Department of Computer and Information Sciences

Kansas State University

Graphical User Interface

and

Job Distribution Optimizer

for a

Virtual Pipeline Simulation Testbed

MSE PROJECT: Phase II

Major Professor: ……Dr. Virgil Wallentine
Committee Members: Dr. Daniel Andresen

 Dr. Masaaki Mizuno
Student: ……………..Walamitien Oyenan

November 7, 2003

3Architecture Design

31.
System Design Description

32.
JGraph design

53.
Pipeline Editor Design

84.
Optimizer Design

14Formal Requirement Specification

141.
Introduction

142.
Specification

143.
Verification

19Test Plan

191.
Introduction

192.
Scope

195.
Approach

206.
Test Cases

207.
Pass/Fail Criteria

208.
Deliverables

209.
Responsibilities

2110.
Schedule

2111.
Approval

22Implementation Plan

221.
User Manual

222.
Architecture Design

223.
Source Code

224.
Assessment Evaluation

225.
Project evaluation:

226.
Other documents:

23Formal Technical Inspection

231.
Introduction

232.
Items to be inspected

233.
Participants

234.
Criteria

235.
Formal Technical Inspection Check List

Architecture Design

1. System Design Description

This document contains the complete architectural design of the GUI and the Optimizer of the Virtual Pipeline Simulation Testbed. The GUI is built as an extension of the JGraph and Swing packages. In order to have a better understanding of the design, this document will briefly describe the design and features of JGraph before explaining in details the design of the GUI and the Optimizer. The complete design of JGraph can be found online (cf. references).

There are 3 main packages in this architecture:

· Jgraph

· Editor

· Optimizer

The design of each package will be explained separately in the rest of this document.

2. JGraph design

The implementation of JGraph is entirely based on the source code of the JTree class. However, it is not an extension of JTree; it is a modification of JTree's source code. The components for trees and lists are mostly used to display data structures, whereas this graph component is typically also used to modify a graph, and handle these modifications in an application-dependent way.

 2.1 - Features

The main features of JGraph are:
· Inheritance: JTree's implementation of pluggable look and feel support and serialization is used without changes. The UI-delegate implements the current look and feel, and serialization is based on the Serializable interface, and XMLEncoder and XMLDecoder classes for long-term serialization.

· Modification: The existing implementation of in-place editing and rendering was modified to work with multiple cell types.

· Extension: JGraph's marquee selection and stepping-into groups extend JTree's selection model.
· Enhancement: JGraph is enhanced with datatransfer, attributes and history, which are Swing standards not used in JTree.

· Implementation: The layering, grouping, handles, cloning, zoom, ports and grid are new features, which are standards-compliant with respect to architecture, and coding conventions.

2.2 - The Model

The model provides the data for the graph, consisting of the cells, which may be vertices, edges or ports, and the connectivity information, which is defined using ports that make up an edge's source or target. This connectivity information is referred to as the graph structure. (The geometric pattern is not considered part of this graph structure.)
[image: image1.png]

Figure 1. A graph with two vertices and ports, and one edge in between
[image: image2.png]roots

[Vertex A Edge Vertex B
children source children
1 target T
Porta Porth
\qparent parent
edges edges

Figure 2. Representation of the graph in the DefaultGraphModel

2.3 - The View

The view in JGraph is somewhat different from other classes in Swing that carry the term view in their names. The difference is that JGraph's view is stateful, which means it contains information that is solely stored in the view. The GraphLayoutCache object and the CellView instances make up the view of a graph, which has an internal representation of the graph's model.

[image: image3.png]Grephview

Graghioel CellMarper

Figure 3. GraphLayoutCache and GraphModel
The GraphLayoutCache object holds the cell views, namely one for each cell in the model. The graph view also has a reference to a hash table, which is used to provide a mapping from cells to cell views.

2.4 - The control

The control defines the mapping from user events to methods of the graph- and selection model and the view. It is implemented in a platform-dependent way in the UI-delegate, and basically deals with in-place editing, cell handling, and updating the display. As the only object that is exchanged when the look and feel changes, the UI-delegate also specifies the look and feel specific part of the rendering.

In JGraph, the graph model, selection model and graph view may dispatch events. The events dispatched by the model may be categorized into:
· Change notification

· History support
[image: image4.png]GraphUndoManager

ey

UndoableE ditEvent

GraphMod elEvent

GraphModelEvent

Figure 4. JGraph's event model
The GraphModelListener interface is used to update the view and repaint the graph, and the UndoableEditListener interface to update the history. These listeners may be registered or removed using the respective methods on the model.

The selection model dispatches GraphSelectionEvents to the GraphSelectionListeners that have been registered with it, for example to update the display with the current selection. The view's event model is based on the Observer and Observable class to repaint the graph, and also provides undo-support, which uses the graph model's implementation.

3. Pipeline Editor Design
Most of the classes of the Pipeline Editor extend the classes of JGraph in order to provide a custom graph needed to draw the pipeline network. Only a few classes directly extend some Swing classes. The features implemented by the pipeline editor are described in the Software Requirement Specification document.

3.1 - Class diagram

Following is the class diagram of the pipeline editor:

[image: image5.emf]MyGraph

selectPipe : boolean

actionMap : ActionMap

getAction()

isCellEditable()

insert()

createVertexView()

createPortView()

createEdgeView()

getArchivableState()

setArchivableState()

MyModel

acceptSource()

acceptTarget()

MyPortView

portIcon : ImageIcon

getBound()

getRenderer()

Editor

optimizer

graph

graphUndoManager

ungroup()

group()

isGroup()

undo()

redo()

property()

open()

save()

openLib()

saveLib()

valueChanged()

keyPressed()

createMenuBar()

createToolbar()

MyGraphTransferHandler

importDataImpl()

doImport()

ButtonTransferHandler

type : String

getType()

createTransferable()

getSourceActions()

MyCell

dataCell : DataCell

getDataCell()

setDataCell()

CompressorCell

JointView

paint()

PipeView

paint()

CompressorView

paint()

JointCell

pipeCell

DataCell

MyMarqueeHandler

graph : MyGraph

connect()

isForceMarqueeEvent()

mousePressed()

mouseDragged()

mouseReleased()

getSourceportAt()

getTargetPortAt()

mouseMoved()

createPopupMenu()

MyUserObject

properties : Map

valueChanged()

getProperty()

setProperty()

getProperties()

setProperties()

clone()

showPropertyDialog()

DataRenderer

dataPanel : JPanel

getRendererComponent()

installAttributes()

JGraph DefaultGraphModel PortView MarqueeHandler

DefaultGraphCell

GraphTransferHandler

VertexView

VertexRenderer

Mediator

graph : MyGraph

optimizer : optimizerClient

simulator : SimulatorClient

optimize()

simulate()

stopSimulation()

Replay()

updateData()

OptimizerClient

run()

isDone()

setFilename()

setTime()

setJobs()

SimulatorClient

run()

isDone()

setCommand()

getCommand()

setFilename()

getStatus()

setStatus()

Figure 5: Class Diagram of the Pipeline Editor

3.2 - Class description

This section describes each class of the pipeline editor and its function. For the classes extending JGraph classes, only the purpose of the extension is explained. To understand the whole function of the class, it is necessary to refer to the extended class in the JGraph package.

Class Editor extends JPanel:

This is the main class representing the main panel of the application. It has the graph panel (instance of JGraph) and the toolbars.

Class MyGraph extends JGraph:

Provide a custom graph model.

Contains all the necessary methods to create and insert custom components in the graph.

Class MyMarqueeTransferHandler extends MarqueeTransferHander:

Provide a custom mouse handler for the graph.

Provide custom edges used to represent pipes.

Create popup dialogs.

Class MyModel extends GraphModel:

Define the criteria to accept the connection edge (pipe) and cell (component)

Class MyPortView extends Port view:

Define a custom representation of ports.

Class MyGraphTransferHandler extends GraphTransferHandler:

Provide drag and drop support for the graph.

Class ButtonTransferHandler extends TransferHandler:

Transfer Handler for dragging the buttons from the toolbar.

Class DataCell extends DefaultGraphCell:

Define a cell use to display data from the simulation.

This cell is a JPanel.

Class DataRenderer extends VertexRenderer:

Use to render the DataCell as a JPanel containing information to be displayed.

Class MyCell extends DefaultGraphCell:

Abstract class for all the custom cells representing the components.

Each MyCell object has a reference to a DataCell.

Class CompressorCell extends MyCell:

Represent a component cell. The component is a compressor.

Each component cell has a DataCell and a MyUserObject to holds information about the cell.

There is similar class for each component (Pipe, Joint, Split …).

Class CompressorView extends VertexView:

Define the shape of the component.

There is similar class for each component (Pipe, Joint, Split …).

Class MyUserObject extends Object:

Holds the property of the associated object (component) in a map for future reference.

Display the property dialog for each component.

Class SaveServer:
Server to save the user file on the server side.

Receive the file via socket and save it.

Class SaveClient:
Send the file to be saved to the server via socket.

Class Optimizer:
Create JobComponent objects from component cells taken from the graph.

Each component cell has a corresponding JobCcomponent.

Holds a reference to BranchBound class to start the optimization.

4. Optimizer Design
Problem: Given a set of jobs with execution time and computation time and a set of machines, find the optimal job distribution among those machines. That is, find the distribution that minimizes the differences in the load of each machine.
4.1 - Depth-First Branch and Bound
Each job j has a computation weight Wj and a communication time Cj (sum of each communication time with all neighbors).

The objective is to minimize the load on the busiest machine.

At each node, we consider a cost function for the busiest machine only (worst-case estimate).

A vertex in the tree represents a partial/complete allocation of jobs on machines.

The root of the search tree is the empty allocation.

A vertex at level k in the tree represents an assignment of jobs {J1,…,Jk}.

a) Cost function

The cost function f(x) is defined by:

f(x) = g(x) + h(x) ;

where:

g(x) : actual cost for the current allocation.

h(x) : load contribution on the busiest machine of the next job to be allocated.

We have:

· g(x) = ∑(Wj+Cj) for all j allocated to the busiest machine.

Note: Cj consider only the communication with neighbors already allocated.

· h(x) = min(Wi, Ci) , i being the next job to be allocated.

The heuristic function h(x) is explained as follows:

*If job i is eventually assigned on the busiest machine, its contribution to this node’s load is just its weight.

*If job i is eventually allocated on some other machine, its contribution to the node’s load is its communication time.

At each step, we want the take the case that minimize h(x).

b) Pseudo Algorithm:

 minCost = infinity,

 root = empty allocation,

 cost(root) = 0

 stack = allJobs

While stack not empty do

node = dequeue stack

if node isLeaf, update minCost

else

 compute cost(node)

 if cost(node) > minCost then prune node

 else generate job allocation of all children of node

 end if

 end if

end while

return minCost

The following figure shows an execution of the Branch and Bound algorithm with 3 tasks (T1, T2, T3) and 2 processors (N1, N2) without and with pruning (Fig 7, 8).

[image: image6.png]Root of the Search Tree

\/ Jansy (s) (LN (6)N (7) (TN Allocating T2
/ (T2,N1) - (T2,N - (T2,N1) (T2,N2)

(3) (o) (10 \ (1) (12 \ (13) 4] (15) Allocating T3
END (LN (T5ND (LN (182 (@082 (1582 (1N
(T2)N1) (T2)N1) (T2, N2) (T2/N2) (T2,N1) (T2,N1) (T2, N2) (T2N2)
(T3,N1) (T3,N2) (T3,N1) (T3,N2) (T3,N1) (T3,N2) (13, N1) (T3,N2)

Fig. 6: Example with 3 tasks(T1, T2, T3) and 2 processors (N1, N2) without pruning
[image: image7.png]ﬁ
40
(T1,N2)
o 23 ». 20
40 40 40 m
N0
(TL NI (T1,NI) Q (TL.N2) (TLN2)
% (T2, ND) (T2.N2) N4 (T2,NT) (T2.N2)
£ 233
") 40

(T1,N2) (T1,N2)
(T2,N2) (T2,N2)
(T3,N1) (T3,N2)

Figure 7: Example with 3 tasks (T1, T2, T3) and 2 processors (N1, N2) with pruning
c) Shared Version

In the shared version, the sequential algorithm is started. When there are enough nodes, the nodes are distributed among workers. Each worker can the start its own branch and bound algorithm. Every time a new bound is reached, it is compared to the shared bound and updated if necessary. At the end, the shared bound, which is the minimal found, will be associated to a solution object (containing the minimal allocation). This solution Object will be returned.

4.2 - Class Diagram

[image: image8.emf]BranchBound

minCost : Solution

active : Stack

node : Node

findSolution()

startSolution()

Solution

value : int

allocation : Vector

getValue()

getAllocation()

Node

allocated : Vector

remaining : Vector

allocation : Vector

load : Vector

leaf : boolean

getLoad()

getCost()

setLoad()

setCost()

setAllocation()

getAllocation()

isLeaf()

getLoadForMachine()

setLoadForMachine()

getAllocationForMachine()

Machine

numProcessors : int

name : String

id : int

speed : int

getPower()

getNumProcessor()

getSpeed()

SharedBound

value : float

solution : Solution

getValue()

setValue()

getSolution()

setSolution()

Optimizer

graph : JGraph

workers : Vector

allJobs : Vector

allMachines : Vector

optimize()

createPipe()

createJoint()

createCompressor()

Worker

solution : Solution

stack : Vector

numMachine : int

numJobs : int

addNode()

CompareJob

compare()

Pipe

diameter (0.6m) : double

length (100000.0m) : double

theta (0.0) : double

nodes (51) : int

gasType (1) : int

hin (200.0) : double

tin (298.15) : double

p_1 : double

p_nodes : double

number (3) : int

index : int[3]

value : double[3]

p : double[51]

t : double[51]

m : double[51]

Compressor

gasType (1) : int

ps : double

ts : double

ms : double

pd : double

td : double

md : double

power (1000.0) : double

speed (14000.0 : double

efficiency (75.0) : double

head (20.0) : double

fuel (1.0) : double

number(4) : int

index : int[4]

value : double[4]

Joint

JobComponent

machineID : int

componentType : int

componentID : int

neighborsIn : Vector

neighborsOut : Vector

getMachineId()

getcomponentType()

getComponentId()

getNeighborsIn()

getNeighborsOut()

Figure 9: Class Diagram of the Optimizer

4.3 - Class Description

Class BranchBound

Implement the branch and bound algorithm.

Holds a reference to the current solution found.

Class Solution

Represent a solution to the Branch and Bound algorithm.

Contains the minimal allocation found.

Class Node

Holds the current allocation. The allocation can be partial (non-leaf node) or complete (leaf node).

For a non leaf node, jobs non allocated yet are stored inside the node.

An allocation is an array of machine with their corresponding jobs.

Class Machine

Holds all the information about a machine.

Store all the jobs allocated to this machine so far.

Class JobComponent

Abstract class representing a job. Sub classes of this class are component objects (pipe, compressor, joint…) .

Class Pipe extend JobComponent

Holds all the properties and initial values of a pipe.

There is a similar class for all components (Compressor, Joint, split…).

Class Worker extends Thread

Worker objects are threads searching a part of the tree.

They exchange new bounds via a shared memory (class SharedBound).

Holds a stack of nodes representing their part of the tree.

Class SharedBound

Holds the minimal bound found so far by the Worker objects.

Also holds the allocation (Solution object) corresponding to this bound.

Class CompareJob

Used to specify how jobs should be compared.

When the jobs are sorted, it helps reducing the number of nodes visited to reach the solution.

Jobs are compared by number of neighbors and by weight.

References:

· Gaudenz Alder, Design and Implementation of the JGraph Swing Component
http://www.jgraph.com/documentation.shtml
· Dar-Tzen et al., Assignement and Scheduling Communicating Periodic Tasks in Distributed Real-Time Systems, IEEE Transactions on Parallel and Distributed Systems, 1997
Formal Requirement Specification

1. Introduction

This document specifies the protocol between the GUI on the client side and the simulator on the server side.

2. Specification

The GUI needs to be able to listen to the simulator in order to get the data from the simulation. When the user wants to start a simulation, he needs to pass a filename to the simulator. If this filename is not valid, an error code is returned. If it is a valid filename (the file exists and has the proper format), then the GUI is ready to accept data from the server. As long as there is some data available, the server continues to send them. At any time, the user can interrupt the simulation. A message is then sent to the simulator. The protocol will make sure that there is no loss of data due to interruption. The server can also send an end message when the simulation reaches the end. At the end (either by interruption, or normal termination), both the server and the GUI should be ready to start the protocol again.

3. Verification

The protocol is specified using Promela and checked with Spin. We want to check that the protocol has no deadlock. We also want to be able to verify that there are no unexpected messages. (E.g. a data message when expecting an end message).

Following are the FSMs used to derive the Spin Model:

[image: image9.emf]init

wait

data_ex

Recv_

done

Send_

done

Send file

Recv reject

Recv accept

Recv done

Send done

Send done

Recv done

Recv data

Recv data

Figure 1: FSM for the GUI

[image: image10.emf]init

check

data_ex

Recv_

done

Send_

done

Recv file

Send reject

Send accept

Recv done

Send done

Send done

Recv done

Send data

Interruption

Normal

Termination

Figure 2: FSM for the Simulator
SPIN Model:

/* Protocol GUI - Simulator

 * Virtual Pipeline Simulation Testbed

 *

 * Walamitien OYENAN

 */

#define idle 0

#define wait 1

#define check 2

#define data_ex 3

#define recv_done 4

#define send_done 5

#define MAX 4

int datasent = 0;

mtype = {file, reject, accept, data, done}

chan socket1 = [MAX] of {mtype}

chan socket2 = [MAX] of {mtype}

proctype gui (chan send, recv) {

 int state = idle;

end:

 do

 :: atomic { state == idle ->

send ! file;

state = wait;

 }

 :: atomic { recv ? reject ->

 assert (state == wait);

 state = idle

 }

 :: atomic { recv ? accept ->

 assert (state == wait);

 state = data_ex;

 }

 :: atomic { recv ? data ->
 assert (state == data_ex || state == send_done);

 skip;

 }

 :: atomic { recv ? done ->

 assert (state == data_ex || state == send_done);

if

 :: state == data_ex ->

state = recv_done;

 :: state == send_done ->

state = idle;

 fi

 }

 :: atomic { state == data_ex ->

 send ! done;

 state = send_done;

 }

 :: atomic { state == recv_done ->

 send ! done;

 state = idle;

 }

 od

}

proctype simulator(chan send, recv)

{

 int state = idle;

end:

 do

 :: atomic { state == idle ->

recv ? file;

state = check;

 }

 :: atomic { state == check ->

send ! reject;

 state = idle

 }

 :: atomic { state == check ->

send ! accept;

 state = data_ex;

 }

 :: atomic { recv ? done ->

 assert (state == data_ex || state == send_done);

if

:: state == data_ex ->

state = recv_done;

:: state == send_done ->

state = idle;

fi

 }

 :: atomic { state == data_ex ->

 if

 :: datasent < MAX ->

 send ! data;

 datasent++

 :: else ->

 send ! done;

 state = send_done;

fi

 }

 :: atomic { state == recv_done ->

 send ! done;

 state = idle;

 }

 od

}

init {

 atomic {

 run gui(socket1,socket2);

 run simulator(socket2, socket1);

 }

}

SPIN Output:

(Spin Version 3.4.16 -- 2 June 2002)

+ Partial Order Reduction

Full statespace search for:

never-claim
- (not selected)

assertion violations
+

cycle checks
- (disabled by -DSAFETY)

invalid endstates
+

State-vector 56 byte, depth reached 53, errors: 0

 162 states, stored

 152 states, matched

 314 transitions (= stored+matched)

 330 atomic steps

hash conflicts: 0 (resolved)

(max size 2^19 states)

2.542
memory usage (Mbyte)

Test Plan

1. Introduction

The Software Test Plan (STP) describes the plans for testing the software. The purpose of the test plan is to ensure that the intended functionalities are implemented properly. To fulfill this objective, a series of test will be executed during the implementation.

2. Scope

This plan will address only those items and elements that are related to the GUI and the Optimizer of the Virtual pipeline Simulation Testbed. The primary focus of this plan is to ensure that the GUI provides the appropriate functionalities and that the optimizer produces an optimal solution.

The project will have three levels of testing, Unit, System/Integration and Acceptance. Unit testing focuses verification effort on the major functions, and integration testing tests the program structures built with unit-tested modules. The details for each level are address in the approach section and will be further defined in the level specific plans.

3. Test Item

These are the items to be tested:

· Pipeline Editor

· Optimizer

4. Features to be Tested

· Pipeline Editor functions

· Optimizer performance

· Communication GUI – Optimizer

· Communication GUI - Simulator

5. Approach

5.1. Unit Testing

There will be mainly two units: the GUI unit and the Optimizer unit. All the classes will be tested in the unit they refer to. Classes belonging to both units (JobComponent and subclasses) will be tested only in the GUI unit.
5.2. Integration testing

Once the individual units have passed unit testing those units may then be used in integration testing. During integration testing, the units will be incorporated together and tested, adding one unit at a time. Integration testing will put together the GUI unit and the Optimizer unit.

6. Test Cases

6.1. Unit Tests

Pipeline Editor–

· Given a network, all operations as define in the Software Requirement Specification should produce the expected result.

· Drawing a network should meet all the requirements as defined in the Software Requirement Specification document.
Optimizer –

· Given a set of jobs and machines, it should produce the correct output.

· Will have the capability to produce an optimal solution with at least 1000 jobs.

6.2. Integration Tests

GUI-Optimizer: Given a network, the GUI and the Optimizer should be able to communicate effectively and produce the expected file as output.

7. Pass/Fail Criteria

The system will pass if the functionality and performance requirements are met.

6. Suspension Criteria
Suspension Criteria: If any of the tests selected by the member do not give the expected result, then the testing will be suspended until the bug is fixed.
8. Deliverables

· Test Plan.

· Test Case Specification.

· Test input and test output data.
9. Responsibilities

The developer is responsible for all the testing activities.

10. Schedule

Unit Testing – each unit will be tested during implementation.
Integration Testing – as the program units are integrated together, the program will be tested.

11. Approval

Approved by Committee Members.
Reference:

“IEEE Standard for Software Test Documentation”, IEEE Std 829-1998

Implementation Plan
The Implementation plan will define the tasks to be completed during implementation. The tasks are as following:

4. User Manual

The Manual will describe all the features of the software (Pipeline Editor and Optimizer). It will also describe in detail how to use the pipeline editor. The completion criteria for this task would be when all the features and their use have been successfully described.

5. Architecture Design

The architecture design will be revised every time a change occurs. These changes will be documented along with the component design.

6. Source Code

The source code will be documented using the javadoc documentation. This source code will comply with the architecture design.

7. Assessment Evaluation

This assessment evaluation will contain a report of the tests done on the software and the results of these tests in the form of a test log.

8. Project evaluation:

The project evaluation document will review the process adopted for the implementation of this project and the effectiveness of the methodologies used. The completed software will be reviewed to check if it complies with the initial overview of the project. The product will also be reviewed to check the quality of the product.

The implementation of the software will be considered completed when

· The critical functions of the GUI will be implemented

· The optimizer will successfully compute the optimal distribution

· The GUI will successfully display the result of the simulation

9. Other documents:

Formal Technical Inspection reports.

Formal Technical Inspection
10. Introduction

This document provides a formal checklist for the requirement specification document of the software. The purpose of this document is to ensure the quality of the software requirements. The checklist will be evaluated by three students and their report will be documented.

11. Items to be inspected

The Software Requirements Specification document (version 2.0) will be inspected.

12. Participants
· Padmaja Havaldar

· Sudershan Kodwani

· Liubo Chen
13. Criteria

Input: The Inspectors should review the SRS document and evaluate if Yes/No/Partial and suggest comments if needed.
Output: The inspectors’ reports.
14. Formal Technical Inspection Check List

Compatibility

· Do the interface requirements enable compatibility of external interfaces (hardware and software)?

Completeness

· Does SRS include all user requirements (as defined in the concept phase)?

· Do the functional requirements cover all abnormal situations?

· Have the temporal aspects of all functions been considered?

· Does SRS define those requirements for which future changes are anticipated?

· Are all normal environmental variables included?

· Are the environmental conditions specified for all operating modes (e.g., normal, abnormal, disturbed)?

Consistency

· Is there any internal inconsistency between the software requirements?

· Is the SRS free of contradictions?

· Does SRS use standard terminology and definitions throughout?

· Is SRS compatible with the operational environment of the hardware and software?

· Has the impact on the environment on the software been specified?

· Has the impact of software on the system and environment been specified?

Correctness

· Does the SRS conform to SRS standards?

· Are algorithms and regulations supported by scientific or other appropriate literature?

· Does SRS reference desired development standards?

· Does the SRS identify external interfaces in terms of input and output mathematical variables?

· What is the rationale for each requirement? Is it adequate?

· Is there justification for the design/implementation constraints?

Feasibility

· Will the design, operation, and maintenance of software be feasible?

· Are the specified models, numerical techniques, and algorithms appropriate for the problem to be solved?

Modifiability

· Are requirements organized so as to allow for modifications (e.g., with adequate structure and cross referencing)?

· Is each unique requirement defined more than once? Are there any redundant statements?

· Is there a set of rules for maintaining the SRS for the rest of the software lifecycle?

Traceability

· Is there traceability from the next higher level spec (e.g., system concept/requirements and user needs as defined in concept phase, and system design)?

· Does the SRS show explicitly complete coverage of requirements defined by client?

· Is SRS traceable forward through successive development phases (e.g., into the design, code, and test documentation)?

Understandability

· Does every requirement have only one interpretation?

· Are the functional requirements in modular form with each function explicitly identified?

· Is there a glossary of terms?

· Is formal or semiformal language used?

· Is the language ambiguous?

· Does the SRS contain only necessary implementation details and no unnecessary details? Is it over specified?

· Are the requirements clear and specific enough to be the basis for detailed design specs and functional test cases?

· Does the SRS differentiate between program requirements and other information provided?

Maintainability
· Does the documentation follow MSE portfolio standard
· Is the documentation clear and unambiguous

Verifiability/Testability

· Are the requirements verifiable (i.e., can the software be checked to see whether requirements have been fulfilled)?

· Is there a verification procedure defined for each requirement in the SRS?

Clarity
· Are all of the decisions, dependencies, and assumptions for this design documented?

· Are names indicative of their meaning?

· Is each concept defined only once, with one clear meaning?

· Is each statement written as clearly as possible?

Functionality
· Does the design implement the specification and requirements?

Reliability

· Are abnormal conditions considered?

· Are the defect conditions/codes/messages specified completely and meaningfully?
References

IEEE Std 1028-1998, “IEEE Standard for Software Reviews and Audits”. 1998 Edition, IEEE, 1983.

“Software Formal Inspections”, Software Assurance Technology Center (SATC), 1997, http://satc.gsfc.nasa.gov/fi/fipage.html
Weiss, Alan R. and Kerry Kimbrough, “Fundamentals of Software Inspections, Version 2.1”. 1995. http://www2.ics.hawaii.edu/~johnson/FTR/Weiss/weiss-intro
_1130169075.vsd
�

init�

wait�

data_ex�

Recv_done�

Send_done�

Send file�

Recv reject�

Recv accept�

Recv done�

Send done�

Send done�

Recv done�

Recv data�

Recv data�

_1129674749.vsd
�

init�

check�

data_ex�

Recv_done�

Send_done�

Recv file�

Send reject�

Send accept�

Recv done�

Send done�

Send done�

Recv done�

Send data�

Interruption�

Normal Termination�

