Department of Computer and Information Sciences

Kansas State University

Graphical User Interface

and

Job Distribution Optimizer

for a

Virtual Pipeline Simulation Testbed

MSE PROJECT: Phase III

Major Professor: ……Dr. Virgil Wallentine
Committee Members: Dr. Daniel Andresen

 Dr. Masaaki Mizuno
Student: ……………..Walamitien Oyenan

December 9, 2003

3USER MANUAL

3I - System Overview

3II - System Requirements

3III - Installation and Execution

3IV - Getting Started

44.1 Horizontal Toolbar Description

44.2 Vertical toolbar description

6V - FEATURES

65.1 Change component properties

65.2 Name a component

65.3 Station view

75.4 Create/Insert Library

75.5 Save/Open

75.6 Cut/paste/copy

75.7 Remove

85.8 Zoom

85.9 Optimize

85.10 Simulate

85.11 View simulation data

95.12 Replay

95.13 Bend pipes

9VI – FAQ

10Technical Manual

10I- Purpose

10II - Description

102.1 Adding and modifying components

172.2 Mouse click handling and popup menu

172.3 Mapping cells and jobComponents

17III- Naming Conventions

173.1 File names

183.2 Variable names

18IV- Communications

184.1 GUI-Optimizer

194.2 GUI-Simulator

19V- Java Web Start

21Test Cases

22Project Evaluation

22I- Pipeline editor Evaluation

22II- Optimizer evaluation

22III- Methodologies evaluation

23IV- Accuracy of Estimations

 USER MANUAL

I - System Overview

The Pipeline Editor is a feature-rich graphical user interface designed to provide pipeline designers with a graphical view of their pipeline systems and simulation data. This allows for quick pipeline design and data generation. The software integrates an optimizer, which goal is to optimize the time of the simulation. As the simulation is done among several distributed machines, the optimizer will attribute each component of the pipeline system to a particular machine in order to minimize the overall time needed to compute the simulation data. The Pipeline Editor can be started from any computers. Once started, it will connect to the optimizer and the simulator server.

II - System Requirements

· The execution of the software requires Java Web Start 1.2. It is a tool that allows user to access the application from any computer using an Internet browser.

· The user should also have access to the C drive in order to write some data in the temporary folder.

· To start the application, Netscape Navigator or Internet Explorer (or any other browser) is needed. For the first time, an internet connection is needed. After the application has been downloaded, the user will have the choice to integrate the application in the desktop in order to be able to run it offline.

III - Installation and Execution

No particular installation steps are needed. In case the computer does not have Java web Start installed, it will needed to be installed. Visit http://java.sun.com/products/javawebstart/download.html to install the latest version of Java Web Start.
To execute the software, go to http://www.cis.ksu.edu/~oyenan/MyWeb/project/project.htm and click on Pipeline Editor or directly point your browser to this address: http://www.cis.ksu.edu/~oyenan/MyWeb/project/project.jnlp. The application should start downloading. A security-warning window will appear. Accept to launch the application. The application will then start.

IV - Getting Started

The application consists of one main window with two toolbars and one menu bar. The vertical toolbar has some buttons representing the pipeline components. The horizontal toolbar contains all the buttons for editing and simulating. The menu bar offers the functionality of the horizontal toolbar in addition to some other functions later described.

4.1 Horizontal Toolbar Description

[image: image1.png]LB 2¢ bBYT AAA @OC a«PumDdE

Figure 1: The horizontal toolbar

Following is the description of each button of the horizontal toolbar:

· Create a new graph ([image: image2.png][

)

· Open a graph: ([image: image3.png]

) Open a graph file (.vps extension)

· Save the current graph ([image: image4.png]

)

· Undo : ([image: image5.png]

)undo the last action

· Redo: ([image: image6.png]

)Redo the last action

· Copy: ([image: image7.png]

) Copy the selected item(s)

· Paste : ([image: image8.png]

) Paste a copied or cut item(s)

· Cut : ([image: image9.png]

)Cut the selected item(s)

· Zoom actual size: ([image: image10.png]

) Return the normal scale of the graph

· Zoom in: ([image: image11.png]

)Zoom in the graph

· Zoom out: ([image: image12.png]

)Zoom out the graph

· Simulate: ([image: image13.png]

) Start the simulation

· Stop : ([image: image14.png]

) Stop the simulation

· Optimize: ([image: image15.png]

) Start the optimizer

· Replay: ([image: image16.png]

) Start the replay session

· Stop : ([image: image17.png]

) Stop the replay session

[image: image35.png]2|l rO@AOXYYAADD F

4.2 Vertical toolbar description

<= Figure 2: The component toolbar

The component toolbar is the toolbar with all the components needed to draw the pipeline system. Following is the description of its buttons:

· Selection Tool: ([image: image18.png]

)

Used to select any components in the graph. It is always selected by default except when the pipe tool is selected. Use this button to cancel the pipe tool selection.

· Insert Pipe tool: [image: image19.png]

Use this tool to insert a pipe between two components. When the tool is selected, the cursor becomes a cross. Rolling over a component port will then cause this port to be highlighted. This indicates the possibility of connecting a pipe to this port. You can then drag the cursor to another port to have a pipe.

To come back to a mode where components can be moved, you have to select the selection tool.

· Show/Hide Connectors: [image: image20.png]

Set the ports of all components in the graph to be visible or hidden. When the ports are visible, a pipe can be directly drawn without selecting the pipe tool. This avoids selecting the pipe tool every time a pipe needs to be drawn. When over a port, the hand cursor will appear, indicating that it is ready to draw a pipe. You can then just drag the hand to another port and a pipe will be drawn.

If it becomes difficult to grab a component and move it (because the component is too small), you can just hide the ports. This way, you can click anywhere on the component and move it.

· Pipeline Components: You can insert a component by either clicking on the component or dragging its toolbar button into the drawing space. Clicking on the component will drop the component at a default location. Following is a list of all the pipelines component found in the Pipeline Editor:

[image: image21.png]

 Delivery point: Represent a delivery point.

[image: image22.png]

 Receipt point: Represent a receipt point.
[image: image23.png]

 Compressor: Component composed of a compressor and a driver.

Type of this component can be set up by right-clicking on the component.

[image: image24.png]

 Joint: Component used to connect two pipes together.

[image: image25.png]

 Valve: Used to connect two pipes. Can have two states: open or close.

The state of the valve can be change on the right-click menu.

[image: image26.png]

 Split: Represents a 2-way splitting junction.

[image: image27.png]

 Split: Represents a 3-way splitting junction.

[image: image28.png]

 Junction: Represents a 2-way combining junction.

[image: image29.png]

 Junction: Represents a 3-way combining junction.

[image: image30.png]

 Storage: Component representing a storage.

[image: image31.png]

 Regulator: Component representing a regulator.

[image: image32.png]HFH

 Orifice: Component representing a orifice meter.

V - FEATURES

5.1 Change component properties

The properties of each component in the graph can be updated by right-clicking on the component and selecting ‘Edit Properties’. A property window will open and let you change the values.

For the compressor, it is also possible to change the type of driver and compressor. For that, right click on a compressor and select ‘set type’.

The state of a valve (open/close) can also be set. Right-click on the valve and select ‘Change State’.

5.2 Name a component

For reference purpose, it is possible to give a name to each component in the graph. Even though this name appears on the property panel, it has no physical meaning and is not mandatory. To change/define the name of a component, double-click on the component. A box will appear and you can type the name inside. You can also right click on the component and select ‘rename’.

5.3 Station view ([image: image33.png]

)

a- Create Station

It is possible to create a station with some selected cells. When the cells are selected, right-click anywhere on an empty space of the graph and select ‘create station’ on the menu. A station will be created. A station can only have one pipe entering and one pipe exiting and should not have any pipe with its source or target out of the station. If this situation happens, a station cannot be created and an error message will occur.

b- Unfold Station

Once a station is created, it is possible to view the component inside it. Right click on the station and selection ‘Unfold station’. When a station is unfold, component are visible but cannot be moved individually.

When a station is unfolded, you can access and manipulate components inside the station without having to destroy the station. A first click on the component will select the unfolded station (dashed rectangle enclosing all components) and a second click will select the component inside the station. Once the component is selected, you can manipulate it as it was out of the station. Be aware that if the station is already selected, a click on a component inside will directly select the component.

c- Fold Station

You can fold back the station by doing a right-click on one of the component of the station and select ‘fold station’ in the menu. If you right-click on an empty space inside an unfold station, you will not be able to have the fold option.

d- Destroy Station

It is possible to destroy the station by doing a right click on the station and selecting ‘destroy station’. All the components will therefore be out of the station and will be able to be moved separately.

5.4 Create/Insert Library

Any group of components can be saved as a library and retrieved later. Select all the components to be part of the library. Then go to File->Save As Library. The library will be saved.

To insert a saved library, go to File->Open Library, and then select a valid library name. The library will then be inserted into the current graph. All library names have a .lib extension. Even if the original library name was created without this extension, it will be added automatically. For example, if you save your library as ‘myLibrary’, when opening it, you need to choose the file ‘myLibrary.lib’.

5.5 Save/Open

At any time, the graph can be saved. Just click on the save icon or go to File-> Save and choose a name.

To open a graph, click on the open icon or go to File ->Open and choose the name of the graph to open. Make sure to have saved all previous work before opening a new graph. All graph files should have a .vps extension. Even if the original library name was created without this extension, it will be added automatically. For example, if you save your graph as ‘myGraph’, when opening it, you need to choose the file ‘myGraph.vps’.

5.6 Cut/paste/copy

To cut or copy, select the component(s). To select a component, just click on the component. To select a group of components, drag the mouse to draw a selection square enclosing all the desired components. Selected components will be highlighted in green. Once the components are selected, click on the cut or copy icon. If there are some items previously cut or copy, you can paste them and they will appear on the graph.

5.7 Remove

To remove a component, select the component and click remove. If a group of components is selected, all the components will be removed. When a component is removed, all the pipes connected to it are also removed. Notice that data cells cannot be removed. They are always associated with a component. They can just be hidden.

5.8 Zoom

By clicking on the zoom icons, it is possible to do a zoom in, zoom out or to come back to the actual size of the graph.

5.9 Optimize

When the graph is completed and is ready for simulation, you need to first run the optimizer by clicking on the optimizer icon or by going to Tool->Optimize.

An error message will appear if the current graph has not been saved.

The parameters of the optimizer can be defined by going to Tool->Set optimizer parameters. There, you can specify the time to wait before interrupting the optimization. Usually, for a medium network, a time of 5 minutes will give some satisfying results.

When the optimizer is running, you can query its state to determine whether or not it is done. For that, go to Tool –>Check Optimizer State.

When the optimizer is done, it is advised to save the graph again. By doing that, the new information creates by the optimizer will be saved and you will not have to optimize the graph next time you open the file.

Be aware that components inside stations will be optimized separately, just as any other components.

5.10 Simulate

Once the optimizer is done, the simulation can be executed. Click on the simulation icon or go to Tool -> Start Simulation. When opening a file that has already been optimize, it is not necessary to optimize the graph again. The simulator will run and after some time, you will see the first results coming.

At any time, the simulation can be stopped by clicking on the stop button. Once the simulation is stopped, it can only restart from the beginning. To review data previously simulated, you can use the replay option.

5.11 View simulation data

For each component expect pipes, it is possible to have a summary view of the data from the simulation. Right click on the component and select ’show data’. The data show the pressure, temperature and mass flow of the component.

When a data cell is visible, you can hide it by right clicking on the component associated to it and select ‘Hide data’. Summary data are always linked to a component. Therefore, it is easy to know which component they refer.

For all components, it is also possible to display all the data. For a pipe, right-click on it and select ‘display data’. For any other components, right-click on the data cell (it has to be visible) and select ‘display data’. A window will appear with all the simulation data. Notice that simulation data cannot be modified.

5.12 Replay

After each simulation, it is possible to review all the data generated during the simulation. Click on the play icon in the toolbar and the replay function will be started. If there are no simulation data available, an error message will appear.

At any time, the replay can be stopped by clicking on the stop button.

5.13 Bend pipes

With Shift-click on a pipe (maintain shit and click on the pipe), it is possible to add a bending point to the pipe. This function is just provided for a better display and has no real physical meaning. Once a bending point is created, you can bend the pipe by dragging the bending point. To remove the bending point, do a Shift-click on the point.

VI – FAQ

Q: When I click on the link, the application does not start.

A: If the browser asks you to open the file, which means you do not have Java Web Start installed on your computer. Go to http://java.sun.com/products/javawebstart/download.html and install the latest version of Java Web Start.

If you have Java Web Start, verify that you have permission to write on the C: drive of your machine.

Q: The program crashes when I run the optimizer or the simulator.

A: The server is not running. Contact the administrator.

Q: When I want to move a component, it starts drawing a pipe.

A: Either the Pipe tool is selected (cross cursor) or you are over a port. For small components, an easy way to move them is to hide the ports. This way, you will never be over a port.

Q: I do not see any data coming when I run the simulator.

A: You did not save the graph after having run the optimizer. When optimizing, a mapping is done between cells from the graph and components from the simulator. If the graph is not saved, the mapping is lost and the simulator cannot map the data with the cells in the graph. The solution is to restart the optimization.

Technical Manual

I- Purpose

The goal of this document is to provide a general description of how to modify or update certain functions of the pipeline editor. It also provides a description of the function of some elements. For more information about the classes and methods, refer to the Design document and the API document available online.

II - Description

Following is a general description for:

· Adding and modifying components.

· Mouse click handling and popup menu

· Mapping cell-jobComponent

2.1 Adding and modifying components

The main class to insert and modify components is the class MyGraph. This class defines all the properties for the components (by creating UserObject objects). Each component (compressor, joint, valve…) has a userObject that hold its properties. For this reason, the display of the properties dialog box is done by the class MyUserObject.

Here are all the steps to add a new component:

1- Define a new cell class for the component (similar to CompressorCell class).

2- Define a view for the component (similar to CompressorView class). In the view, the paint method for the new component has to be specified.

3- In the MyGraph class, associate the cell with the view (method createVertexView()).

4- Define the properties of the new component by adding a method in MyGraph that return an UserObject holding the properties of the component.

5- Define a property dialog for the component in the class MyUserObject (optional).

6- In MyGraph class, add the component cell in the insert() method to allow the new cell to be inserted in the graph.

7- In the Editor class, add a new button to the toolbar corresponding to this new component.

8- Create a new class extending JobComponent to have a job component associated to this new component. The new job component should use the cell’s userObject in order to initialize its fields (see Compressor.java). The execution time of the new job component is also defined in this class.

9- In Mediator.createJob(), associate the new component cell to the new job component created. This method also defines the local and remote communication time for all the components.

Example: Let’s add a new compressor that face the opposite direction of the current one (like this [image: image34.png]

). We are going to call this component compressor2.

1- Define Class Compressor2Cell:

public class Compressor2Cell extends MyCell {

 public CombineCell(Object userObject) {

 super(userObject);

 }

 }
2- Define Class Compressor2View

public class Compressor2View extends VertexView {

 static Compressor2Renderer renderer = new Compressor2Renderer();

public Compressor2View(Object cell, JGraph graph, CellMapper cm) {

super(cell, graph, cm);

 }

 public CellViewRenderer getRenderer() {

 return renderer;

 }

 public static class Compressor2Renderer extends VertexRenderer {

public void paint(Graphics g) {

int b = borderWidth;

Graphics2D g2 = (Graphics2D) g;

Dimension d = getSize();

boolean tmp = selected;

int[] xPoints = {b-1,b-1,d.width-b,d.width-b};

int[] yPoints = { d.height*3/8,d.height*1/8, b-1,d.height/2 };

int[] xPoints2 = {b-1,b-1,d.width-b,d.width-b};

int[] yPoints2 = {d.height*9/16,d.height,d.height,d.height*9/16};

if (super.isOpaque()) {

g.setColor(super.getBackground());

g.fillPolygon(xPoints, yPoints, xPoints.length);

g.fillPolygon(xPoints2, yPoints2, xPoints2.length);

g.drawLine(d.width/2,d.height*7/16,d.width/2, d.height*9/16);

}

try {

setBorder(null);

setOpaque(false);

selected = false;

super.paint(g);

} finally {

selected = tmp;

}

if (bordercolor != null) {

g.setColor(bordercolor);

g2.setStroke(new BasicStroke(b));

g.drawPolygon(xPoints, yPoints, xPoints.length);

g.drawPolygon(xPoints2, yPoints2, xPoints2.length);

g.drawLine(d.width/2,d.height*7/16,d.width/2, d.height*9/16);

}

if (selected) {

g2.setStroke(GraphConstants.SELECTION_STROKE);

g.setColor(graph.getHighlightColor());

g.drawPolygon(xPoints, yPoints, xPoints.length);

g.drawPolygon(xPoints2, yPoints2, xPoints2.length);

g.drawLine(d.width/2,d.height*7/16,d.width/2, d.height*9/16);

}}}}

Notes:

· The class Compressor2View also defines the renderer for this class. This could have been done in a separate class called Compressor2Renderer.

· The paint method defines 3 types of view: opaque, non-opaque and selected. When the component is opaque, it is filled with the proper color. When it is not opaque, only the perimeter is drawn (with the borderColor). We also need to define how the component is viewed when it is selected. In this case, using the predefined selection stroke (green dash line), we are just drawing the perimeter. We could have drawn the enclosing rectangle instead.

· Each component has a size (rectangle) defined when it is created. It will be painted inside this rectangle (its dimension are d.width and d.height).

3- Associate the cell with the view: Class MyGraph.createView()

protected VertexView createVertexView(Object v, CellMapper cm) {

if (v instanceof JointCell)

return new JointView(v, this, cm);

else if (v instanceof CompressorCell)

return new CompressorView(v, this, cm);

else if …

…

else if (v instanceof Compressor2Cell)

return new Compressor2View(v, this, cm);

return super.createVertexView(v, cm);

}
4- Define the properties: MyGraph.createUserObject(). Let’s say that Compressor2 has 3 properties: Temperature, Pressure and Mass with a default value of respectively 10.1, 20.2, 30.3

private MyUserObject compressor2UserObject(){

 String s;

 MyUserObject userObject = new MyUserObject("compressor2");

 s =new String("10.1");

 userObject.putProperty("Pressure", s);

 s =new String("20.2");

 userObject.putProperty("Temperature", s);

 s =new String("30.3");

 userObject.putProperty("Mass", s);

 return userObject;

}
Notes:

· The properties and the values are of type String. Therefore, when reading the value, it has to be cast in the proper type (generally double or int).

5- Define the property dialog

A default propertyDialog (displaying the properties) and dataDialog (displaying

the data) will be created. A default property dialog is created for each userObject. There is no need to create one unless the dialogs have to display different information than the properties stored in the userObject. To create a custom property dialog, go to MyUserObject class and define the new dialog box.

protected void showCompressor2Property(final MyGraph graph, final Object cell) {

// create JDialog compressor2Dialog

//populate the dialog box

// compressorDialog.show()

}
Add a call to this dialog box in MyMarqueeHandler.createPopupMenu().

public JPopupMenu createPopupMenu(final Point pt, final Object cell) {

JPopupMenu menu = new JPopupMenu();

…

if (cell instanceof Compressor2Cell) {

menu.add(new AbstractAction("Edit Compressor2") {

 public void actionPerformed(ActionEvent e) {

((MyUserObject)(((DefaultGraphCell)cell).getUserObject())).showCompressor2Property(graph,cell);

 }

});

…
Note:

· If a special dialog is created, the default one has to be canceled.

6- Insert the component: MyGraph.insert(). Let’s create the part of code to insert a component of type COMPRESSOR2 (this type will be define in the next step).

public void insert(String type, Point point) {

Hashtable attributes = new Hashtable();

int u = GraphConstants.PERCENT;

Map mapPort;

 // Construct Vertex with no Label

 DefaultGraphCell vertex = new DefaultGraphCell();
 DataCell data = new DataCell();

…
// *************Insert a compressor2*****************

 if (type.equals("COMPRESSOR2")){

 MyUserObject userObject = compressor2UserObject();

 vertex = new Compresso2rCell(userObject);

 data.setUserObject(userObject);

// Default Size for the new Vertex

size = new Dimension(50,75);

// Add a Port

mapPort = GraphConstants.createMap();

GraphConstants.setOffset(mapPort,new Point(0, (int) (u / 4)));

DefaultPort port = new DefaultPort("left");

vertex.add(port);

attributes.put(port,mapPort);

mapPort = GraphConstants.createMap();

GraphConstants.setOffset(mapPort,new Point(u, (int) (u / 4)));

port = new DefaultPort("right");

vertex.add(port);

attributes.put(port,mapPort);

((CompressorCell)vertex).setDataCell(data);

}
Notes:

· A vertex is created with a compressor2UserObject. Recall that this userObject holds all the properties for the component. This vertex has a data Object (to display summary data) and a size (size of the enclosing rectangle; used in step 2).

· Depending on the component, we have to define a certain number of ports and their position. The position is relative to u. This variable can be seen as the width or length of the enclosing if used respectively in the x-coordinate or the y-coordinate. In our case, the port will be at 1/4th from the top of the enclosing rectangle.

· Each port has a fixed name as defined in the naming conventions (Section 3).

7- Add a new toolbar button

public JToolBar createToolBar2() {

 JToolBar toolbar = new JToolBar(SwingConstants.VERTICAL);

 toolbar.setFloatable(false);

// InsertCompressor2

 URL comp2Url = getClass().getClassLoader().getResource("gif/comp2.gif");

 ImageIcon comp2Icon = new ImageIcon(comp2Url);

 compressor = toolbar.add(new AbstractAction("Comp", comp2Icon) {

 public void actionPerformed(ActionEvent e) {

 graph.insert("COMPRESSOR2",new Point(10, 20));

 }

 });

 compressor2.setToolTipText("Compressor2");

…

MouseMotionListener ml = new MouseMotionAdapter() {

 public void mouseDragged(MouseEvent e) {

 JComponent c = (JComponent)e.getSource();

 TransferHandler th = c.getTransferHandler();

 th.exportAsDrag(c, e, TransferHandler.COPY);

 }

 };

 compressor2.setTransferHandler(new ButtonTransferHandler("COMPRESSOR2"));

 compressor2.addMouseMotionListener(ml);

…

Notes:

· You should have an image icon for the new component (in this example comp2.gif). Images are 24 x 24.

· The action when the button is pressed is to insert compressor2 into the graph. The type specified when calling graph.insert() should match the type used in MyGraph class (step 6).

· The MouseMotionListener is used to handle Drag & Drop. Each button in the toolbar has to be notified when a drag gesture is started.

8- Create a JobComponent for the new component. Recall that compressor2 has 3 properties: pressure, temperature, mass.

public class Compressor2 extends JobComponent implements Serializable{

private double pressure, temperature, mass;

public Compressor2(MyUserObject userObject){

super(1);

componentId = c++;

gasType = new Integer((String)(userObject.getProperty("gasType"))).intValue();

number = new Integer((String)(userObject.getProperty("number"))).intValue();

String indexVal = (String)(userObject.getProperty("index"));

String valueVal = (String)(userObject.getProperty("value"));

Notes:

· The execution time is defined in the constructor. It is the parameter of the superclass constructor. In this case, the execution time is 1.

· The initialization of the fields comes from the userObject. As the property values are Strings, a casting in the proper type is necessary.

· Get and set methods have to be defined for each field.

9- Associate the component cell to the job component: class Mediator

private Vector createJobs(){
hash = new Hashtable();

for (Iterator iter = cells.iterator(); iter.hasNext();){

JobComponent j = null;

DefaultGraphCell o = (DefaultGraphCell)(iter.next());

if (o instanceof CompressorCell)

 j = createComp2Node(o);

else if (o instanceof Compressor2Cell) // o is a compressor2

j = createComp2Node(o);

else if …

…

if (j != null){

hash.put(o,j);

}

private JobComponent createComp2Node(DefaultGraphCell cell){

MyUserObject userObject = (MyUserObject)(cell.getUserObject());

return new Compressor2(userObject);

}
Note:

· The jobComponent is created from the userObject of the cell stored in the hashtable for future reference.

2.2 Mouse click handling and popup menu

All the mouse events are handled in the class MyMarqueeHandler. The popup menus are also created in this class. Every time a click occurs, this class detects the cell on which the click has occurred and initiates the proper action (see example step 5).

This class also handles the pipes creation. The userObject for the pipes are defined in the class MyMarqueeHandler (as opposed to MyGraph for all other components).

The decision of whether or not some components should accept pipes sources or targets is taken in the class MyModel.

Example : Accept source only from the left of compressor2.

public class MyModel extends DefaultGraphModel {

public boolean acceptsSource(Object edge, Object port) {

if ((((DefaultPort)port).getParent() instanceof Compressor2Cell)){

 if (((DefaultPort)port).getUserObject().toString().equals("right"))

return false;

 else return true;

}

…

…

}

2.3 Mapping cells and jobComponents

In order to optimize or simulate the graph, a mapping has to be done between cells from the graph and Job Component used by the optimizer and the simulator. This mapping is done by the Mediator class. This class holds 2 static hashtables: one for the mapping cell–JobComponent and another one for the mapping JobComponent-Cell. This class is the link between the graph and the optimizer and the simulator. This is in the mediator class that data of the simulation are updated inside each cell.

III- Naming Conventions

There is some naming conventions for the files and variable names used by the application.

3.1 File names

The graph files are saved with the extension ‘.vps’. Those files are saved on the client machine and just contain information for rebuilding the graph. An vps file is the serialization of the view and the model of the graph. An example of file would be ‘test.vps’.

The optimizer files use the extension ‘.opt’. They use the basename of the graph file saved by the user. For instance, if a user save a graph under ‘test.vps’, the optimizer file will be named ‘test.opt’. For this reason, the user is prompted to save the graph before optimizing. Optimizer files are saved on the server side. They are used by the simulator. An opt file is a serialized vector containing all the JobComponents created from the graph cells. Those JobComponents contain information generated from the optimizer about the machine on which they should be executed.

The simulator files use the extension ‘.sim’. The file name is created by adding the timestamp of the simulation to the basename of the graph file saved by the user. For instance, the 5th set of data produced by the simulator will be saved under ‘test5.sim’. The initial file is named ‘test0.sim’. It is the same data as the original file received from the optimizer. Simulator files are the serialization of a vector containing the JobComponents. Each JobComponent in this file has been updated with new values coming from the simulation.

3.2 Variable names

The only variable names that are fixed are the name of the ports and the name of the data edges (edges linking a cell with its data). For components having 2 ports, the left port will be called ‘left’ and the right port ‘right’.

Example:

DefaultPort port = new DefaultPort("left");

For components with more than one left port, the names of the left ports should contain the string ‘left’ (no matter what the name is, i.e topLeft). Same for components with more than one right port. This naming convention helps to easily identify the ports.

The data edge name is ‘data’. Knowing this name helps making the distinction between a data edge and a pipe (which is also an edge).

Example:

DefaultEdge edge = new DefaultEdge("data");

IV- Communications

The GUI, on the client side, has to communicate with the optimizer and the simulator on the server side.

4.1 GUI-Optimizer

The protocol of this communication is very simple. The GUI communicates via the OptimizerClient class. First, the OptimizerClient opens a connection to the server on port 3333. Then it sends a list of jobs (a vector). After, it sends a mapping (id,JobComponent), then the file name and finally a time. The time is the optimizer time, input from the user. The default time is 2 minutes. The file name is the name under which the graph has been saved. It is needed to save the optimizer file under the same name. The mapping (id, JobComponent) is needed by the Branch and Bound algorithm in order to find the JobComponent from any given job id. The list of jobs is a vector of all jobs components created from the cell of the graph. The vector is created by the method Mediator.createJobs().

On the other side, the optimizer (the server), receives those objects and starts the computation. Whenever an error occurs, it sends a message (REJECT) to the OptimizerClient that notifies the GUI. If all the information has been received properly, it sends an ACCEPT message. When it is done, it creates a file that will be used by the simulator and send a DONE message.

4.2 GUI-Simulator

The protocol of this communication has been specified in the Formal Specification document. The communication is done via the SimulatorClient that connects to the simulator server on port 4000. The optimizerClient receives commands from the GUI and passes them to the simulator that executes the proper action. The commands are: Stop, sendFile, Replay.

To start the simulation, the GUI initiates a sendFile command. The OptimizerClient then transfers the optimizer filename (test.opt) to the simulator.

For a replay, it sends the filename of the simulator initialization file (test0.sim).

In both cases, the simulator reply by an ACCEPT if the file exists or REJECT if not. If the file is accepted, the simulator start sending data either by computing them for a simulation command or by taking them from the file previously stored in the case of a replay command. The OptimizerClient receives the data and notifies the Mediator that updates the display. As each JobComponent is mapped to a graph cell, the data are fetched from the JobComponent and updated in the corresponding cell’s userObject. For a simulation, each time a new set of data is transferred to the client, a new file is created. Those files are used for the replay and follow the naming convention defined earlier.

At any time, the user can stop the simulation or the replay. A stop message is then sent to the simulator, which, upon reception of this message, stops sending data and returns to an idle state.

V- Java Web Start

Java Web Start is used to access the application from any browsers. When using Web Start, the application can be untrusted and run in a sandbox. However, due to the sockets access to the optimizer and the simulator, the code has to be signed in order to use the client network. To be able to start, the application must come in a jar file and with and jnlp file. The jnlp defines the name, path, description, and main class of the application. It also defines the type of permission is required. For the meaning of all the tags and their possible values, refer to the developer guide of Web Start at: http://java.sun.com/products/javawebstart/1.2/docs/developersguide.html#filecontents.
Following is the jnlp file used for the application:

<jnlp spec="0.2 1.0"

 codebase="http://www.cis.ksu.edu/~oyenan/MyWeb/Project/"

 href="project.jnlp">

 <information>

 <title>Pipeline Editor</title>

 <vendor>KSU CIS</vendor>

 <homepage href="http://java.sun.com/products/javawebstart/demos.html"/>

 <description>A Pipeline editor test</description>

 <description kind="short">Pipeline editor Description</description>

 <icon href="gif/pipeline.gif"/>

 <offline-allowed/>

 </information>

 <security>

 <all-permissions/>

 </security>

 <resources>

 <j2se version="1.4+" href="http://java.sun.com/products/autodl/j2se"/>

 <j2se version="1.4+"/>

 <jar href="project.jar" main="true" download="eager"/>

 </resources>

 <application-desc main-class="Editor"/>

</jnlp>
Following are the step to provide a signed jar file.

· jar cmf MyManifest project.jar *.class gif optimizer org
This will put all the class file in the jar. It will also put the following directories:

· \gif: directory containing all the icons

· \optimizer: classes for the optimizer package

· \org: JGraph classes

The file MyManifest simply specify which of those classes contain the main method.

· keytool –genkey –keystore myKeys –alias jdc

This generate a key stored in the file myKeys. A password will be asked to generate the key. This file is available and the password is ‘pipeline’. If using the file myKeys, this step is not necessary (as the key has already been generated).

· jarsigner –keystore myKeys project.jar jdc
This will sign the jar file with the key contained in the file myKeys. The password used when creating the file will be asked. If using the provided file, it is going to be “pipeline”.

Test Cases

The tests will address only those items and elements that are related to the GUI and the Optimizer of the Virtual pipeline Simulation Testbed. The primary focus of this testing is to ensure that the GUI provides the appropriate functionalities and that the optimizer produces an optimal solution.
 Following is the testing report showing the test cases that had been done and their results.
	Unit / Function
	Test case
	Result
	Comments

	Station
	Group with more than one entry or exit point
	Pass

	Error message is sent

	Station
	Partial edge selected
	Pass
	Error message is sent

	Station
	Good Selection of components
	Pass
	Station created with proper connections

	Station
	Unfold station
	Pass
	Components inside visible

	Station
	Fold station
	Pass
	Station visible, components hidden

	Open
	Bad file name
	Pass
	Error message

	Save
	No extension
	Pass
	Extension added

	Optimizer
	Accuracy of the solution : 5 different graphs with known optimal solution
	Pass
	20 % off the optimal solution

	Optimizer
	1000 Jobs
	Fail
	Out of memory

	Optimizer
	Button Pressed twice
	Pass
	Error message

	Optimizer
	Bad graph file
	Pass
	Error message

	Simulator
	Simulation
	Pass
	Good display of data.

	Simulator
	Bad opt file

	Pass
	Error Message

	Simulator
	Stop
	Pass
	Simulation stopped

Last data received

	Replay
	Simulation data comparison
	Pass
	Same data

	Compressor
	Bad source or target
	Pass
	No pipe is drawn

	
	
	
	

Project Evaluation

I- Pipeline editor Evaluation

The pipeline editor accomplishes the ideas presented in the initial overview. All requirements specified have been fully implemented.

1.1 Difficulties

One of the major difficulties encountered while developing the pipeline editor was the use of JGraph. The developer had to learn how to use this new package. Another problem encounter was the requirements changes. The requirements were either not fully defined or changed during the development.

1.2 Number of Line of codes

The pipeline editor used some code from JGraphPad. JGraphPad is an graph editor given as an example of the use of JGraph. 700 LOC of this software were reused. The total number of LOC for the Pipeline Editor is 8600 LOC.

II- Optimizer evaluation

Due to some time constraint, the optimizer can only run for a defined amount of time. Therefore, the solution found is just an approximation. However, although the optimizer cannot produce the optimal solution, it produces a solution very close to the optimal one. The tests have shown that within the first 15 minutes, the optimizer can approach the optimal solution at 80%.

2.1 Difficulties

One of the major problems encountered while developing the optimizer was the research of the heuristic for the Branch and Bound. There was a lot of literature about the Brach and Bound algorithm, but not that much about the heuristics because they are problem-dependant.

2.2 LOC

The total number of LOC used for the optimizer is 1100 LOC. There was no code reused.

III- Methodologies evaluation

The MSE portfolio and the software methodologies served as a useful guide throughout the project. Thorough this project, the developer acquired a better understanding of a software life cycle. It will be a guiding factor in future projects.

IV- Accuracy of Estimations

At the beginning of the project, some estimations were done (cost and schedule). Those estimations were refined in the second phase of the project.

The cost estimation was done the COCOMO model. The size was estimated at 3000 LOC for the GUI and 800 LOC for the optimizer. The real values are 8600 LOC for the GUI and 1100 for the optimizer. The inaccuracy the number of LOC in the GUI is mainly due o the fact that the developer had no previous experience in developing this type of application. The estimated time needed for the completion of the project was estimated to 4 months with 4 staff-month (1 staff-month consists of 152 hours). The project had taken 7month with 1.5 staff –month (the developer was working 60 hours/week). The completion time predicted is therefore quite accurate.

The project was on schedule. The project plan defined at the beginning has been respected. All the presentations were done on time.

