
Arbitrary-Precision Division∗

Rod Howell
Kansas State University

September 18, 2000

This paper presents an algorithm for arbitrary-precision division and shows
its worst-case time complexity to be related by a constant factor to that of
arbitrary-precision multiplication. The material is adapted from [1], pp. 264,
295-297, where S. A. Cook is credited for suggesting the basic idea.

We assume a smooth bound g(n) ∈ Ω(n) for the worst-case time complexity
of n-bit fixed-point multiplication. Furthermore, we assume that for some n0 ∈
N and some real c > 1, g(2n) ≥ cg(n) for all n ≥ n0. Intuitively, this condition
ensures that g(n) eventually maintains a growth rate of at least nε for some
ε ∈ R+ (i.e., it does not grow more slowly than this for arbitrarily long periods
of time).

In order to simplify the problem, we will restrict the input to positive integers
u ≥ v. In particular, we wish to find bu/vc. Suppose v is an m-bit integer; i.e.,
2m−1 ≤ v < 2m. Then ⌊u

v

⌋
=
⌊
u2−m

(
1

v2−m

)⌋
,

and 1/2 ≤ 1/(v2−m) < 1. We therefore begin by presenting an algorithm to
find a high-presision approximation for 1/x, where x is a fixed-point rational
number, 1/2 ≤ x < 1.

The idea is based on Newton’s method, which generates successive approxi-
mations according to the following rule:

zk+1 = 2zk − xz2
k

This method converges very quickly: if zk = (1− ε)/x, then

zk+1 =
2(1− ε)

x
− x

(
1− ε
x

)2

=
2− 2ε− 1 + 2ε− ε2

x

=
1− ε2

x
∗Copyright c© 2000, Rod Howell. This paper may be copied or printed in its entirety for use

in conjunction with CIS 775, Analysis of Algorithms, at Kansas State University. Otherwise,
no portion of this paper may be reproduced in any form or by any electronic or mechanical
means without permission in writing from Rod Howell.

1

However, the time for convergence depends upon the accuracy required. Thus,
the total time is not within a constant factor of the time to multiply. In order
accomplish this goal, we use roughly the high-order half of x to obtain recursively
an approximation of roughly half the needed accuracy, then apply Newton’s
method a single iteration to obtain the desired result.

We assume the following functions:

• trunc(x, p): returns the fixed-point x truncated to p bits to the right of
the radix point. Thus, 0 ≤ x− trunc(x, p) < 2−p.

• roundup(x, p): returns the fixed-point x rounded up to p bits to the right
of the radix point. Thus, 0 ≤ roundup(x, p)− x < 2−p.

We now define reciprocal(x, p) as follows:

function reciprocal(x, p)
begin

if p ≤ 2
then

return trunc(3/2, p)
else

z ← reciprocal(x, bp/2c+ 1)
return roundup(2z − trunc(x, p+ 2)z2, p)

fi
end

We will first show the correctness of the algorithm. The following theorem
follows from the definitions of trunc and roundup:

Theorem 1 reciprocal(x, p) returns a value with at most p bits to the right of
the radix point.

We need the following lemma in order to bound the error incurred by
reciprocal.

Lemma 1 The value returned by reciprocal(x, p) is at most 2.

Proof: The lemma clearly holds when p ≤ 2. Suppose p > 2. Consider the
expression

2z − trunc(x, p+ 2)z2.

Because z2 ≥ 0, the value of this expression is maximized when trunc(x, p+ 2)
is minimized. Thus, it suffices to show

2z − z2

2
≤ 2. (1)

Rearranging terms, we find that (1) holds iff

0 ≤ z2 − 4z + 4 = (z + 2)2,

which holds for all z ∈ R. �
The following theorem shows the accuracy of the value returned by reciprocal:

2

Theorem 2 reciprocal(x, p) returns a value y such that∣∣∣∣ 1x − y
∣∣∣∣ ≤ 21−p

Proof: By generalized induction on p.

Base Case 1: p = 0. The value returned is 1. Because 1/2 ≤ x < 1,∣∣∣∣ 1x − 1
∣∣∣∣ =

1
x
− 1

≤ 1
≤ 21.

Base Case 2: 1 ≤ p ≤ 2. Because 3/2 requires only 1 bit to the right of the
radix point, the value returned is 3/2. Then∣∣∣∣ 1x − 3

2

∣∣∣∣ ≤ 1
2

= 2−1

≤ 21−p.

Induction Step: Let p > 2. Let 1/x+ α be the value returned by

reciprocal(x, bp/2c+ 1).

By Lemma 1,

1
x

+ α ≤ 2.

By the Induction Hypothesis,

|α| ≤ 2bp/2c

Let β be the value truncated by the call to trunc; i.e.,

β = x− trunc(x, p+ 2).

Then

0 ≤ β < 2−p−2.

Let γ be the value added by the call to roundup;. i.e.,

γ = roundup(2z − trunc(x, p+ 2), p)− (2z − trunc(x, p+ 2)).

Then

0 ≤ γ < 2−p.

3

Then the value y returned is given by

y = 2
(

1
x

+ α

)
− (x− β)

(
1
x

+ α

)2

+ γ

=
2
x

+ 2α− 1
x
− 2α− xα2 + β

(
1
x

+ α

)2

+ γ

=
1
x
− xα2 + β

(
1
x

+ α

)2

+ γ.

We need to derive a bound on |β(1/x+ α)2 + γ − xα2|. First, we have

0 ≤ β

(
1
x

+ α

)2

+ γ ≤ 2−p−2 · 22 + 2−p

= 2−p + 2−p

= 21−p

Furthermore,

0 ≤ xα2 ≤ 2−2bp/2c

≤ 2−2(p−1)/2

= 21−p

Therefore, ∣∣∣∣∣β
(

1
x

+ α

)2

+ γ − xα2

∣∣∣∣∣ ≤ 21−p

�
We are now ready to show the worst-case time complexity of reciprocal.

Recall that g(n) is a bound on the worst-case time complexity for multiplying
two n-bit fixed-point numbers. We will show that the time complexity for
reciprocal satisfies a recurrence of the form

t(n) = t(n/2) + cg(n)

where n is a sufficiently large power of 2. We therefore need the following lemma.

Lemma 2 Let f : N → R
≥0 be a smooth function such that f(2n) ≥ cf(n)

for some c > 1 whenever n ≥ n0 ∈ N. Let t : N → R
≥0 be an eventually

nondecreasing function satisfying

t(n) = t(n/2) + f(n)

when n = n02k for some k ≥ 1. Then t(n) ∈ Θ(f(n)).

4

Proof: Because f is smooth, it is eventually positive. Without loss of gener-
ality, we may assume that f(n) > 0 for n ≥ n0. Because f is smooth, it suffices
to show that

t(n) ∈ Θ(f(n) | n = n02k for some k ≥ 1).

Because t(n) ≥ 0 for all n, clearly,

t(n) ∈ Ω(f(n) | n = n02k for some k ≥ 1).

We will show by induction on k ≥ 1 that for n = n02k, t(n) ≤ df(n), where

d = max
{

1 + t(n0)
f(2n0)

,
c

c− 1

}
.

Base: k = 1. Then n = 2n0, and

t(n) = t(n0) + f(n)

Because d ≥ 1 + t(n0)/f(n), we have

df(n) ≥
(

1 +
t(n0)
f(n)

)
f(n)

= f(n) + t(n0)
= t(n)

Induction Hypothesis: Assume that for some k ≥ 1, t(k) ≤ df(n).

Induction Step: n = n02k+1. Then

t(n) = t(n02k) + f(n)
≤ df(n02k) + f(n) from the IH

= df
(n

2

)
+ f(n)

≤ df(n)
c

+ f(n)

=
(

1 +
d

c

)
f(n)

Because d ≥ c/(c− 1), we have

d ≥ c

c− 1
dc− d ≥ c

dc ≥ c+ d

d ≥ 1 +
d

c
.

5

Therefore, t(n) ≤ df(n).

�

Theorem 3 reciprocal(x, p) operates in a time in O(g(p)).

Proof: Suppose p > 2. By Theorem 1, the value z contains at most bp/2c+ 1
bits to the right of the radix point. From Lemma 1, the value of z is at most 2.
z can therefore be stored in bp/2c+ 2 bits. z2 therefore contains at most p+ 4
bits. Because trunc(x, p+ 2) contains at most p+ 2 bits, the multiplication

trunc(x, p+ 2)z2

takes a time in O(g(p+ 4)). Because g(n) ∈ Ω(n), this operation dominates the
remainder of the work done outside the recursive call. We can therefore bound
the total time with the following recurrence:

t(p) = t(bp/2c+ 1) + cg(p+ 4)

for some c ∈ R and p > n0 ∈ N. Let p = 2k, and define

T (p) = t(p+ 1)

= t

(⌊
p+ 1

2

⌋
+ 1
)

+ cg(p+ 5)

= t
(p

2
+ 1
)

+ cg(p+ 5)

= T
(p

2

)
+ cg(p+ 5)

for p > n0. From Lemma 2, T (p) ∈ Θ(cg(p+5)) = Θ(g(p), because g is smooth.
Then

t(p) = T (p− 1)
∈ Θ(g(p− 1))
∈ Θ(g(p))

Therefore, the time compexity of reciprocal(x, p) is in O(g(p)). �
We can now use reciprocal to construct an integer division algorithm. We

assume the existence of a function numbits, which takes a natural number and
returns the number of bits in its representation. Thus, for 2n−1 ≤ u < 2n,
numbits(u) returns n. The algorithm is as follows:

procedure divide(u, v,var q, r)
begin
n← numbits(u); m← numbits(v)
x← reciprocal(v2−m, n−m+ 1)
q ← bux2−mc
r ← u− qv
if r < 0 then r ← r + v; q ← q − 1
elsif r ≥ v then r ← r − v; q ← q + 1
fi

end

6

The following theorem shows the correctness of divide.

Theorem 4 Let u ≥ v be positive integers. Upon execution of divide(u, v, q, r),
q contains the value bu/vc, and r contains the value umod v.

Proof: From the definition of numbits, we have

2n−1 ≤ u < 2n

and

2m−1 ≤ v < 2m.

From Theorem 2,

x =
1

v2−m
+ α, where |α| ≤ 2m−n.

It then follows that after the first assignment to q,

q =
⌊
u

(
1

v2−m
+ α

)
2−m

⌋
=

⌊u
v

+ uα2−m
⌋

|uα2−m| ≤ |α2n−m|
≤ 1.

Hence, ∣∣∣⌊u
v

⌋
− q
∣∣∣ ≤ 1

Clearly, the remaining statements set q and r to bu/vc and umod v, respectively.
�

We conclude by showing the time complexity of divide.

Theorem 5 Let u ≥ v be positive integers containing at most n bits. The
worst-case time complexity of divide(u, v, q, r) is in O(g(n)).

Proof: From Theorem 3, the call to reciprocal takes O(g(n)) time. From
Theorem 1, x contains at most n − m + 2 bits, so the product ux can be
computed in O(g(n)) time. Finally, q has at most n − m + 1 bits, so qv can
be computed in O(g(n)) time. Because everything else can be done in at most
linear time and g(n) ∈ Ω(n), the total time is in O(g(n)). �

References

[1] Donald Knuth. The Art of Computer Programming, volume 2, Seminumer-
ical Algorithms. Addison-Wesley, 2nd edition, 1981.

7

