k ≥ 1, t(k) ≤ df(n).

Induction Step: n = n02k+1. Then

t(n) = t(n02k) + f(n)
≤ df(n02k) + f(n) from the IH

= df
(n

2

)
+ f(n)

≤ df(n)
c

+ f(n)

=
(

1 +
d

c

)
f(n)

Because d ≥ c/(c− 1), we have

d ≥ c

c− 1
dc− d ≥ c

dc ≥ c+ d

d ≥ 1 +
d

c
.

5



Therefore, t(n) ≤ df(n).

�

Theorem 3 reciprocal(x, p) operates in a time in O(g(p)).

Proof: Suppose p > 2. By Theorem 1, the value z contains at most bp/2c+ 1
bits to the right of the radix point. From Lemma 1, the value of z is at most 2.
z can therefore be stored in bp/2c+ 2 bits. z2 therefore contains at most p+ 4
bits. Because trunc(x, p+ 2) contains at most p+ 2 bits, the multiplication

trunc(x, p+ 2)z2

takes a time in O(g(p+ 4)). Because g(n) ∈ Ω(n), this operation dominates the
remainder of the work done outside the recursive call. We can therefore bound
the total time with the following recurrence:

t(p) = t(bp/2c+ 1) + cg(p+ 4)

for some c ∈ R and p > n0 ∈ N. Let p = 2k, and define

T (p) = t(p+ 1)

= t

(⌊
p+ 1

2

⌋
+ 1
)

+ cg(p+ 5)

= t
(p

2
+ 1
)

+ cg(p+ 5)

= T
(p

2

)
+ cg(p+ 5)

for p > n0. From Lemma 2, T (p) ∈ Θ(cg(p+5)) = Θ(g(p), because g is smooth.
Then

t(p) = T (p− 1)
∈ Θ(g(p− 1))
∈ Θ(g(p))

Therefore, the time compexity of reciprocal(x, p) is in O(g(p)). �
We can now use reciprocal to construct an integer division algorithm. We

assume the existence of a function numbits, which takes a natural number and
returns the number of bits in its representation. Thus, for 2n−1 ≤ u < 2n,
numbits(u) returns n. The algorithm is as follows:

procedure divide(u, v,var q, r)
begin
n← numbits(u); m← numbits(v)
x← reciprocal(v2−m, n−m+ 1)
q ← bux2−mc
r ← u− qv
if r < 0 then r ← r + v; q ← q − 1
elsif r ≥ v then r ← r − v; q ← q + 1
fi

end
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The following theorem shows the correctness of divide.

Theorem 4 Let u ≥ v be positive integers. Upon execution of divide(u, v, q, r),
q contains the value bu/vc, and r contains the value umod v.

Proof: From the definition of numbits, we have

2n−1 ≤ u < 2n

and

2m−1 ≤ v < 2m.

From Theorem 2,

x =
1

v2−m
+ α, where |α| ≤ 2m−n.

It then follows that after the first assignment to q,

q =
⌊
u

(
1

v2−m
+ α

)
2−m

⌋
=

⌊u
v

+ uα2−m
⌋

|uα2−m| ≤ |α2n−m|
≤ 1.

Hence, ∣∣∣⌊u
v

⌋
− q
∣∣∣ ≤ 1

Clearly, the remaining statements set q and r to bu/vc and umod v, respectively.
�

We conclude by showing the time complexity of divide.

Theorem 5 Let u ≥ v be positive integers containing at most n bits. The
worst-case time complexity of divide(u, v, q, r) is in O(g(n)).

Proof: From Theorem 3, the call to reciprocal takes O(g(n)) time. From
Theorem 1, x contains at most n − m + 2 bits, so the product ux can be
computed in O(g(n)) time. Finally, q has at most n − m + 1 bits, so qv can
be computed in O(g(n)) time. Because everything else can be done in at most
linear time and g(n) ∈ Ω(n), the total time is in O(g(n)). �
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