Technical Manual
I- Purpose

The goal of this document is to provide a general description of how to modify or update certain functions of the pipeline editor. It also provides a description of the function of some elements. For more information about the classes and methods, refer to the Design document and the API document available online.
II - Description
Following is a general description for:

· Adding and modifying components.
· Mouse click handling and popup menu

· Mapping cell-jobComponent

2.1 Adding and modifying components

The main class to insert and modify components is the class MyGraph. This class defines all the properties for the components (by creating UserObject objects). Each component (compressor, joint, valve…) has a userObject that hold its properties. For this reason, the display of the properties dialog box is done by the class MyUserObject.

Here are all the steps to add a new component:

1- Define a new cell class for the component (similar to CompressorCell class).
2- Define a view for the component (similar to CompressorView class). In the view, the paint method for the new component has to be specified.

3- In the MyGraph class, associate the cell with the view (method createVertexView()).

4- Define the properties of the new component by adding a method in MyGraph that return an UserObject holding the properties of the component.

5- Define a property dialog for the component in the class MyUserObject (optional).
6- In MyGraph class, add the component cell in the insert() method to allow the new cell to be inserted in the graph.

7- In the Editor class, add a new button to the toolbar corresponding to this new component.

8- Create a new class extending JobComponent to have a job component associated to this new component. The new job component should use the cell’s userObject in order to initialize its fields (see Compressor.java). The execution time of the new job component is also defined in this class.
9- In Mediator.createJob(), associate the new component cell to the new job component created. This method also defines the local and remote communication time for all the components.

Example: Let’s add a new compressor that face the opposite direction of the current one (like this [image: image1.png]

). We are going to call this component compressor2.
1- Define Class Compressor2Cell:

public class Compressor2Cell extends MyCell {

 public CombineCell(Object userObject) {

 super(userObject);

 }

 }
2- Define Class Compressor2View

public class Compressor2View extends VertexView {

 static Compressor2Renderer renderer = new Compressor2Renderer();

public Compressor2View(Object cell, JGraph graph, CellMapper cm) {

super(cell, graph, cm);

 }

 public CellViewRenderer getRenderer() {

 return renderer;

 }

 public static class Compressor2Renderer extends VertexRenderer {

public void paint(Graphics g) {

int b = borderWidth;

Graphics2D g2 = (Graphics2D) g;

Dimension d = getSize();

boolean tmp = selected;

int[] xPoints = {b-1,b-1,d.width-b,d.width-b};

int[] yPoints = { d.height*3/8,d.height*1/8, b-1,d.height/2 };

int[] xPoints2 = {b-1,b-1,d.width-b,d.width-b};

int[] yPoints2 = {d.height*9/16,d.height,d.height,d.height*9/16};

if (super.isOpaque()) {

g.setColor(super.getBackground());

g.fillPolygon(xPoints, yPoints, xPoints.length);

g.fillPolygon(xPoints2, yPoints2, xPoints2.length);

g.drawLine(d.width/2,d.height*7/16,d.width/2, d.height*9/16);

}

try {

setBorder(null);

setOpaque(false);

selected = false;

super.paint(g);

} finally {

selected = tmp;

}

if (bordercolor != null) {

g.setColor(bordercolor);

g2.setStroke(new BasicStroke(b));

g.drawPolygon(xPoints, yPoints, xPoints.length);

g.drawPolygon(xPoints2, yPoints2, xPoints2.length);

g.drawLine(d.width/2,d.height*7/16,d.width/2, d.height*9/16);

}

if (selected) {

g2.setStroke(GraphConstants.SELECTION_STROKE);

g.setColor(graph.getHighlightColor());

g.drawPolygon(xPoints, yPoints, xPoints.length);

g.drawPolygon(xPoints2, yPoints2, xPoints2.length);

g.drawLine(d.width/2,d.height*7/16,d.width/2, d.height*9/16);

}}}}

Notes:

· The class Compressor2View also defines the renderer for this class. This could have been done in a separate class called Compressor2Renderer.

· The paint method defines 3 types of view: opaque, non-opaque and selected. When the component is opaque, it is filled with the proper color. When it is not opaque, only the perimeter is drawn (with the borderColor). We also need to define how the component is viewed when it is selected. In this case, using the predefined selection stroke (green dash line), we are just drawing the perimeter. We could have drawn the enclosing rectangle instead.

· Each component has a size (rectangle) defined when it is created. It will be painted inside this rectangle (its dimension are d.width and d.height).

3- Associate the cell with the view: Class MyGraph.createView()

protected VertexView createVertexView(Object v, CellMapper cm) {

if (v instanceof JointCell)

return new JointView(v, this, cm);

else if (v instanceof CompressorCell)

return new CompressorView(v, this, cm);

else if …

…

else if (v instanceof Compressor2Cell)

return new Compressor2View(v, this, cm);

return super.createVertexView(v, cm);

}
4- Define the properties: MyGraph.createUserObject(). Let’s say that Compressor2 has 3 properties: Temperature, Pressure and Mass with a default value of respectively 10.1, 20.2, 30.3

private MyUserObject compressor2UserObject(){

 String s;

 MyUserObject userObject = new MyUserObject("compressor2");

 s =new String("10.1");

 userObject.putProperty("Pressure", s);

 s =new String("20.2");

 userObject.putProperty("Temperature", s);

 s =new String("30.3");

 userObject.putProperty("Mass", s);
 return userObject;

}
Notes:

· The properties and the values are of type String. Therefore, when reading the value, it has to be cast in the proper type (generally double or int).

5- Define the property dialog

A default propertyDialog (displaying the properties) and dataDialog (displaying

the data) will be created. A default property dialog is created for each userObject. There is no need to create one unless the dialogs have to display different information than the properties stored in the userObject. To create a custom property dialog, go to MyUserObject class and define the new dialog box.

protected void showCompressor2Property(final MyGraph graph, final Object cell) {

// create JDialog compressor2Dialog

//populate the dialog box

// compressorDialog.show()

}
Add a call to this dialog box in MyMarqueeHandler.createPopupMenu().
public JPopupMenu createPopupMenu(final Point pt, final Object cell) {

JPopupMenu menu = new JPopupMenu();

…

if (cell instanceof Compressor2Cell) {

menu.add(new AbstractAction("Edit Compressor2") {

 public void actionPerformed(ActionEvent e) {

((MyUserObject)(((DefaultGraphCell)cell).getUserObject())).showCompressor2Property(graph,cell);

 }

});

…
Note:
· If a special dialog is created, the default one has to be canceled.

6- Insert the component: MyGraph.insert(). Let’s create the part of code to insert a component of type COMPRESSOR2 (this type will be define in the next step).
public void insert(String type, Point point) {

Hashtable attributes = new Hashtable();

int u = GraphConstants.PERCENT;

Map mapPort;

 // Construct Vertex with no Label

 DefaultGraphCell vertex = new DefaultGraphCell();
 DataCell data = new DataCell();

…
// *************Insert a compressor2*****************

 if (type.equals("COMPRESSOR2")){

 MyUserObject userObject = compressor2UserObject();

 vertex = new Compresso2rCell(userObject);

 data.setUserObject(userObject);

// Default Size for the new Vertex

size = new Dimension(50,75);

// Add a Port

mapPort = GraphConstants.createMap();

GraphConstants.setOffset(mapPort,new Point(0, (int) (u / 4)));

DefaultPort port = new DefaultPort("left");

vertex.add(port);

attributes.put(port,mapPort);

mapPort = GraphConstants.createMap();

GraphConstants.setOffset(mapPort,new Point(u, (int) (u / 4)));

port = new DefaultPort("right");

vertex.add(port);

attributes.put(port,mapPort);

((CompressorCell)vertex).setDataCell(data);

}
Notes:

· A vertex is created with a compressor2UserObject. Recall that this userObject holds all the properties for the component. This vertex has a data Object (to display summary data) and a size (size of the enclosing rectangle; used in step 2).

· Depending on the component, we have to define a certain number of ports and their position. The position is relative to u. This variable can be seen as the width or length of the enclosing if used respectively in the x-coordinate or the y-coordinate. In our case, the port will be at 1/4th from the top of the enclosing rectangle.
· Each port has a fixed name as defined in the naming conventions (Section 3).

7- Add a new toolbar button
public JToolBar createToolBar2() {

 JToolBar toolbar = new JToolBar(SwingConstants.VERTICAL);

 toolbar.setFloatable(false);

// InsertCompressor2

 URL comp2Url = getClass().getClassLoader().getResource("gif/comp2.gif");

 ImageIcon comp2Icon = new ImageIcon(comp2Url);

 compressor = toolbar.add(new AbstractAction("Comp", comp2Icon) {

 public void actionPerformed(ActionEvent e) {

 graph.insert("COMPRESSOR2",new Point(10, 20));

 }

 });

 compressor2.setToolTipText("Compressor2");

…

MouseMotionListener ml = new MouseMotionAdapter() {

 public void mouseDragged(MouseEvent e) {

 JComponent c = (JComponent)e.getSource();

 TransferHandler th = c.getTransferHandler();

 th.exportAsDrag(c, e, TransferHandler.COPY);

 }

 };

 compressor2.setTransferHandler(new ButtonTransferHandler("COMPRESSOR2"));

 compressor2.addMouseMotionListener(ml);

…
Notes:

· You should have an image icon for the new component (in this example comp2.gif). Images are 24 x 24.
· The action when the button is pressed is to insert compressor2 into the graph. The type specified when calling graph.insert() should match the type used in MyGraph class (step 6).

· The MouseMotionListener is used to handle Drag & Drop. Each button in the toolbar has to be notified when a drag gesture is started.

8- Create a JobComponent for the new component. Recall that compressor2 has 3 properties: pressure, temperature, mass.

public class Compressor2 extends JobComponent implements Serializable{

private double pressure, temperature, mass;

public Compressor2(MyUserObject userObject){

super(1);

componentId = c++;

gasType = new Integer((String)(userObject.getProperty("gasType"))).intValue();

number = new Integer((String)(userObject.getProperty("number"))).intValue();

String indexVal = (String)(userObject.getProperty("index"));

String valueVal = (String)(userObject.getProperty("value"));

Notes:

· The execution time is defined in the constructor. It is the parameter of the superclass constructor. In this case, the execution time is 1.

· The initialization of the fields comes from the userObject. As the property values are Strings, a casting in the proper type is necessary.

· Get and set methods have to be defined for each field.

9- Associate the component cell to the job component: class Mediator

private Vector createJobs(){
hash = new Hashtable();

for (Iterator iter = cells.iterator(); iter.hasNext();){

JobComponent j = null;

DefaultGraphCell o = (DefaultGraphCell)(iter.next());

if (o instanceof CompressorCell)

 j = createComp2Node(o);

else if (o instanceof Compressor2Cell) // o is a compressor2

j = createComp2Node(o);

else if …

…

if (j != null){

hash.put(o,j);

}

private JobComponent createComp2Node(DefaultGraphCell cell){

MyUserObject userObject = (MyUserObject)(cell.getUserObject());

return new Compressor2(userObject);

}
Note:

· The jobComponent is created from the userObject of the cell stored in the hashtable for future reference.

2.2 Mouse click handling and popup menu

All the mouse events are handled in the class MyMarqueeHandler. The popup menus are also created in this class. Every time a click occurs, this class detects the cell on which the click has occurred and initiates the proper action (see example step 5).

This class also handles the pipes creation. The userObject for the pipes are defined in the class MyMarqueeHandler (as opposed to MyGraph for all other components).

The decision of whether or not some components should accept pipes sources or targets is taken in the class MyModel.
Example : Accept source only from the left of compressor2.
public class MyModel extends DefaultGraphModel {

public boolean acceptsSource(Object edge, Object port) {

if ((((DefaultPort)port).getParent() instanceof Compressor2Cell)){

 if (((DefaultPort)port).getUserObject().toString().equals("right"))

return false;

 else return true;

}

…

…

}

2.3 Mapping cells and jobComponents

In order to optimize or simulate the graph, a mapping has to be done between cells from the graph and Job Component used by the optimizer and the simulator. This mapping is done by the Mediator class. This class holds 2 static hashtables: one for the mapping cell–JobComponent and another one for the mapping JobComponent-Cell. This class is the link between the graph and the optimizer and the simulator. This is in the mediator class that data of the simulation are updated inside each cell.
III- Naming Conventions

There is some naming conventions for the files and variable names used by the application.

3.1 File names
The graph files are saved with the extension ‘.vps’. Those files are saved on the client machine and just contain information for rebuilding the graph. An vps file is the serialization of the view and the model of the graph. An example of file would be ‘test.vps’.

The optimizer files use the extension ‘.opt’. They use the basename of the graph file saved by the user. For instance, if a user save a graph under ‘test.vps’, the optimizer file will be named ‘test.opt’. For this reason, the user is prompted to save the graph before optimizing. Optimizer files are saved on the server side. They are used by the simulator. An opt file is a serialized vector containing all the JobComponents created from the graph cells. Those JobComponents contain information generated from the optimizer about the machine on which they should be executed.
The simulator files use the extension ‘.sim’. The file name is created by adding the timestamp of the simulation to the basename of the graph file saved by the user. For instance, the 5th set of data produced by the simulator will be saved under ‘test5.sim’. The initial file is named ‘test0.sim’. It is the same data as the original file received from the optimizer. Simulator files are the serialization of a vector containing the JobComponents. Each JobComponent in this file has been updated with new values coming from the simulation.

3.2 Variable names
The only variable names that are fixed are the name of the ports and the name of the data edges (edges linking a cell with its data). For components having 2 ports, the left port will be called ‘left’ and the right port ‘right’.

Example:

DefaultPort port = new DefaultPort("left");

For components with more than one left port, the names of the left ports should contain the string ‘left’ (no matter what the name is, i.e topLeft). Same for components with more than one right port. This naming convention helps to easily identify the ports.

The data edge name is ‘data’. Knowing this name helps making the distinction between a data edge and a pipe (which is also an edge).

Example:

DefaultEdge edge = new DefaultEdge("data");

IV- Communications

The GUI, on the client side, has to communicate with the optimizer and the simulator on the server side.

4.1 GUI-Optimizer

The protocol of this communication is very simple. The GUI communicates via the OptimizerClient class. First, the OptimizerClient opens a connection to the server on port 3333. Then it sends a list of jobs (a vector). After, it sends a mapping (id,JobComponent), then the file name and finally a time. The time is the optimizer time, input from the user. The default time is 2 minutes. The file name is the name under which the graph has been saved. It is needed to save the optimizer file under the same name. The mapping (id, JobComponent) is needed by the Branch and Bound algorithm in order to find the JobComponent from any given job id. The list of jobs is a vector of all jobs components created from the cell of the graph. The vector is created by the method Mediator.createJobs().
On the other side, the optimizer (the server), receives those objects and starts the computation. Whenever an error occurs, it sends a message (REJECT) to the OptimizerClient that notifies the GUI. If all the information has been received properly, it sends an ACCEPT message. When it is done, it creates a file that will be used by the simulator and send a DONE message.

4.2 GUI-Simulator

The protocol of this communication has been specified in the Formal Specification document. The communication is done via the SimulatorClient that connects to the simulator server on port 4000. The optimizerClient receives commands from the GUI and passes them to the simulator that executes the proper action. The commands are: Stop, sendFile, Replay.

To start the simulation, the GUI initiates a sendFile command. The OptimizerClient then transfers the optimizer filename (test.opt) to the simulator.
For a replay, it sends the filename of the simulator initialization file (test0.sim).
In both cases, the simulator reply by an ACCEPT if the file exists or REJECT if not. If the file is accepted, the simulator start sending data either by computing them for a simulation command or by taking them from the file previously stored in the case of a replay command. The OptimizerClient receives the data and notifies the Mediator that updates the display. As each JobComponent is mapped to a graph cell, the data are fetched from the JobComponent and updated in the corresponding cell’s userObject. For a simulation, each time a new set of data is transferred to the client, a new file is created. Those files are used for the replay and follow the naming convention defined earlier.
At any time, the user can stop the simulation or the replay. A stop message is then sent to the simulator, which, upon reception of this message, stops sending data and returns to an idle state.

V- Java Web Start

Java Web Start is used to access the application from any browsers. When using Web Start, the application can be untrusted and run in a sandbox. However, due to the sockets access to the optimizer and the simulator, the code has to be signed in order to use the client network. To be able to start, the application must come in a jar file and with and jnlp file. The jnlp defines the name, path, description, and main class of the application. It also defines the type of permission is required. For the meaning of all the tags and their possible values, refer to the developer guide of Web Start at: http://java.sun.com/products/javawebstart/1.2/docs/developersguide.html#filecontents.
Following is the jnlp file used for the application:

<jnlp spec="0.2 1.0"

 codebase="http://www.cis.ksu.edu/~oyenan/MyWeb/Project/"

 href="project.jnlp">

 <information>

 <title>Pipeline Editor</title>

 <vendor>KSU CIS</vendor>

 <homepage href="http://java.sun.com/products/javawebstart/demos.html"/>

 <description>A Pipeline editor test</description>

 <description kind="short">Pipeline editor Description</description>

 <icon href="gif/pipeline.gif"/>

 <offline-allowed/>

 </information>

 <security>

 <all-permissions/>

 </security>

 <resources>

 <j2se version="1.4+" href="http://java.sun.com/products/autodl/j2se"/>

 <j2se version="1.4+"/>

 <jar href="project.jar" main="true" download="eager"/>

 </resources>

 <application-desc main-class="Editor"/>

</jnlp>
Following are the step to provide a signed jar file.

· jar cmf MyManifest project.jar *.class gif optimizer org
This will put all the class file in the jar. It will also put the following directories:

· \gif: directory containing all the icons

· \optimizer: classes for the optimizer package

· \org: JGraph classes

The file MyManifest simply specify which of those classes contain the main method.

· keytool –genkey –keystore myKeys –alias jdc

This generate a key stored in the file myKeys. A password will be asked to generate the key. This file is available and the password is ‘pipeline’. If using the file myKeys, this step is not necessary (as the key has already been generated).

· jarsigner –keystore myKeys project.jar jdc
This will sign the jar file with the key contained in the file myKeys. The password used when creating the file will be asked. If using the provided file, it is going to be “pipeline”.
