GRAPHICAL USER INTERFACE
AND
JOB DISTRIBUTION OPTIMIZER
FOR A
VIRTUAL PIPELINE SIMULATION TESTBED

By
WALAMITIEN OYENAN
B.S., Université des Sciences et Technologies de Lille, 2001

A PORTFOLIO
Submitted in the partial fulfillment of the requirement for the degree
MASTER OF SOFTWARE ENGINEERING

Department of Computing and Information Sciences
College of Engineering

Kansas State University

Manhattan, Kansas
2003

Approved by:

Major Professor
Dr. Virgil Wallentine

I o U070 PP 5

2. GOBIS ...ttt b et e e b et et b bt naes 5
GO0 1 = £ 5
CHAPTER 2: Software Requirement SPeCifiCation............ccccoveeiieeniesieesee e csee e 6
ISR [11 0o 8 Tox 1 o o T 6
N1 00 TSRS 6
1.2 SCOPE. ..ttt ettt h bR R R Rt R n e R e renan e reen e 6
(RS @< V1= T TSRO 6

2. OVErall DESCIIPLION. ...ccuiitiiiiieieieie ettt b et enes 6
2.1 ProTUCE PEFSPECLIVE......ccvieciee ettt et ne e sae e s be e s reeenneenreeas 6
2.2 User interface: PIpeling EQITOr ..o 7
2.3 HaraWare INTEITACEScueiiecee et 7
2.4 SOftWAre INLEITACES. ... eecveeeeeeee et esneeae e nes 7
2.5 CommUNICaLiONS INEEITACES........ooiiieieieee e 8
P22 S 0o (U o 10 o1 o LS 8
2.7 USEr CharaCteriStICS ... oo et 8

3. SPECITIC FEQUITEIMENTS.......cviiieieeieee ettt ettt b e b enes 9
3.1 External interface reqQUITEMENTS...........ooviiiiie e 9
3.2 FUNCLIONEl TEQUITEMENES.......oviitieieeieeieeee ettt sttt sb e e nees 10
321 e 1= 1T T = [(o SRR 12
322 OPLIMIZEN ...ttt 14
323 SIMUIBLOT ...ttt st nas 14

3.3, Performance reqQUITEBIMENTScoeiireeeeeere e 14
3.4. Software system attribDULES............cocii e 15

= T A oo U = o PSR PR TR 15

D, REUSADIITY ..o s 15

C. MaiNtaiNADIITYccoooeiiirie s 15

(0 T o 7o 11 Y2 PSPPSR 15
CHAPTER 3: PROJECT PLAN ...ttt te e sse e sse e sreesseeneesseessesneesnes 16
CHAPTER 4: COST ESTIMATE ..ottt 17
Cost Analysis USINg COCOMO.......c.ooiiiiririeieieesie e 17
CHAPTER 5: Architecture Elaboration Plan ... 19
CHAPTER 6: Software Quality AssuranCe Plan..........cccoovevireneniicnie e 20
O U 00 SR 20
2. MANBGEIMENT.......eiiiieeee et b e et e s b e s e ne e re e n e e e nreen e 20
A R ® o 014 (o] o 1RSSR 20
A I 20
2.3 Roles and ResSpoNSIDIITIES.cccvieiiiiie e 21

ST Too: U1 .01 o1 = 11 o o 21
G I U 00 2SR 21
3.2 Minimum documentati ON reqUINEMENTS..........covererererereeee e 21

3.2.1 Software requirements SPECITICaLION...........cecvveiieice e 21

3.2.2 SOfWAIE TESE PlaN c.ceeeeeeeeeeeeeeeeeeee ettt eeee e eeeeeeeeeeeeeeeeeeeeeeeereeeeereeeeeeeeeeeeeeees 21

3.2.3 Formal Software SPeCifiCationcccceeiieiiieiie e 21
3.2.4 Software design dOCUMIENE.........cceeeeiirieriere e 21
3.2.5 USEr DOCUMENLELIONeeeuiiriieiieeiesiie ettt 21

4. Standards, practices, conventions, and MELTICcccvevvererieereereneere e e e seeneens 22
I 1070 S =SSP PRI 22
A Oo 1= | PSR 22
4.2.1 Documentation StaNdards...........cocereereriinieneee e 22
4.2.2 CoAiNG SEANAAITS......c.eoieieie et 22

A 2.3 MELTICS ...ttt sttt b et b et e b e e beetesaeesbeentesneenbe s 22

5. REVIEWS @NA AUAITS ..ot esaeeaeeneenseenne e 22
Lo U 00 SRR 22
5.2 Minimum REQUITEMENTScoueiiriiiiieieieeesee ettt 23

6. Testing and VerifiCatioNcccoeiiiiiie i 23
7. Problem reporting and COrreCtive aCtioN...........ccceveierereninereeeeeeee e 23
8. Tools, techniques, and MethodolOgIES...........cocveiiiiiiece e 23
CHAPTER 7: ArChiteCtUr@ DESIONccve ettt 24

1. System Design DESCIPLION.cciiiiieeiie ettt 24

2. JGrapN dESIGN.....ciiiieieie b 24

3. Pipeline EditOr DESIQNc..cooiiieiie ettt 27

4. OPUMIZEN DESIGN ...couiiiiiieieete ettt sttt e e bbb ae e se e 29
CHAPTER 8: Formal Requirement SPeCifiCation...........cccocuveieeieeiiieesiee e 36
g1 00 [Tox 1 o o RSOSSN 36

10 S o1 o= 1 o o PSR 36

RV A= 11 o £ o o S 36
CHAPTER 9: TS Plan ..ottt st e 42
ISR [11 0o [§Tox 1 o o T 42

S oo o[TSRS 42

5. APPIOBCN .. et enes 42

L I O = USROS 43

A == = | O (- S 43

8. DEIVEADIES ... 43

9. RESPONSIDIITIES. ...t 43

10. SCREAUIE......oee e e e 44

L1, APPIOVE et bbb 44
CHAPTER 10: Implementation Plan............cceooieeiieiinciiece et 45
S Y/F= = 45
ATChITECIUIE DESION ...ttt st esreenree s 45
SOUICE COR.eeeeeeeeeiteeie ettt s esae e aesseesteeneesreenseeneesneetenneenseenseans 45
ASSESSMENT EVAIUBLION ... e 45
ProjeCt @VAIUBLTON:coueiiieieieie et 45
Other AOCUMENLS: ..ottt et sb et 45
CHAPTER 11: Formal Technical INSPECLIONcccveiviriiriirieiisieeeeee e 46
[g1u0Te (¥ Tox 1 o o HA RSO SURURPSRTRPR 46
[TEMS IO DEINSPECLED...... ..o e 46

PaArtICIPANES.eetee et e et e e s be e sar e e reesnbeenreesnreenree s 46

B T e 46

Formal Technical Inspection Check List.........cccoveviviiiiiii i 46
CHAPTER 12: USER MANUALooeiee ettt sns 49
| - SYSLEM OVEIVIBW ...ttt ettt ettt b e e b e et e snte e beeenneenree s 49
[1 - SyStemM REQUITEMENTS......cc.eiiieeeeee e 49
1 - Installation and EXECULIONooeiiiiiiiiieeeeeeee e 49
[V - GELING SEAITE. ...ttt 50
4.1 Horizontal Toolbar DESCIPLIONccveiiiieiie ettt 50
4.2 Vertical toolbar deSCriptioN.........cccceeriririeii e 50

V - FEATURES ...ttt ettt s nne s 52
5.1 Change component ProPertiES.........cuverierierereresieseses e eenes 52
5.2 NaME @ COMPONENTvveeiiiieeiieesiee st e e siee e sre e s e sbaessseessbaeesbeeessseeesnseas 52
LGRS = 1oAY T S 52
5.4 Create/INSErt LIDrary ...ttt 53
5.5 SAVEIOPEN ... ettt 53
N N N7 o= S = ol o VPSR 54
S.7 REMOVE ...ttt se e s bt e e sbe e e sbe e e sabe e e snbe e e nnneas 54
ESTRE I 0 0] 1 o H U ROPR PR 54
5.9 OPLIMIZE. ..ottt b e n e enes 54
5.00 SIMUIBLE ...ttt ettt sttt se e b e e 54
M VAT YRS 10 U1 = Lol 1o = - S 55
LI D = o] - YRR 55
I R = T= oo o] o =SSOSR 55
V1 FA Q) ettt b et ae e ae e eneenre s 55
CHAPTER 13: Technical ManUalccccoovereeienieneeie e se e se e eneenns 57
U001 SRS 57
[T = DESCITPEION ...ttt sttt e bbb b nae e 57
2.1 Adding and modifying COMPONENTS..........ccceiuriiieeiieieiee et 57
2.2 Mouse click handling and POPUP MENUocverirerereninieesee e 64
2.3 Mapping cells and jODCOMPONENES.........ocvveeiieiiieree et 64
[1- NamMIiNG CONVENTIONS.c..coiiieieierie sttt sb e s sbe e 64
B L FIENAIMES ...t ettt sttt b et ae e b e 65
B2 VaATaDI@ NAIMES........coeieieceee et te e e re e e e 65
[V = COMMUNICALTONS.oitiiiiiiiesieeste ettt sttt ettt b et saeesbeenaesne e b 65
4.1 GUI-OPLIMIZEN ..ttt sttt ettt b sae e 66
4.2 GUI-SIMUIBLOL ..ottt s sbe e s ne s 66

AV - N ATV LS SRS = T 66

CHAPTER 1: PROJECT OVERVIEW

1. Purpose

The purpose of this project isto develop avirtual pipeline simulation testbed. The
simulation will model the pressure and flow rate distribution of gasin areal pipeline
system.

2. Goals

The design and implementation goals are:
» Design aGUI to create and manipul ate the pipeline system.
* Implement an optimizer to efficiently distribute computation among severd
machines.
* Integrate the GUI with asimulator that will ssmulate the behavior of each
component of the real pipeline system by solving a set of particular partial
differential equations.

3. Constraints

When developing a simulation, the main constraint is the time. The simulation has to run
in areasonable amount of time. For this reason, the software will use various parallel and
distributed algorithms. Another constraint is the space constraint (memory). The project
will take into consideration those constraints and will be designed to optimize the use of
time and space.

CHAPTER 2: Software Requirement Specification

1. Introduction

1.1Purpose

The purpose of this Software Requirement Specification is to establish and maintain a
common understanding between the customer, Dr. Wallentine, and the software
developer regarding the requirements for the proposed software.

1.2 Scope

The proposed software is a GUI and ajob distribution optimizer for avirtual pipeline
simulation testbed. The software will simulate the pressure and flow distribution that is
happening in area pipeline system. The software will use various parallel agorithms on
several machines in order to reduce the amount of time needed by this computing-
extensive simulation. The software will also provide a GUI to graphically build the
pipeline system and will perform the require computation in order to have a simulation as
accurate as possible in a reasonable amount of time. The GUI will also be used to
visualize the result of the simulation.

1.3 Overview

This Software Requirements Specification (SRS) is organized into two main sections:
overall description and specific requirements. The overall description section provides
information describing general factors that will affect the requirements of the software.
The specific requirements section describesin detail the requirements the software must
meet.

2. Overall description

2.1 Product perspective

The software is an interface to the Virtual Pipeline Simulation Testbed. It comprises a
GUI (Pipeline Editor) and ajob distribution optimizer (Optimizer). Once the pipeline
system is drawn, the optimization and the simulation will be able start. The computation
will be done on several powerful computers and result will be transmitted back to the

GUI for display. Communication among cluster machines will be done by message
passing and shared memory.

b)
0)

€)

f)
9)

h)
i)

)
K)

b)

2.2 User interface: Pipeline Editor

The pipeline editor shall support drag and drop operations for drawing
components (pipes, joints, and compressors).

The pipeline editor shall support standard editing functions (copy, cut,
paste).

The pipeline editor shall provide zoom functions.

The pipeline editor shall display the simulation results.

The user shall be ableto store/retrieve a previously drawn pipeline system
(group of components called library) and connect it with some new groups
or components.

The user shall be able to move components inside the editor to have a
better positioning.

The user shall be able to edit the characteristic of each component
displayed.

The user shall be able to define some checkpoints during the simulation.
The user shall be ableto playback (replay) the simulation from any given
checkpoints.

The user shall be ableto start the application from any machines (using a
browser and WebStart).

At any time during the simulation, the user shall be able to interrupt the
simulation.

2.3 Hardware interfaces

Each computer shall have enough memory and enough computing power
(processors) to handle computing-extensive tasks.

Each computer shall have an Ethernet card to communicate with other
computers.

2.4 Software interfaces

The cluster computers shall run under the Linux operating system.

Each computer shall have the Java Virtua Machine installed (version 1.4
or |ater).

Each computer shall have the JGraph 3.0 package installed.

2.5 Communications interfaces

Computers shall support TCP/IP to communicate with each other.

2.6 Product functions

a) The product shall provide a GUI with all the components needed to draw a
complete pipeline system, a button to start the optimizer and a button to start the
simulation.

b) The product shall provide an optimizer. The optimizer should be able to produce a
job allocation that balances the load of each processor (that is, minimizes the load
differences among cluster machines assigned to the simulation). The jobs are the
pipelines components (pipes, joints, compressors ...). Each job has some
computation time and some communication time. The computation time depends
on the characteristic of the component and the machine on which it is executed.
The communication time depends on the amount of information exchanged and
whether or not the connected component are on the same machine (local
communication) or not (remote communication). Given these constraints, the
optimizer will find an optimal distribution of jobs among machines that
minimizes the workload of each processor.

¢) The product shall integrate asimulator. The simulator should solve a set of partial
differential equations that mathematically models the pressure and flow rate
distribution in each component of the rea pipeline system.

2.7 User characteristics

a) Usersof the system should be experienced pipeline design engineers who
have a good understanding of a pipeline system.
b) Users should be able to understand and manipulate pipeline
characteristics.
¢) No particular training should be necessary to use the software.
Following is the use case diagram for the software:

<,> Save/Open Library -
Save/Open Network N (>

‘ __Draw/Edit Network

O -

Replay T D A
Optimize

‘ — —
D | C O
Insert/Delete Checkpoint \.// .
‘ Start Simulation

Interrupt Simulation

Virtual Pipeline Simulation System: Use Case
3. Specific requirements

3.1 External interface requirements

The interface provided will be the pipeline editor. It should be able to be started from
any computer via a browser using Java WebStart. The interface should provide al the
necessary components to draw a complete pipeline system. Characteristics of those
components shall be defined at the time of their creation. As the pipeline system can be
very large, the interface shall provide away to save/retrieve previously built pipeline
subsystems. The interface will consist of one window with 2 toolbars and one menu bar.
The horizontal toolbar will have a button for the components and will support drag and
drop to insert components. The vertical toolbar will contain all the buttons for editing and
zooming. The menu bar will offer the same functionality as the 2 toolbars in addition of
the save/open function. The interface will offer the possibility to use the keyboard via

some shortcut keys.

Following is a screenshot of a prototype GUI:

[l Pipeline Editor EEX
FlE (PG e e

G Pe BEND SAK FHN

P = null kgdcm ™3
f— T=nulC
b3 F = full kmihy
O e
ek P = il kagictne3
T=rulC
| } F = null ki

B oo power 1000.0
(i3 oo speed 14000.0
Lot oo nrmker 4
efficiency | 75.0 gasType 1
ts 00 pel 0.0
head 200 md oo
wvalue cormp fuel 1.0

[(=24] [Cancel] [Apply]

-2 oyenan... “-Rational ... Pipeling ... & . & si0zEm

PIPELINE EDITOR

3.2 Functional requirements

In order to provide the most realistic and accurate simulation, the system should
implement adequately every features of the pipeline ssmulation. Each feature presents
some required conditions that the system should meet to react correctly.

The diagrams below show the sequence diagram and the interaction of the different parts
of the software.

Client Side

ﬁ ---Socket---

Server Side

]

: User : Pipeline Editor

: Sener

: Optimizer

: Simulator

|

Click |

ink in Browser

Download A#plication

(WebStart)

Drag component ‘

Display component

Build Network

Display Network

Save Network

Save Network

Sawe_confirm

Save_confirm

Stop Simulation

L
Optimize () Optimize (Graph) ‘ uildJobGraph(graph) ‘
pE—
Optimize(JobGraph)
T <=
Simulate() ‘ ‘ WriteFile(jobsLists)
Simulz*te(JobsFilename) File(flename)
\
=
) Senc% simulationData .
Display Data | L |~ Simulate
Interupt ‘ ‘ Interupt ‘
Int%rupt_conﬁrm
T

End of simulation

EnL of simulation

- — —

|
End_confirm
End of simulation ‘
TReplay ‘
E* d Dat ReadFile
end Data =
T

Sequence diagram of the Virtual Pipeline Simulation Testbed

**Graph Model ,
*Component Characteristics (
Type, Diameter, Length, Index,

Value, Gas-Type)

User Input

PIPELINE

EDITOR
§> OPTIMIZER

S"“D“::m“ * List of Job Objects
(JobTypt, Machine,
Connections, File,
SIMULATOR Parameters,
ExecTime)

Dataflow of the Virtual Pipeline Simulation Testbed

3.2.1 Pipeline Editor

Inputs: The input for the pipeline editor should come from the user. The user will define
the components belonging to the pipeline system along with their characteristics.
Outputs: The pipeline editor shall produce alist of component objects. A component can
be either a pipe or a compressor.

a. List of components

The GUI shall provide the following components: pipes, station, split, joint, orifice meter,
storage, compressor, driver, regulator, receipt point, delivery point.
Following are the icons used in the GUI:

B =< O O 4 @

Compressor Pipe Split Station Storage Orifice Joint

b. Draw acomponent

The user shall be able to draw any components needed for the pipeline system
either by clicking on the component icon in the toolbar or by dragging it into the drawing
pad.

a) Draw acompressor

A compressor shall only be connected to pipelines. It can accept severa
pipelines connections.

b) Draw ajoint
A joint should be connected to at least two pipelines. Pipelines should be the
only components connectable to joints.

c) Draw apipe
Pipes should have another component connected at each end.

c. Delete acomponent

The user shall be able to delete any components in the pipeline system either by
right-clicking on the component and selecting remove or by clicking on the remove icon
in the toolbar or using the delete key.

d. Edit acomponent

The user shall be able to edit the characteristics of any components inside the
pipeline system by using the right-click menu. Features available for editing should
depend on the component sel ected.

e. Move acomponent

The user shall be able to move any components of the pipeline system inside the
drawing space using a dragging move. All the components connected to the component
moved should also move and stay connected.

f. Undo/Redo an action

The user shall be ableto undo or redo any action done on any components of the
pipeline system either by clicking on an icon in the toolbar. If thereis no action to undo
(or redo), the button should be disable.

g. Copy/Cut/Paste a component

The user shall be able to copy, cut or paste any components of the pipeline system
using the buttons in the toolbar or the standard keyboard shortcuts.

h. Zoom in/Zoom out

The user shall be able to zoom in or zoom out any area of the pipeline system
using the buttons in the toolbar.

I. Optimize

The user shall be able to launch the optimizer from the GUI by clicking on a
button on the toolbar.

j. Simulate

The user shall be able to launch the simulation from the GUI by clicking on a
button on the toolbar.

K. Insert a checkpoint

The user shall be ableto launch insert a checkpoint at any time during the
simulation.

. Playback

The user shall be able to restart the simulation by providing a checkpoint from
where the ssmulation should be restarted.

3.2.2 Optimizer

Input: A list of components objects

Output: A list of job objects. In addition to the fields of a component, ajob has
information about the machine on which it should be executed, the components
connected to it, the execution time and the associated file containing the source code of
its execution.

The job allocation optimization is a discrete optimization problem. The system
will use the Branch and Bound algorithm to find the best distribution given some time
and communication constraints. The solution may not be optimal but should be very close
to the optimal one. The optimizer should adequately balance computation and
communication time among all the processors. It should output alist of all jobs aong
with the machines on which they should be executed in order to have the best
distribution.

3.2.3 Simulator

Input: A list of job objects
Output: A list of job object with their new property values.

The simulator should solve a set of partial differential equations to simulate the
pressure and flow rate distribution in each component of the pipeline system. It should
continuously output some values in order to visualize the current state of the simulation
in the GUI.

3.3. Performance requirements

The system should be able to handle at least a set of 1000 jobs. The computation time
should be kept minimal in both the optimizer and the ssmulator. The user should not wait

more than 20 minutes to have the output of the optimizer and no more than 1 hour for the
results of the simulator. The amount of data transferred should also be kept minimal to
avoid too much communication overhead.

3.4. Software system attributes

a. Accuracy

Accuracy isthe most important attribute for the virtual ssmulation pipeline
testbed. The simulator must accurately model the pressure and the flow in each
component of the pipeline system. If the convergence criteria are not well established, the
simulation will be far from the real mode.

b. Reusability

The system will have several releases with each time an increased number of
functionality. Some new components and features will be added.

c. Maintainability

The system shall be separated into modules following the MV C (Model View
Controller) pattern. There will be amodule for the GUI, one for the optimizer and
another one for the simulator.

d. Portability

The modules will be written in Java. As Javais supported on many platforms, it
should be quite easy to move to another platform. For performance reasons, some parts
will be written in some specific platform-dependant languages.

References

|[EEE STD 830-1998, "IEEE Recommended Practice for Software Requirements
Specifications'. 1998 Edition, |IEEE, 1998.

Dr. Scott Deloach’s CIS748 |ecture notes “ http://www.cis.ksu.edu/~sdel oach/748”

CHAPTER 3: PROJECT PLAN

The project is divided into three phases, which are Specification phase, Design phase, and

Implementation, Testing, and Documentation phase. Each of those three phases is ended by

presentation at the end of the phase.

|Project Task Duration (Days)| Start Date End Date
Phase |. Specification
1.|Background Study (JNI, Branch & Bound) 30 7/1/03 8/1/03
2.|Overview 1 9/20/03 9/21/03
3. | Optimizer prototype 30 8/1/03 9/1/03
4.|GUI Prototype 25 9/10/03 10/6/03
5.]| Software Requirements Specification 1 9/24/03 9/25/03
6. | Project Plan 1 9/23/03 9/24/03
7.|Cost Estimation 1 9/25/03 9/26/03
8. | Software Quality Assurance Plan 1 9/26/03 9/27/03
9. | Documentation for Presentation 2 4 9/29/03 10/2/03
10. | Presentation 1 10/3/03
Phase II: Design
11.|Develop Prototype 20 10/05/03 10/25/03
12.|Update SRS 1 11/03/03 11/04/03
13.|Update SQAP 1 11/04/03 11/05/03
14.|Test Plan 3 11/05/03 11/08/03
15.| Develop Implementation Plan 3 10/20/03 10/23/03
16. | Design 7 10/23/03 10/30/03
17.|Formal Technical Inspection 4 11/03/03 11/07/03
18. | Documentation for Presentation 2 2 11/07/03 11/09/03
19. | Presentation 2 11/10/03
Phase III: Implementation
20.|Source Code 30 11/11/03 12/10/03
21.|Testing and Reliability Evaluation 2 12/1/03 12/3/03
22.|Create User Manual 5 12/3/03 12/8/03
23. | Project Evaluation 4 12/5/03 12/9/03
24.|Project Document 10 12/3/03 12/13/03
25. | Documentation for Presentation 3 9 12/3/03 12/11/03
26. | Presentation 3 12/12/03

CHAPTER 4: COST ESTIMATE

Cost Analysis Using COCOMO

The COCOMO mode is agood measure for estimating the number of person-months
and the time required to develop software. The Virtual Pipeline Simulation Testbed can
be considered as an organic mode process (in-house, flexible with less-complex
development). The basic effort and schedule estimating formulais:

Effort = 3.2 EAF (Size) *%;
Time = 2.5 (Effort) *%;

Where:
Effort = number of staff-months
EAF = Effort Adjustment Factor (cf. Table)
Size = number of delivered source instructions (in thousands of lines of code)

The following table gives the value of the efforts multipliers. The product of those 15
factors will give the value of the EAF for the given project.

Cost Description Rating

Driver Very Low Nominal High Very Extra
Low High High

Product

RELY Required software reliability 0.75 0.88 1.00 1.15 1.40 -

DATA Database size - 0.94 1.00 1.08 1.16 -

CPLX Product complexity 0.70 0.85 1.00 1.15 1.30 1.65

Computer

TIME Execution time constraint - - 1.00 111 1.30 1.66

STOR Main storage constraint - - 1.00 1.06 121 1.56

VIRT Virtual machine volatility - 0.87 1.00 1.15 1.30 -

TURN Computer turnaround time - 0.87 1.00 1.07 1.15 -

Personnel

ACAP Analyst capability 1.46 1.19 1.00 \0.86 0.71 -

AEXP Applications experience 1.29 1.13 1.00 0.91 0.82 -

PCAP Programmer capability 142 117 1.00 0.86 0.70 -

VEXP Virtua machine experience 1.21 1.10 1.00 0.90 - -

LEXP
Project
MODP
TOOL
SCED

Language experience 1.14

Modern programming practices |1.24
Software Tools 1.24
Development Schedule 1.23

1.07

1.10
1.10
1.08

1.00

1.00
1.00
1.00

0.95

0.91
0.91
1.04

0.82
0.83
1.10

Table 2-1. Software Development Effort Multipliers (EAF)

 EAF=100x100x1.15x1.11x 1.00x 1.00x 1.00 x 0.71 x 0.82 x 0.70 x 0.90 x

0.95x0.91x0.91x 1.10=0.40

« KLOC = 3 (3,000 SLOC) (Estimation)

GUI : 2200
Optimizer: 800

e E=3.2x0.40x 3% =4.05 staff-month

Analysis:
1 staff-month = 152 hours
=> Total Time= 2616 Hours

Time = 2.5 x 4.05°% = 4.25 months

That means, to finish the project in 7 months, | need to work 93h/week !

Refer ences:

Software Cost Estimation: Metrics and Models. Kim Johnson

<http://sern.ucal gary.calcourses/seng/621/W98/johnsonk/cost.htm>.

CHAPTER 5: Architecture Elaboration Plan

The purpose of this document, as required by the M SE portfolio requirement, isto
define the activities and actions that must be accomplished prior to the Architecture
Presentation.

The activities and actions to be accomplished prior to the architecture presentation are
listed below:

» Software Requirement Specification.
» Software Quality Assurance plan

» The Engineering Notebook

» Thevision document

* The Cost Estimation

* TheProject plan

* The Implementation Plan

The artifacts that will undergo formal technical inspection are:
* Object model
* Theinteraction diagram

The Formal Technical Inspection will follow an |EEE standard formal checklist and will
be led by two M SE students:

1. PadmagaHavaldar
2. Sudarshan Kodwani
The inspectors will provide awell-documented report on the result of their inspection.

References:
http://www.cis.ksu.edu/~sdel oach/748/protected/sl i des/748-4-formal -inspecti ons.pdf

CHAPTER 6: Software Quality Assurance Plan

1. Purpose

The software item covered by this SQAP isthe *Virtual Pipeline Simulation Testbed'.
The system is used to simulate the pressure ad the flow in the components of ared
pipeline system. This SQAP coversthe entire life cycle of the software.

2. Management

2.1 Organization

A committee of three professors will supervise the project. Only one developer will
implement the project. The committee consists of:

* Dr. Virgil Wallentine (Mg or Professor)

* Dr. Masaaki Mizuno

* Dr. Daniel Andresen.
The developer is Walamitien Oyenan.
The committee will approve the design and requirements and will be responsible for
monitoring implementation progress.

2.2 Tasks

The following tasks will be completed for the project:
* Requirements Specification
* Cost Estimation
* Project Planning
» Formal Specification & Verification
* Test Planning
» Design Documentation
* Project Presentations
* Inspections
* Implementation
» Testing & Verification
* Documentation
* Project Evaluation

2.3 Roles and Responsibilities

The developer will be responsible for all the tasks described above. He will be
under the supervision of the major professor and will report to all the committee members
in the form of three presentations.

3. Documentation

3.1 Purpose

To ensure the quality of the Virtual Pipeline Simulation Testbed, as a minimum,
the Software Quality Assurance will use the Software Design Document (SDD), the
Software Requirement Specification (SRS), the Test Plan, the Formal Specification and
the User Documentation for verifying and validating the product.

3.2 Minimum documentation requirements

3.2.1 Softwar e requir ements specification
The SRS lists the requirements of a system and it should correctly describe the
system requirements. It specifies the functionality and performance of the project in
terms of speed, reliability etc. It describes how the system interacts with the people using
it and specifies the design constraints and standards to be followed.
3.2.2 Software Test Plan
The purpose of this document will be to develop and record formal procedures for
the verification and validation of the pipeline simulation software.
3.2.3 Formal Softwar e Specification
A section of the software will be formally specified using aformal specification
tool.
3.2.4 Softwar e design document

This document describes the overall structure of the software. It will contain an
object model constructed using rational rose. The object model will describe the various
classes used in the project.

3.2.5 User Documentation

The user documentation will consist of a user manual, which will identify the
features of the software and their functions. It will also describe al error messages and

program limitations and constraints. The user documentation will also contain source
code.

4. Standards, practices, conventions, and metric

4.1 Purpose
This section identifies the standards, practices, conventions, and metricsto be

used in the virtual pipeline simulation system and states how the compliance will be
monitored and assured.

4.2 Content

The MSE project portfolio will serve as a guideline in devel oping the documents.

4.2.1 Documentation Standards
The Software Requirements Specifications (SRS) and SQA Plan (SQA) will be based
upon |EEE Software Engineering Standards.

4.2.2 Coding Standards
The source code will follow the guidelines in the Java coding standards.

4.2.3 Metrics

The COCOMO moded will be used to estimate the effort and time needed for the
development of the software.

5. Reviews and Audits

5.1 Purpose

This section defines the technical and managerial reviews to be performed, and states
how they are to be accomplished.

5.2 Minimum Requirements

A number of reviews will be done during the design, development, and testing of the
project. They will be under the supervision of the committee. The following reviews
will be conducted:

» Software Requirements Review
* Preliminary Design Review
* Formal Technical Inspection

In addition, there will be three formal presentations at the end of each phase of
development as describe on the project plan.

6. Testing and Verification

To insure that the Virtual pipeline system meets the required quality, some tests have
to be performed during the devel opment process. The system must satisfy the standard
functional requirements for the gasoline pump system stated in the SRS. The system
should also satisfy the others criteria as stated in the SRS: performance, accuracy,
reusability, maintainability and portability.

7. Problem reporting and corrective action

All problems that cannot be resolved by the developer will be reported to the major
professor. The committee will provide reviews on all current work and corrective
measures for changes will be taken. The errors and problems encountered during the
development of the project will be documented.

8. Tools, technigues, and methodologies

The project will use the JGraph3.0 library along with Swing to build the Pipeline
Editor (GUI). Rational Rose will be used to visually design the software being devel oped.
Alloy or OCL will be used as aformal specification tool.

References

|EEE guide for software quality assurance planning -730.1-1995

Lecture notes, CIS 748 Software Management, Dr. Scott Deloach, Spring 2002
Pressman, Roger S. "Software Engineering: A Practitioner's Approach”. Fifth Edition,
Mc GrawHill, NY, June, 2001.

CHAPTER 7: Architecture Design

1. System Design Description

This document contains the complete architectural design of the GUI and the
Optimizer of the Virtual Pipeline Simulation Testbed. The GUI is built as an extension of
the JGraph and Swing packages. In order to have a better understanding of the design,
this document will briefly describe the design and features of JGraph before explaining in
details the design of the GUI and the Optimizer. The complete design of JGraph can be
found online (cf. references).

There are 3 main packagesin this architecture:

* Jgraph
» Editor
e Optimizer

The design of each package will be explained separately in the rest of this document.

2. JGraph design

The implementation of JGraph is entirely based on the source code of the JTree class.
However, it is not an extension of JTree; it isamodification of JTree's source code. The
components for trees and lists are mostly used to display data structures, whereas this
graph component is typically aso used to modify a graph, and handle these modifications
in an application-dependent way.

2.1 - Features
The main features of JGraph are:

* Inheritance: JTree'simplementation of pluggable look and feel support and
serialization is used without changes. The Ul-delegate implements the current
look and feel, and serialization is based on the Serializable interface, and
XMLEncoder and XML Decoder classes for long-term serialization.

* Madification: The existing implementation of in-place editing and rendering was
modified to work with multiple cell types.

* Extension: JGraph's marquee selection and stepping-into groups extend JTree's
selection model.

* Enhancement: JGraph is enhanced with datatransfer, attributes and history,
which are Swing standards not used in JTr ee.

* Implementation: The layering, grouping, handles, cloning, zoom, ports and grid
are new features, which are standards-compliant with respect to architecture, and
coding conventions.

2.2 - TheModel

The model provides the datafor the graph, consisting of the cells, which may be
vertices, edges or ports, and the connectivity information, which is defined using ports
that make up an edge's source or target. This connectivity information is referred to as the
graph structure. (The geometric pattern is not considered part of this graph structure.)

Figure 1. A graph with two vertices and ports, and one edgein between

roots

Vert;xﬂ Edge Ver:ex B
children SOUNCE children
target
Port a Port b
parent parent
edges 1 yedges

Figure 2. Representation of the graph in the DefaultGraphM odel

2.3-TheView

The view in JGraph is somewhat different from other classesin Swing that carry
the term view in their names. The difference isthat JGraph's view is stateful, which
means it contains information that is solely stored in the view. The GraphL ayoutCache
object and the CellView instances make up the view of a graph, which has an internd
representation of the graph's model.

Graphview
... Celli
Graphhdodel > per

Figure 3. GraphL ayoutCache and GraphM odel

The GraphLayoutCache object holds the cell views, namely one for each cell in
the model. The graph view aso has areference to a hash table, which is used to provide a
mapping from cellsto cell views.

2.4 - Thecontrol

The control defines the mapping from user events to methods of the graph- and
selection model and the view. It isimplemented in a platform-dependent way in the Ul-
delegate, and basically deals with in-place editing, cell handling, and updating the
display. Asthe only object that is exchanged when the look and feel changes, the UlI-
delegate also specifies the look and feel specific part of the rendering.

In JGraph, the graph model, selection model and graph view may dispatch events.
The events dispatched by the model may be categorized into:

» Change notification

» History support

GraphlUndoManager |

Y A Y
H]
i]
1 1
i]
]]
]]
"]
]

Graphiew | Undc;ahIeEdiliEuent | GraphView

"
L T

-
7
-
ar
-
E
"
.
.
™
\
-
™
-
e
-

| GraphMod elEv ent |- ----- GraphiModel -----.I GraphMu.delEuent |

Figure 4. JGraph's event model

The GraphModel Listener interface is used to update the view and repaint the
graph, and the UndoableEditListener interface to update the history. These listeners may
be registered or removed using the respective methods on the model.

The selection model dispatches GraphSel ectionEvents to the GraphSel ectionListeners
that have been registered with it, for example to update the display with the current
selection. The view's event model is based on the Observer and Observable class to

repaint the graph, and also provides undo-support, which uses the graph model's
implementation.

3. Pipeline Editor Design

Most of the classes of the Pipeline Editor extend the classes of JGraph in order to
provide a custom graph needed to draw the pipeline network. Only afew classes directly
extend some Swing classes. The features implemented by the pipeline editor are
described in the Software Requirement Specification document.

3.1- Classdiagram
Following is the class diagram of the pipeline editor:

Mediator
Q)graph : MyGraph DefaultGraphModel ‘ ‘ JGraph ‘ ‘ PortView ‘ ‘ MarqueeHandler ‘
optimizer : optimizerClient } } } } } } } }
Q)simulator: SimulatorClient 4 Z}
Foptimize() -
Ssimulate() — Editoy MyModel x MyPortView
SstopSimulation() Boptimizer x E%porticon : Imagelcon ‘
SReplay() Elgraph SacceptSource()
SupdateData() B¥igraphUndoManager SacceptTarget() x SgetBound()
T \] f SgetRenderer()
/ @¥ungroup() 7
\ N group() \ x ‘
- - — - @isGroup() x
SimulatorClient | OptimizerClient EBundo() | ‘
Srun() Brun() grp?g;(e)ny() MyGraph MyMarqueeHandler
isDone() ®isDone() Eopen) Q)selgctPipe : boolean E%graph : MyGraph
SsetCommand() setFilename() | E¥save() ™ [BactionMap : ActionMap .
SgetCommand) MsetTime() E¥openLib() 5 ; ‘ponnecto
WsetFilename() BsetJobs() E¥saweLib() getAction() isForceMarqueeEvent()
SigetStatus() S\alueChanged() SiisCellEditable() SmousePressed()
Ssetstatus() SkeyPressed() Stinsert() $mouseDragged()
@createMenuBar) BcreateVertexView() ¥mouseReleased()
@createToolbar() ScreatePortView() FgetSourceportAt()
ScreateEdgeView() SgetTargetPortAt()
getArchivableState mouseMove
SigetArchivables S Moved
L ®setArchivableState() ®createPopupMenu()
ButtonTransferHandler
E%type : String /
/ /
FgetType() v DefaultGraphCell
ScreateTransferable() MyCell .
’gelSourceActions() MyGraphTransferHandler E¥dataCell : DataCell % / ;
- |
- |
GraphTransferHandler <+ I®mportDataimpl() :getDataCeII() — DataRenderer
I ——
—— $domport() setDataCell() > BidataPanc! . Jpanel

Al
|

CompressorCell
| pipeCell ‘ |
I |

\ | I MyUserObject
&% properties : Map

SgetRendererComponent()
SinstallAttributes()

%/ |

‘ \L
CompressorView y
PipeView

BvalueChanged()
BgetProperty()
BsetProperty()
®getProperties()
®setProperties()
Bclone()
%showPropertyDialog()

JointView

Fpaint()

Fpaint()

®paint()

AV [

Figureb5: Class Diagram of the Pipeline Editor

3.2 - Classdescription
This section describes each class of the pipeline editor and its function. For the
classes extending JGraph classes, only the purpose of the extension is explained. To

understand the whole function of the class, it is necessary to refer to the extended classin
the JGraph package.

Class Editor extends JPanel:
Thisisthe main class representing the main panel of the application. It has the graph
panel (instance of JGraph) and the toolbars.

Class MyGraph extends JGraph:
Provide a custom graph model.
Contains al the necessary methods to create and insert custom components in the graph.

ClassMyMarqueeTransfer Handler extends MarqueeTransferHander:
Provide a custom mouse handler for the graph.

Provide custom edges used to represent pipes.

Create popup dialogs.

Class MyM odel extends GraphMode!:
Define the criteria to accept the connection edge (pipe) and cell (component)

Class MyPortView extends Port view:
Define a custom representation of ports.

Class MyGraphTransferHandler extends GraphTransferHandler:
Provide drag and drop support for the graph.

Class ButtonTransferHandler extends TransferHandler:
Transfer Handler for dragging the buttons from the toolbar.

Class DataCell extends DefaultGraphCell:
Define acell useto display datafrom the simulation.
Thiscell isaJPand.

Class DataRenderer extends VertexRenderer:
Useto render the DataCell as a JPanel containing information to be displayed.

Class MyCéll extends DefaultGraphCell:
Abstract class for all the custom cells representing the components.
Each MyCell object has areference to a DataCell.

Class Compressor Cell extends MyCall:

Represent a component cell. The component is a compressor.

Each component cell has a DataCell and a MyUserObject to holds information about the
cell.

Thereissimilar class for each component (Pipe, Joint, Split ...).

Class Compressor View extends VertexView:

Define the shape of the component.
Thereissimilar class for each component (Pipe, Joint, Split ...).

Class MyUser Object extends Object:
Holds the property of the associated object (component) in amap for future reference.
Display the property dialog for each component.

Class SaveSer ver:
Server to save the user file on the server side.
Recelve the file via socket and saveit.

Class SaveClient:
Send the file to be saved to the server via socket.

Class Optimizer:

Create JobComponent objects from component cells taken from the graph.
Each component cell has a corresponding JobCcomponent.

Holds areference to BranchBound class to start the optimization.

4. Optimizer Design

Problem: Given aset of jobs with execution time and computation time and a set of
machines, find the optimal job distribution among those machines. That is, find the
distribution that minimizes the differencesin the load of each machine.

4.1 - Depth-First Branch and Bound
Each job j has a computation weight Wj and a communication time Cj (sum of
each communication time with all neighbors).

The objective isto minimize the load on the busiest machine.

At each node, we consider a cost function for the busiest machine only (worst-case
estimate).

A vertex in the tree represents a partial/complete allocation of jobs on machines.
The root of the search tree is the empty allocation.
A vertex at level k in the tree represents an assignment of jobs {J1,...,Jk}.

a) Cost function
The cost function f(x) is defined by:

f(x) =9(x) +h(x) ;
where:

g(x) : actual cost for the current allocation.

h(x) : load contribution on the busiest machine of the next job to be allocated.
We have:

o g(x) =>(Wj+Cj) for dl j alocated to the busiest machine.
Note: Cj consider only the communication with neighbors already allocated.

* h(x) =min(Wi, Ci) , i being the next job to be allocated.
The heuristic function h(x) is explained as follows:
*1f job i iseventually assigned on the busiest machine, its contribution to this
node'sload isjust its weight.
*1f job i iseventualy allocated on some other machine, its contribution to the
node’ sload is its communication time.
At each step, we want the take the case that minimize h(x).

b) Pseudo Algorithm:
minCost = infinity,
root = empty allocation,
cost(root) =0
stack = allJobs
While stack not empty do
node = dequeue stack
if node isLeaf, update minCost
else
compute cost(node)
if cost(node) > minCost then prune node
else generate job allocation of all children of node
end if
end if
end while
return minCost

The following figure shows an execution of the Branch and Bound algorithm with
3tasks(T1, T2, T3) and 2 processors (N1, N2) without and with pruning (Fig 7, 8).

{!’ 1 \'; Root of the Search Tree
//_ B /\.\\
-‘\('.r/ “"\-\‘\ ‘_\-h\
{2) ('LND L 3) (T1,N2) Allocating T1
e JERR
__________ -ﬁ——————ﬁf—————————————————J———————\;——————————————————————
= W\

(4 J@LND (5)@TLNY (6)(TLN2) (7) (TLN2) Allocating T2
\"7-“(‘ (T2, N1) A (T2, N2) S__‘,_.x"' (T2, N1) \'.T“?/ (T2, N2)

_______ ‘\r_________ b o _________!,a__';\l._________;/__i-?__________________

y ; C A A _.,J\ .

[9 (10 (11) | 12) (13) n 14) (15] Allocating T3

(T1. Nl) (Tl \m (T1, Nl) (TL.N1) [Tl N2 (T1.N2) (Tl) (Tl N2)

(T2,N1) (T2,N1) (T2, N2) (T2,N2) (T2,N1) (T2, N1) (T2, N2) (T2, N2)
(T3,N1) (T3,N2) (T3,N1) (T3,N2) (I3,N1) (T3,N2) (T3, N1) (T3, N2)

Fig. 6: Examplewith 3tasks(T1, T2, T3) and 2 processors (N1, N2) without pruning

40
2} (T1,N1) (T1,N2)
23.5 27.5 39 20
40 0 40
4X) (T1,N1) (T1,N1) (T1,N2) (T1,N2)
(T2, N1) (T2,N2) NA/ (T2,ND) (T2,N2)

(T1,N2) (T1,N2)
(T2, N2) (T2.N2)
(T3, N1) (T3,N2)

Figure 7: Examplewith 3tasks(T1, T2, T3) and 2 processors (N1, N2) with pruning

c) Shared Version
In the shared version, the sequentia algorithm is started. When there are enough nodes,
the nodes are distributed among workers. Each worker can the start its own branch and
bound algorithm. Every time a new bound is reached, it is compared to the shared bound
and updated if necessary. At the end, the shared bound, which is the minimal found, will
be associated to a solution object (containing the minimal allocation). This solution
Object will be returned.

4.2 - Class Diagram

SharedBound
: BranchBound e
Solution — : = ESvalue : float
— EZ¥minCost : Solution : S .
Bvalue : int Blactive : Stack E¥solution : Solution
E*allocation : Vector|_ — Binode iy I
v : [Sigetvalue()
®getvalue()) [®setvalue()
[igetAllocation() E?SEQLTSSQI’?O [MigetSolution()
I [®setSolution()
Z N
/ \ Node
[Eallocated : Vector
N [Eremaining : Vector
. |B%allocation : Vector
Optimizer ~\|[Eload : Vector
Egraph : JGraph Worker &leaf : boolean
ERworkers : Vector & solution : Solution
E5allJobs : Vector stack : Vector [¥getLoad()
E¥allMachines : Vector| — ——— > @inumMachine : int —[®getCost()
EnumJobs : int [SsetLoad()
[®optimize() [®setCost(
B¥createPipe() ¥addNode() [MisetAllocation()
FcreateJoint() N [FgetAllocation()
E¥createCompressor() - [SisLeaf()
CompareJob P [igetLoadForMachine()
[MsetLoadForMachine()
/ [MigetAllocationForMachine()

®compare()
| -
/

JobComponent / Q/

EmachinelD : int - Machine
@icomponentType : int |- EfnumProcessors : int

componentID : int
& neighborsin : Vector
{E¥neighborsOut : Vector -

name : String
aid int
- —— —— —— —— —[@¥speed : int

[¥getMachineld()

[SgetcomponentType() =gzmg\xg%cessor()
[igetComponentld() \ Compressor .gets eed()
[®getNeighborsin() o BlgasType (1) : int ge=p
[MigetNeighborsOut() &%ps : double
/ \ N E¥ts : double
“\\|B%ms : double
E¥pd : double
% \ [&%5td : double
Pipe N {&md : double
Bfdiameter (0.6m) : double Joint power (1000.0) : double
E¥length (100000.0m) : double spegd (P00 £ CTUIE
Bitheta (0.0) : double efﬁcnency (75.0) : double
BPnodes (51) int E%head (20.0) : double
z0asType (1) : int eI (1.0): dguble
Bhin (200.0) : double inumber() : int
htin (298.15) : double Rdindex : int[4]
B_1: double ESvalue : double[4]
p_nodes : double

EXnumber (3) : int
E¥index : int[3]
[EXvalue : double[3]
E¥p : double[51]
&%t : double[51]
E¥%m : double[51]

Figure 9: Class Diagram of the Optimizer

4.3 - Class Description

Class BranchBound
Implement the branch and bound algorithm.
Holds areference to the current solution found.

Class Solution
Represent a solution to the Branch and Bound a gorithm.
Contains the minimal allocation found.

Class Node

Holds the current allocation. The allocation can be partial (non-leaf node) or complete
(leaf node).

For anon leaf node, jobs non allocated yet are stored inside the node.

An allocation is an array of machine with their corresponding jobs.

ClassMachine
Holds all the information about a machine.
Store all the jobs allocated to this machine so far.

Class JobComponent
Abstract class representing ajob. Sub classes of this class are component objects (pipe,
compressor, joint...) .

Class Pipe extend JobComponent
Holds all the properties and initial values of a pipe.
Thereisasimilar classfor al components (Compressor, Joint, split...).

Class Worker extends Thread

Worker objects are threads searching a part of the tree.

They exchange new bounds via a shared memory (class SharedBound).
Holds a stack of nodes representing their part of the tree.

Class SharedBound
Holds the minimal bound found so far by the Worker objects.
Also holds the alocation (Solution object) corresponding to this bound.

Class ComparelJob

Used to specify how jobs should be compared.

When the jobs are sorted, it helps reducing the number of nodes visited to reach the
solution.

Jobs are compared by number of neighbors and by weight.

References:
* Gaudenz Alder, Design and Implementation of the JGraph Swing Component
http://www.jgraph.com/documentati on.shtml

e Dar-Tzen et d., Assignement and Scheduling Communicating Periodic Tasksin
Distributed Real-Time Systems, |EEE Transactions on Parallel and Distributed
Systems, 1997

CHAPTER 8: Formal Requirement Specification

Introduction
This document specifies the protocol between the GUI on the client side and the

simulator on the server side.

Specification

The GUI needsto be ableto listen to the simulator in order to get the data from the
simulation. When the user wants to start a simulation, he needs to pass afilename to the
simulator. If thisfilenameis not valid, an error code is returned. If it isavalid filename
(thefile exists and has the proper format), then the GUI is ready to accept data from the
server. Aslong asthereis some data available, the server continues to send them. At any
time, the user can interrupt the simulation. A message is then sent to the simulator. The
protocol will make sure that there is no loss of data due to interruption. The server can
also send an end message when the simulation reaches the end. At the end (either by
interruption, or normal termination), both the server and the GUI should be ready to start
the protocol again.

Verification

The protocol is specified using Promela and checked with Spin. We want to check
that the protocol has no deadlock. We also want to be able to verify that there are no
unexpected messages. (E.g. a data message when expecting an end message).
Following are the FSMs used to derive the Spin Model:

Send file

Recv reject

Recv accept

Fiqure 1l: FSM for the GUI

Recyv file

Send reject

Send accept
Recv done

Normal
Termination

Fiqure 2: FSM for the Simulator

SPIN Mods!:

/* Protocol GUI - Simulator

* Virtua Pipeline Simulation Testbed
*

* Waamitien OY ENAN

*/

#defineidle 0
#definewait 1
#define check 2
#define data_ex 3
#definerecv_done 4
#define send_done 5

#define MAX 4

int datasent = O;
mtype = {file, reject, accept, data, done}

chan socketl = [MAX] of { mtype}
chan socket2 = [MAX] of { mtype}

proctype gui (chan send, recv) {
int state = idle;

end:
do
;- atomic { state==idle->
send ! file;
state = wait;
}

;> atomic { recv ? rgject ->
assert (state == wait);
state=idle

}

:: atomic { recv ? accept ->
assert (state == wait);
state = data_ex;

;> atomic { recv ? data->
assert (state == data_ex || state == send_done);
skip;
}
:: atomic { recv ? done ->
assert (state == data_ex || state == send_done);
if
.. State == data_ex ->
state = recv_done;
.. state == send_done ->
state = idle;
fi
}
.. atomic{ state == data ex ->
send ! done;
state = send_done;

}

;> atomic { state ==recv_done ->
send ! done;
state = idle;

od

proctype simulator(chan send, recv)

{
int state=idle

end:
do
;- atomic{ state==idle->
recv ?file;
state = check;
}
:: atomic { state == check ->
send ! reject;
state = idle
}
:: atomic { state == check ->
send ! accept;
state = data_ex;

:: atomic { recv ? done ->
assert (state == data_ex || state == send_done);
if
.. State == data_ex ->
state = recv_done;
.. state == send_done ->
state=idle
fi
}
.. atomic{ state == data ex ->
if
.. datasent < MAX ->
send ! data;
datasent++
o else->
send ! done;
state = send_done;
fi
}

;> atomic { state ==recv_done ->
send ! done;
state = idle;

od

init {
atomic {
run gui(socketl,socket?);
run simulator(socket2, socketl);
}
}

SPIN Output:

(Spin Version 3.4.16 -- 2 June 2002)
+ Partial Order Reduction

Full statespace search for:
never-claim - (not selected)
assertion violations +
cycle checks - (disabled by -DSAFETY)

invalid endstates +

State-vector 56 byte, depth reached 53, errors: 0
162 states, stored
152 states, matched
314 transitions (= stored+matched)
330 atomic steps
hash conflicts: O (resolved)
(max size 219 states)

2.542 memory usage (Mbyte)

CHAPTER 9: Test Plan

1. Introduction

The Software Test Plan (STP) describes the plans for testing the software. The
purpose of the test plan isto ensure that the intended functionalities are implemented
properly. To fulfill this objective, a series of test will be executed during the
implementation.

2. Scope

This plan will address only those items and elements that are related to the GUI and
the Optimizer of the Virtual pipeline Simulation Testbed. The primary focus of this plan
isto ensure that the GUI provides the appropriate functionalities and that the optimizer
produces an optimal solution.
The project will have three levels of testing, Unit, System/Integration and Acceptance.
Unit testing focuses verification effort on the major functions, and integration testing
tests the program structures built with unit-tested modules. The details for each level are
address in the approach section and will be further defined in the level specific plans.

3. Test Item

These are the items to be tested:
* Pipeline Editor
* Optimizer

4. Featuresto be Tested

* Pipeline Editor functions

* Optimizer performance

e Communication GUI — Optimizer
* Communication GUI - Simulator

5. Approach

5.1.Unit Testing

There will be mainly two units: the GUI unit and the Optimizer unit. All the
classes will betested in the unit they refer to. Classes belonging to both units
(JobComponent and subclasses) will be tested only in the GUI unit.

5.2.Integration testing

Once theindividua units have passed unit testing those units may then be used in
integration testing. During integration testing, the units will be incorporated together
and tested, adding one unit at atime. Integration testing will put together the GUI
unit and the Optimizer unit.

6. Test Cases

6.1.Unit Tests

Pipeline Editor—
* Given anetwork, all operations as define in the Software Requirement
Specification should produce the expected result.
» Drawing anetwork should meet al the requirements as defined in the
Software Requirement Specification document.

Optimizer —
» Given aset of jobs and machines, it should produce the correct output.
* Will have the capability to produce an optimal solution with at |east
1000 jobs.

6.2. Integration Tests

GUI-Optimizer: Given anetwork, the GUI and the Optimizer should be able to
communicate effectively and produce the expected file as output.

7. Pass/Fail Criteria
The system will passif the functionality and performance requirements are met.

6. Suspension Criteria

Suspension Criteria: If any of the tests selected by the member do not give the expected
result, then the testing will be suspended until the bug is fixed.

8. Deliverables
* Test Plan.
» Test Case Specification.
* Testinput and test output data.

9. Responsibilities
The developer isresponsible for al the testing activities.

10. Schedule
Unit Testing — each unit will be tested during implementation.
Integration Testing — as the program units are integrated together, the program
will be tested.

11. Approval
Approved by Committee Members.

Reference:
“|EEE Standard for Software Test Documentation”, |EEE Std 829-1998

CHAPTER 10: Implementation Plan

The Implementation plan will define the tasks to be completed during
implementation. The tasks are as following:

User Manual
The Manual will describe all the features of the software (Pipeline Editor and Optimizer).

It will also describe in detail how to use the pipeline editor. The completion criteriafor
this task would be when al the features and their use have been successfully described.

Architecture Design

The architecture design will be revised every time a change occurs. These changes will
be documented along with the component design.

Source Code

The source code will be documented using the javadoc documentation. This source code
will comply with the architecture design.

Assessment Evaluation

This assessment evaluation will contain areport of the tests done on the software and the
results of these testsin the form of atest log.

Project evaluation:
The project evaluation document will review the process adopted for the implementation
of this project and the effectiveness of the methodologies used. The completed software
will be reviewed to check if it complies with the initial overview of the project. The
product will also be reviewed to check the quality of the product.
The implementation of the software will be considered completed when

« Thecritical functions of the GUI will be implemented

« Theoptimizer will successfully compute the optimal distribution

« The GUI will successfully display the result of the smulation
Other documents:

Formal Technical Inspection reports.

CHAPTER 11: Formal Technical Inspection

Introduction

This document provides aformal checklist for the requirement specification
document of the software. The purpose of this document is to ensure the quality of the
software requirements. The checklist will be evaluated by three students and their report
will be documented.

Items to be inspected
The Software Requirements Specification document (version 2.0) will be inspected.

Participants
» PadmagaHavadar
* Sudershan Kodwani
* Liubo Chen

Criteria
Input: The Inspectors should review the SRS document and evaluate if Y es/No/Partial
and suggest comments if needed.

Output: The inspectors’ reports.
Formal Technical Inspection Check List
Compatibility

« Do theinterface requirements enable compatibility of external interfaces
(hardware and software)?

Completeness

+ Does SRSinclude all user requirements (as defined in the concept phase)?

« Do the functional requirements cover al abnormal situations?

« Havethetempora aspects of al functions been considered?

« Does SRS define those requirements for which future changes are anticipated?

« Areall normal environmental variablesincluded?

« Aretheenvironmenta conditions specified for all operating modes (e.g., normal,
abnormal, disturbed)?

Consistency

+ Isthere any interna inconsistency between the software requirements?
+ Isthe SRSfree of contradictions?

+ Does SRS use standard terminology and definitions throughout?

+ 1s SRS compatible with the operational environment of the hardware and
software?

« Hasthe impact on the environment on the software been specified?

« Hastheimpact of software on the system and environment been specified?

Correctness

+ Doesthe SRS conform to SRS standards?

« Arealgorithms and regulations supported by scientific or other appropriate
literature?

« Does SRS reference desired devel opment standards?

+ Doesthe SRS identify external interfaces in terms of input and output
mathematical variables?

« What istherationale for each requirement? Is it adequate?

+ Istherejustification for the design/implementation constraints?

Feasibility
« Will the design, operation, and maintenance of software be feasible?
« Arethe specified models, numerical techniques, and algorithms appropriate for
the problem to be solved?
M odifiability
« Arerequirements organized so as to alow for modifications (e.g., with adequate

structure and cross referencing)?
+ Iseach unique requirement defined more than once? Are there any redundant

statements?
« Isthereaset of rulesfor maintaining the SRS for the rest of the software
lifecycle?
Traceability

+ Isthere traceability from the next higher level spec (e.g., system
concept/requirements and user needs as defined in concept phase, and system
design)?

« Doesthe SRS show explicitly complete coverage of requirements defined by client?

+ Is SRS traceable forward through successive development phases (e.g., into the
design, code, and test documentation)?

Under standability
« Does every requirement have only one interpretation?

« Arethefunctiona requirementsin modular form with each function explicitly
identified?

+ Isthere aglossary of terms?

« Isformal or semiformal language used?

+ Isthelanguage ambiguous?

« Doesthe SRS contain only necessary implementation details and no unnecessary
details? Isit over specified?

« Arethe requirements clear and specific enough to be the basis for detailed design
specs and functional test cases?

+ Doesthe SRS differentiate between program requirements and other information
provided?

Maintainability

» Doesthe documentation follow M SE portfolio standard
» Isthe documentation clear and unambiguous

Verifiability/Testability

« Aretherequirements verifiable (i.e., can the software be checked to see whether
requirements have been fulfilled)?
+ Isthereaverification procedure defined for each requirement in the SRS?

Clarity

« Areadll of the decisions, dependencies, and assumptions for this design
documented?

« Arenamesindicative of their meaning?

+ Iseach concept defined only once, with one clear meaning?

+ Iseach statement written as clearly as possible?

Functionality
« Does the design implement the specification and requirements?
Reliability

« Areabnormal conditions considered?
« Arethe defect conditions/codes/messages specified completely and meaningfully?

References
|EEE Std 1028-1998, “|EEE Standard for Software Reviews and Audits’. 1998 Edition, |EEE, 1983.

“Software Formal Inspections’, Software Assurance Technology Center (SATC), 1997,
http://satc.gsfc.nasa.gov/fi/fipage.html

Weiss, Alan R. and Kerry Kimbrough, “Fundamentals of Software Inspections, Version 2.1". 1995.
http://www?2.ics.hawaii.edu/~johnson/FTR/Weissweiss-intro

CHAPTER 12: USER MANUAL

| - System Overview

The Pipeline Editor is afeature-rich graphical user interface designed to provide
pipeline designers with a graphical view of their pipeline systems and simul ation data.
Thisallows for quick pipeline design and data generation. The software integrates an
optimizer, which goal isto optimize the time of the simulation. As the smulation is done
among severa distributed machines, the optimizer will attribute each component of the
pipeline system to a particular machine in order to minimize the overall time needed to
compute the ssimulation data. The Pipeline Editor can be started from any computers.
Once started, it will connect to the optimizer and the ssmulator server.

Il - System Requirements

» Theexecution of the software requires Java Web Start 1.2. It isatool that allows
user to access the application from any computer using an Internet browser.

* The user should also have access to the C drive in order to write some datain the
temporary folder.

» To start the application, Netscape Navigator or Internet Explorer (or any other
browser) is needed. For thefirst time, an internet connection is needed. After the
application has been downloaded, the user will have the choice to integrate the
application in the desktop in order to be able to run it offline.

lll - Installation and Execution

No particular installation steps are needed. In case the computer does not have
Javaweb Start installed, it will needed to be installed. Visit
http://java.sun.com/products/javawebstart/download.html to install the latest version of
JavaWeb Start.

To execute the software, go to

http:/mwww.ci s.ksu.edu/~oyenan/MyWeb/pr oj ect/project.htm and click on Pipeline Editor
or directly point your browser to this address:

http://mww.ci s.ksu.edu/~oyenan/MyWeb/pr oj ect/project.jnlp. The application should start
downloading. A security-warning window will appear. Accept to launch the application.
The application will then start.

IV - Getting Started

The application consists of one main window with two toolbars and one menu
bar. The vertical toolbar has some buttons representing the pipeline components. The
horizontal toolbar contains al the buttons for editing and simulating. The menu bar offers
the functionality of the horizontal toolbar in addition to some other functions later
described.

4.1 Horizontal Toolbar Description

@ &2¢ b T &) @8 4 bl P m
Figure 1: The horizontal toolbar

Following is the description of each button of the horizontal toolbar:
« Createanew graph (0¥)
e Openagraph: (&) Open agraph file (.vps extension)
« Savethe current graph ()
« Undo: (@)undo the last action
« Redo: (€)Redo thelast action
« Copy: (B) Copy the selected item(s)
+ Paste: () Paste acopied or cut item(s)
« Cut: (¢)Cut the selected item(s)
« Zoom actual size: (%) Return the normal scale of the graph
 Zoomin: ('?»)Zoom in the graph
« Zoom out: (%)Zoom out the graph
« Simulate: (@) Start the simulation
 Stop: (0) Stop the simulation
« Optimize: (&) Start the optimizer
« Replay: (*) Start the replay session
« Stop: (9) Stop the replay session

4.2 Vertical toolbar description

<= Figure 2: The component toolbar

The component toolbar is the toolbar with al the components needed to draw the pipeline
system. Following is the description of its buttons:

AAIOVOO Y| &

» Selection Toal: (%)
Used to select any componentsin the graph. It is aways selected by default
except when the pipetool is selected. Use this button to cancel the pipe tool
selection.

* Insert Pipetool: =—
Use thistool to insert a pipe between two components. When the tool is selected,
the cursor becomes a cross. Rolling over a component port will then cause this
port to be highlighted. This indicates the possibility of connecting a pipe to this
port. You can then drag the cursor to another port to have a pipe.
To come back to a mode where components can be moved, you have to select the
selection tool.

« Show/Hide Connectors; "%
Set the ports of all components in the graph to be visible or hidden. When the
ports are visible, a pipe can be directly drawn without selecting the pipe tool. This
avoids selecting the pipe tool every time a pipe needs to be drawn. When over a
port, the hand cursor will appear, indicating that it is ready to draw a pipe. You
can then just drag the hand to another port and a pipe will be drawn.
If it becomes difficult to grab a component and move it (because the component is
too small), you can just hide the ports. Thisway, you can click anywhere on the
component and moveit.

* Pipeline Components: Y ou can insert acomponent by either clicking on the
component or dragging its toolbar button into the drawing space. Clicking on the
component will drop the component at a default location. Followingisalist of all
the pipelines component found in the Pipeline Editor:

O Delivery point. Represent adelivery point.
. Receipt point: Represent a receipt point.

= Compressor: Component composed of a compressor and adriver.
Type of this component can be set up by right-clicking on the component.

<> Joint: Component used to connect two pipes together.

N Valve: Used to connect two pipes. Can have two states: open or close.
The state of the valve can be change on the right-click menu.

'< Split: Represents a 2-way splitting junction.

'(Split: Represents a 3-way splitting junction.

>- Junction: Represents a 2-way combining junction.
)‘ Junction: Represents a 3-way combining junction.

- Storage: Component representing a storage.

my

Regulator: Component representing a regul ator.

AF Orifice: Component representing a orifice meter.

V - FEATURES

5.1 Change component properties

The properties of each component in the graph can be updated by right-clicking
on the component and selecting ‘ Edit Properties’. A property window will open and let
you change the values.

For the compressor, it is also possible to change the type of driver and compressor. For
that, right click on acompressor and select ‘ set type'.

The state of avalve (open/close) can also be set. Right-click on the valve and select
‘Change State'.

5.2 Name a component

For reference purpose, it is possible to give a name to each component in the
graph. Even though this name appears on the property panel, it has no physical meaning
and is not mandatory. To change/define the name of a component, double-click on the
component. A box will appear and you can type the nameinside. You can aso right click
on the component and select ‘rename’.

5.3 Station view (Q)

a- Create Sation

It is possible to create a station with some selected cells. When the cells are
selected, right-click anywhere on an empty space of the graph and select ‘ create station’
on the menu. A station will be created. A station can only have one pipe entering and one
pipe exiting and should not have any pipe with its source or target out of the station. If
this situation happens, a station cannot be created and an error message will occur.

b- Unfold Station

Once astation is created, it is possible to view the component inside it. Right
click on the station and selection *Unfold station’. When a station is unfold, component
are visible but cannot be moved individually.
When a station is unfolded, you can access and manipulate components inside the station
without having to destroy the station. A first click on the component will select the
unfolded station (dashed rectangle enclosing all components) and a second click will
select the component inside the station. Once the component is selected, you can
manipulate it as it was out of the station. Be aware that if the station is aready selected, a
click on acomponent inside will directly select the component.

c- Fold Station

Y ou can fold back the station by doing aright-click on one of the component of
the station and select ‘fold station’ in the menu. If you right-click on an empty space
inside an unfold station, you will not be able to have the fold option.

d- Destroy Sation

It is possible to destroy the station by doing aright click on the station and
selecting ‘destroy station’. All the components will therefore be out of the station and
will be able to be moved separately.

5.4 Create/lnsert Library

Any group of components can be saved as alibrary and retrieved later. Select all
the components to be part of the library. Then go to File->Save As Library. The library
will be saved.

To insert asaved library, go to File->Open Library, and then select avalid library name.
The library will then be inserted into the current graph. All library names have a .lib
extension. Even if the original library name was created without this extension, it will be
added automatically. For example, if you save your library as‘myLibrary’, when opening
it, you need to choose the file ‘myLibrary.lib’.

5.5 Save/Open

At any time, the graph can be saved. Just click on the save icon or go to File-> Save and
choose a name.

To open agraph, click on the open icon or go to File ->Open and choose the name of the
graph to open. Make sure to have saved all previous work before opening a new graph.
All graph files should have a .vps extension. Even if the original library name was
created without this extension, it will be added automatically. For example, if you save
your graph as ‘myGraph’, when opening it, you need to choose the file ‘ myGraph.vps'.

5.6 Cut/paste/copy

To cut or copy, select the component(s). To select acomponent, just click on the
component. To select agroup of components, drag the mouse to draw a selection square
enclosing all the desired components. Selected components will be highlighted in green.
Once the components are selected, click on the cut or copy icon. If there are some items
previously cut or copy, you can paste them and they will appear on the graph.

5.7 Remove

To remove a component, select the component and click remove. If a group of
components is selected, all the components will be removed. When a component is
removed, al the pipes connected to it are also removed. Notice that data cells cannot be
removed. They are aways associated with a component. They can just be hidden.

5.8 Zoom

By clicking on the zoom icons, it is possible to do a zoom in, zoom out or to come
back to the actual size of the graph.

5.9 Optimize

When the graph is completed and is ready for simulation, you need to first run the
optimizer by clicking on the optimizer icon or by going to Tool->Optimize.
An error message will appear if the current graph has not been saved.
The parameters of the optimizer can be defined by going to Tool->Set optimizer
parameters. There, you can specify the time to wait before interrupting the optimization.
Usualy, for amedium network, atime of 5 minutes will give some satisfying results.
When the optimizer is running, you can query its state to determine whether or not it is
done. For that, go to Tool —>Check Optimizer State.
When the optimizer isdone, it is advised to save the graph again. By doing that, the new
information creates by the optimizer will be saved and you will not have to optimize the
graph next time you open thefile.
Be aware that components inside stations will be optimized separately, just as any other
components.

5.10 Simulate

Once the optimizer is done, the simulation can be executed. Click on the
simulation icon or go to Tool -> Start Simulation. When opening afile that has already
been optimize, it is not necessary to optimize the graph again. The ssmulator will run and
after some time, you will see the first results coming.

At any time, the simulation can be stopped by clicking on the stop button. Once the
simulation is stopped, it can only restart from the beginning. To review data previously
simulated, you can use the replay option.

5.11 View simulation data

For each component expect pipes, it is possible to have a summary view of the
data from the simulation. Right click on the component and select ' show data’. The data
show the pressure, temperature and mass flow of the component.

When adata cell isvisible, you can hide it by right clicking on the component associated
to it and select ‘Hide data’ . Summary data are always linked to a component. Therefore,
it is easy to know which component they refer.

For al components, it is also possible to display all the data. For a pipe, right-click on it
and select ‘display data’. For any other components, right-click on the data cell (it hasto
be visible) and select ‘display data’. A window will appear with al the simulation data.
Notice that simulation data cannot be modified.

5.12 Replay

After each ssmulation, it is possible to review all the data generated during the
simulation. Click on the play icon in the toolbar and the replay function will be started. If
there are no simulation data available, an error message will appear.

At any time, the replay can be stopped by clicking on the stop button.

5.13 Bend pipes

With Shift-click on a pipe (maintain shit and click on the pipe), it is possible to
add a bending point to the pipe. Thisfunction isjust provided for a better display and has
no real physical meaning. Once a bending point is created, you can bend the pipe by
dragging the bending point. To remove the bending point, do a Shift-click on the point.

VI — FAQ

Q: When | click on the link, the application does not start.

A: If the browser asks you to open the file, which means you do not have Java Web Start
installed on your computer. Go to
http://java.sun.com/products/javawebstart/download.html and install the latest version of
JavaWeb Start.

If you have Java Web Start, verify that you have permission to write on the C: drive of
your machine.

Q: The program crashes when | run the optimizer or the simulator.
A: The server is not running. Contact the administrator.

Q: When | want to move a component, it starts drawing a pipe.

A: Either the Pipe tool is selected (cross cursor) or you are over a port. For small
components, an easy way to move them is to hide the ports. Thisway, you will never be
over aport.

Q: 1 do not see any data coming when | run the simulator.

A: You did not save the graph after having run the optimizer. When optimizing, a
mapping is done between cells from the graph and components from the simulator. If the
graph is not saved, the mapping is lost and the simulator cannot map the data with the
cellsin the graph. The solution isto restart the optimization.

CHAPTER 13: Technical Manual

I- Purpose

The goal of this document isto provide a general description of how to modify or
update certain functions of the pipeline editor. It also provides a description of the
function of some elements. For more information about the classes and methods, refer
to the Design document and the APl document available online.

Il - Description

Following is a genera description for:
* Adding and modifying components.
* Mouse click handling and popup menu
» Mapping cell-jobComponent

2.1 Adding and modifying components

The main class to insert and modify componentsis the class MyGraph. This class
defines al the properties for the components (by creating UserObject objects). Each
component (compressor, joint, valve...) has a userObject that hold its properties. For this
reason, the display of the properties dialog box is done by the class MyUserObject.

Here are all the steps to add a new component:

1- Define anew cell classfor the component (similar to CompressorCell class).

2- Defineaview for the component (similar to CompressorView class). In the

view, the paint method for the new component has to be specified.

3- Inthe MyGraph class, associate the cell with the view (method

createVertexView()).

4- Definethe properties of the new component by adding a method in MyGraph

that return an UserObject holding the properties of the component.

5- Define aproperty dialog for the component in the class MyUserObject

(optional).

6- In MyGraph class, add the component cell in the insert() method to allow the

new cell to beinserted in the graph.

7- Inthe Editor class, add a new button to the toolbar corresponding to this new

component.

8- Create anew class extending JobComponent to have ajob component

associated to this new component. The new job component should use the

cell’suserObject in order to initidize its fields (see Compressor.java). The
execution time of the new job component is aso defined in this class.

9- In Mediator.createJob(), associate the new component cell to the new job
component created. This method also defines the local and remote
communication time for all the components.

Example: Let’s add a new compressor that face the opposite direction of the

current one (like this). \We are going to call this component compressor2.

1- Define Class Compressor2Cell:

public class Compressor2Cell extends MyCell {
public CombineCell (Object user Object) {
super (user Object);
}
}

2- Define Class Compressor2View

public class Compressor2View extends VertexView {
static Compressor 2Renderer renderer = new Compressor 2Renderer ();

public Compressor2View(Object cell, JGraph graph, CellMapper cm) {
super (cell, graph, cm);
}

public CellViewRenderer getRenderer() {
return renderer;

}

public static class Compressor 2Renderer extends VertexRenderer {
public void paint(Graphics g) {
int b = borderWidth;
Graphics2D g2 = (Graphics2D) g;
Dimension d = getSze();
boolean tmp = selected;
int[] xPoints = {b-1,b-1,d.width-b,d.width-b};
int[] yPoints = { d.height*3/8,d.height* 1/8, b-1,d.height/2 };
int[] xPoints2 = {b-1,b-1,d.width-b,d.width-b};
int[] yPoints2 = {d.height*9/16,d.height,d.height,d.height* 9/16};
if (super.isOpaque()) {
g.setColor (super.getBackground());
g.fillPolygon(xPoints, yPoints, xPoints.length);
g.fillPolygon(xPoints2, yPoints2, xPoints2.length);
g.drawLine(d.width/2,d.height* 7/16,d.width/2, d.height*9/16);

Notes:

try {
setBorder (null);

setOpaque(false);
selected = false;
super.paint(g);

} finally {
selected = tmp;

if (bordercolor = null) {
g.setColor(bordercolor);
g2.setStroke(new BasicSiroke(b));
g.drawPolygon(xPoints, yPoints, xPoints.length);
g.drawPolygon(xPoints2, yPoints2, xPoints2.length);
g.drawLine(d.width/2,d.height* 7/16,d.width/2, d.height*9/16);

}

if (selected) {
g2.setSroke(GraphConstants. SELECTION_STROKE);
g.setColor (graph.getHighlightColor());
g.drawPolygon(xPoints, yPoints, xPoints.length);
g.drawPolygon(xPoints2, yPoints2, xPoints2.length);
g.drawLine(d.width/2,d.height* 7/16,d.width/2, d.height*9/16);

3%

The class Compressor2View aso defines the renderer for this class. This could
have been done in a separate class called Compressor2Renderer.

The paint method defines 3 types of view: opaque, non-opaque and selected.
When the component is opaque, it isfilled with the proper color. When it is not
opague, only the perimeter is drawn (with the borderColor). We also need to
define how the component is viewed when it is selected. In this case, using the
predefined selection stroke (green dash line), we are just drawing the perimeter.
We could have drawn the enclosing rectangle instead.

Each component has a size (rectangle) defined when it is created. It will be
painted inside this rectangle (its dimension are d.width and d.height).

3- Associate the cell with the view: Class MyGraph.createView()
protected VertexView createVertexView(Object v, CellMapper cm) {
if (v instanceof JointCell)
return new JointView(v, this, cm);
elseif (vinstanceof Compressor Cell)
return new CompressorView(v, this, cm);
eseif ...

elseif (v instanceof Compressor2Cell)

return new Compressor2View(v, this, cm);
return super.createVertexView(v, cm);

4- Define the properties: MyGraph.createUserObject(). Let’s say that
Compressor2 has 3 properties. Temperature, Pressure and Mass with a default
value of respectively 10.1, 20.2, 30.3

private MyUser Object compressor 2User Object(){

Sring s;

MyUser Object user Object = new MyUser Object(" compressor2");
s=new Sring("10.1");

user Object.putProperty("Pressure”, S);

s=new Sring("20.2");

user Object.putProperty(" Temperature”, s);

s=new Sring("30.3");

user Object.putProperty("Mass’, s);

return user Object;

}

Notes:

» The properties and the values are of type String. Therefore, when reading the
value, it has to be cast in the proper type (generally double or int).

5- Define the property dialog

A default propertyDiaog (displaying the properties) and dataDialog (displaying
the data) will be created. A default property dialog is created for each userObject. There
IS no need to create one unless the dialogs have to display different information than the
properties stored in the userObject. To create a custom property dialog, go to
MyUserObject class and define the new dialog box.
protected void showCompressor 2Property(final MyGraph graph, final Object cell) {

/I create JDialog compressor2Dialog

/Ipopulate the dialog box

/I compressor Dialog.show()

}

Add acal to this dialog box in MyMarqueeHandl er.createPopupMenu().
public JPopupMenu createPopupMenu(final Point pt, final Object cell) {
JPopupMenu menu = new JPopupMenu();

if (cell instanceof Compressor2Cell) {
menu.add(new AbstractAction("Edit Compressor2") {
public void actionPerformed(ActionEvent e) {
((MyUser Object)(((DefaultGraphCell)cell).getUser Object())).showCompr essor 2P

roperty(graph,cell); }

9k

Note:
» If aspecid dialog is created, the default one has to be canceled.

6- Insert the component: MyGraph.insert(). Let’s create the part of code to insert
a component of type COMPRESSOR?2 (this type will be define in the next

step).

public void insert(String type, Point point) {
Hashtabl e attributes = new Hashtabl &();
int u = GraphConstants.PERCENT;
Map mapPort;
/I Construct Vertex with no Label
DefaultGraphCell vertex = new DefaultGraphCell();
DataCell data = new DataCell();

// *************Insert acompr-r2*****************
if (type.equals("COMPRESSOR2")){

MyUser Object user Object = compressor 2User Object();
vertex = new Compresso2r Cell (user Object);
data.setUser Object(user Object);

/I Default Sze for the new Vertex
size = new Dimension(50,75);

// Add a Port
mapPort = GraphConstants.createMap();
GraphConstants.setOffset(mapPort,new Point(0, (int) (u/ 4)));
DefaultPort port = new DefaultPort("left");
vertex.add(port);
attributes.put(port,mapPort);

mapPort = GraphConstants.createMap();
GraphConstants.setOffset(mapPort,new Point(u, (int) (u/ 4)));
port = new DefaultPort("right™);
vertex.add(port);

attributes.put(port,mapPort);

((Compressor Cell)vertex).setDataCell (data);

}

Notes:

* A vertex iscreated with a compressor2UserObject. Recall that this userObject
holds all the properties for the component. This vertex has a data Object (to
display summary data) and a size (size of the enclosing rectangle; used in step 2).

» Depending on the component, we have to define a certain number of ports and
their position. The position isrelative to u. This variable can be seen as the width
or length of the enclosing if used respectively in the x-coordinate or the y-
coordinate. In our case, the port will be at 1/4™ from the top of the enclosing
rectangle.

» Each port has afixed name as defined in the naming conventions (Section 3).

7- Add anew toolbar button
public JToolBar createToolBar2() {
JToolBar toolbar = new JTool Bar (SwvingConstants.VERTICAL);
tool bar.setFloatabl e(fal se);
I InsertCompressor2
URL comp2Ur| = getClass().getClassLoader ().getResour ce(* gif/comp2.gif");
Imagel con comp2lcon = new Imagel con(comp2Url);
compressor = toolbar.add(new AbstractAction(" Comp", comp2lcon) {
public void actionPerformed(ActionEvent €) {
graph.insert(" COMPRESSOR2" ,new Point(10, 20));
}

;i

compressor 2.setTool TipText(" Compressor2");

MouseMotionListener ml = new MouseMotionAdapter () {
public void mouseDragged(MouseEvent €) {
JComponent ¢ = (JComponent)e.getSource();
TransferHandler th = c.getTransferHandler();
th.exportAsDrag(c, e, TransferHandler.COPY);
}
|3
compressor 2.setTransferHandler (new
ButtonTransferHandler (" COMPRESSOR2"));
compressor 2.addMouseMoationListener (ml);

Notes:

* You should have an image icon for the new component (in this example
comp2.gif). Images are 24 x 24.

» The action when the button is pressed isto insert compressor2 into the graph. The
type specified when calling graph.insert() should match the type used in MyGraph
class (step 6).

* TheMouseMotionListener is used to handle Drag & Drop. Each button in the
toolbar has to be notified when a drag gesture is started.

8- Create a JobComponent for the new component. Recall that compressor2 has
3 properties: pressure, temperature, mass.
public class Compressor2 extends JobComponent implements Serializable{
private double pressure, temperature, mass;
public Compressor2(MyUser Object user Object){
super (1);
componentld = c++;
gasType = new
Integer ((String)(user Object.getProperty(" gasType"))).intValue();
number = new
Integer ((String)(user Object.getProperty(" number™))).intValue();
String indexVal = (String)(user Object.getProperty("index"));
Sring valueVal = (Sring)(user Object.getProperty("value™));

Notes:

* Theexecution time is defined in the constructor. It is the parameter of the
superclass constructor. In this case, the execution timeis 1.

* Theinitidization of the fields comes from the userObject. Asthe property values
are Strings, a casting in the proper type is necessary.

* Get and set methods have to be defined for each field.

9- Associate the component cell to the job component: class Mediator
private Vector createJobs(){
hash = new Hashtable();
for (Iterator iter = cells.iterator(); iter.hasNext(); {
JobComponent j = null;
DefaultGraphCell o = (DefaultGraphCell)(iter.next());
if (o instanceof Compressor Cell)
j = createComp2Node(0);
elseif (o instanceof Compressor2Cell) // oisa compressor2
| = createComp2Node(0);
eseif ...

if (j 1= null){
hash.put(o,));
}

private JobComponent createComp2Node(DefaultGraphCell cell){
MyUser Object user Object = (MyUser Object)(cell.getUser Object());
return new Compressor 2(user Object);

Note:

* ThejobComponent is created from the userObject of the cell stored in the
hashtable for future reference.

2.2 Mouseclick handling and popup menu

All the mouse events are handled in the class MyMarqueeHandler. The popup
menus are also created in this class. Every time aclick occurs, this class detects the cell
on which the click has occurred and initiates the proper action (see example step 5).

This class aso handles the pipes creation. The userObject for the pipes are defined in the
class MyMarqueeHandler (as opposed to MyGraph for all other components).

The decision of whether or not some components should accept pipes sources or targetsis
taken in the class MyModd.

Example : Accept source only from the left of compressor2.
public class MyModel extends DefaultGraphModel {
public boolean acceptsSour ce(Object edge, Object port) {
if ((((DefaultPort)port).getParent() instanceof Compressor2Cell))}{
if (((DefaultPort)port).getUser Object().toString().equals("right™))
return false;
elsereturn true;

2.3 Mapping cellsand jobComponents

In order to optimize or simulate the graph, a mapping has to be done between
cells from the graph and Job Component used by the optimizer and the smulator. This
mapping is done by the Mediator class. This class holds 2 static hashtables: one for the
mapping cell-JobComponent and another one for the mapping JobComponent-Cell. This
classisthelink between the graph and the optimizer and the simulator. Thisisin the
mediator class that data of the simulation are updated inside each cell.

llI- Naming Conventions

There is some naming conventions for the files and variable names used by the
application.

3.1 Filenames

The graph files are saved with the extension ‘.vps'. Those files are saved on the client
machine and just contain information for rebuilding the graph. An vpsfileisthe
serialization of the view and the model of the graph. An example of file would be
‘test.vps'.

The optimizer files use the extension ‘.opt’. They use the basename of the graph file
saved by the user. For instance, if auser save a graph under ‘test.vps', the optimizer file
will be named ‘test.opt’. For this reason, the user is prompted to save the graph before
optimizing. Optimizer files are saved on the server side. They are used by the ssimulator.
Anopt fileisaserialized vector containing all the JooComponents created from the graph
cells. Those JobComponents contain information generated from the optimizer about the
machine on which they should be executed.

The simulator files use the extension *.ssim’. The file name is created by adding the
timestamp of the simulation to the basename of the graph file saved by the user. For
instance, the 5" set of data produced by the simulator will be saved under ‘test5.sim’. The
initial fileis named ‘testO0.sim’. It is the same data as the original file recelved from the
optimizer. Simulator files are the serialization of avector containing the JobComponents.
Each JobComponent in this file has been updated with new values coming from the
simulation.

3.2 Variable names

The only variable names that are fixed are the name of the ports and the name of the data
edges (edges linking a cell with its data). For components having 2 ports, the left port will
be called ‘left’ and the right port ‘right’.

Example:
DefaultPort port = new DefaultPort("left");

For components with more than one left port, the names of the left ports should contain
the string ‘left’ (no matter what the nameis, i.e topLeft). Same for components with more
than one right port. This naming convention helps to easily identify the ports.

The data edge nameis ‘data’. Knowing this name hel ps making the distinction between a
data edge and a pipe (which is aso an edge).

Example:

DefaultEdge edge = new DefaultEdge("data’);

IV- Communications

The GUI, on the client side, has to communicate with the optimizer and the
simulator on the server side.

4.1 GUI-Optimizer

The protocol of this communication isvery ssimple. The GUI communicates via
the OptimizerClient class. First, the OptimizerClient opens a connection to the server on
port 3333. Then it sends alist of jobs (a vector). After, it sends a mapping
(id,JobComponent), then the file name and finally atime. The timeis the optimizer time,
input from the user. The default time is 2 minutes. The file name is the name under which
the graph has been saved. It is needed to save the optimizer file under the same name.
The mapping (id, JobComponent) is needed by the Branch and Bound agorithm in order
to find the JobComponent from any given job id. Thelist of jobsis avector of al jobs
components created from the cell of the graph. The vector is created by the method
Mediator.createJobs().

On the other side, the optimizer (the server), receives those objects and starts the
computation. Whenever an error occurs, it sends a message (REJECT) to the
OptimizerClient that notifies the GUI. If all the information has been received properly, it
sends an ACCEPT message. When it is done, it creates afile that will be used by the
simulator and send a DONE message.

4.2 GUI-Simulator

The protocol of this communication has been specified in the Formal
Specification document. The communication is done via the SimulatorClient that
connects to the ssimulator server on port 4000. The optimizerClient recelves commands
from the GUI and passes them to the simulator that executes the proper action. The
commands are: Stop, sendFile, Replay.

To start the simulation, the GUI initiates a sendFile command. The OptimizerClient then
transfers the optimizer filename (test.opt) to the simulator.

For areplay, it sends the filename of the simulator initialization file (test0.sim).

In both cases, the simulator reply by an ACCEPT if the file exists or REJECT if not. If
thefileis accepted, the simulator start sending data either by computing them for a
simulation command or by taking them from the file previously stored in the case of a
replay command. The OptimizerClient receives the data and notifies the Mediator that
updates the display. As each JobComponent is mapped to a graph cell, the dataare
fetched from the JobComponent and updated in the corresponding cell’ s userObject. For
asimulation, each time a new set of datais transferred to the client, anew fileis created.
Thosefiles are used for the replay and follow the naming convention defined earlier.

At any time, the user can stop the simulation or the replay. A stop message is then sent to
the simulator, which, upon reception of this message, stops sending data and returnsto an
idle state.

V- Java Web Start

JavaWeb Start is used to access the application from any browsers. When using
Web Start, the application can be untrusted and run in a sandbox. However, due to the

sockets access to the optimizer and the ssmulator, the code has to be signed in order to
use the client network. To be able to start, the application must comein ajar file and with
and jnlp file. The jnlp defines the name, path, description, and main class of the
application. It also defines the type of permission is required. For the meaning of al the
tags and their possible values, refer to the devel oper guide of Web Start at:
http://java.sun.com/products/javawebstart/1.2/docs/devel opersguide.html#fil econtents.
Following isthe jnlp file used for the application:
<jnlp spec="0.2 1.0"
codebase="http://mwww.cis.ksu.edu/~oyenan/MyWeb/Pr oject/"
href="project.jnlp">
<information>
<title>Pipeline Editor</title>
<vendor>KSU ClS</vendor>
<homepage href=""http://java.sun.com/products/javawebstart/demos.html" />
<description>A Pipeline editor test</description>
<description kind="short"> Pipeline editor Description</description>
<icon href="gif/pipeine.gif"/>
<offline-allowed/>
</information>
<security>
<all-permissions/>
</security>
<resources>
<j2seversion="1.4+" href="http://java.sun.com/products/autod|/j2se" />
<j2seversion="1.4+"/>
<jar href="project.jar" main="true" download="eager"/>
</resources>
<application-desc main-class="Editor"/>
</jnlp>

Following are the step to provide asigned jar file.
» jar cmf MyManifest project.jar *.class gif optimizer org
Thiswill put al the classfilein thejar. It will aso put the following directories:
o \gif: directory containing all the icons
0 \optimizer: classes for the optimizer package
o \org: JGraph classes
Thefile MyManifest ssmply specify which of those classes contain the main method.
* keytool —genkey —keystore myKeys —aliasjdc
This generate akey stored in the file myKeys. A password will be asked to generate the
key. Thisfileis available and the password is ‘ pipeling . If using the file myKeys, this
step is not necessary (as the key has already been generated).
» jarsigner —keystore myKeys project.jar jdc
Thiswill sign thejar file with the key contained in the file myKeys. The password used
when creating the file will be asked. If using the provided file, it is going to be “ pipeline”.

Refer ences:

* |EEE STD 830-1998, “|EEE Recommended Practice for Software
Requirements Specifications’. 1998 Edition, IEEE, 1998.

» Software Requirement, Dr. Scott Deloach’s C1S748 lecture notes,
http://www.cis.ksu.edu/~sdel oach/748.

» Kim Johnson, “ Software Cost Estimation: Metrics and Models’,
http://sern.ucal gary.ca/courses/seng/621/W98/johnsonk/cost.htm.

» Formal Inspection, Scott Deloach’s CIS748 |ecture notes,
http://www.cis.ksu.edu/~sdel oach/748/protected/d i des/748-4-formal -
inspections.pdf

* “lEEE guide for software quality assurance planning” -730.1-1995

» Lecture notes, CIS 748 Software Management, Dr. Scott Deloach, Spring
2002

* Pressman, Roger S. "Software Engineering: A Practitioner's Approach”. Fifth
Edition, Mc GrawHill, NY, June, 2001.

* Gaudenz Alder, “Design and Implementation of the JGraph Swing
Component”, http://www.]graph.com/documentation.shtml

 Dar-Tzenet a., “Assignement and Scheduling Communicating Periodic Tasks
in Distributed Real-Time Systems’, IEEE Transactions on Parallel and
Distributed Systems, 1997.

* “|EEE Standard for Software Test Documentation”, IEEE Std 829-1998

* “lEEE Standard for Software Reviews and Audits’, IEEE Std 1028-1998,
1998 Edition.

» “Software Formal Inspections’, Software Assurance Technology Center
(SATC), 1997, http://satc.gsfc.nasa.gov/fi/fipage.html

* Waeiss, Alan R. and Kerry Kimbrough, “Fundamentals of Software
Inspections, Version 2.1”. 1995,
http://www?2.ics.hawaii.edu/~johnson/FTR/Weiss/wei ss-intro

Acknowledgements:
* Committee Members:
o Dr Virgil Wallentine
0 Dr. Daniel Andresen
0 Dr. Masaaki Mizuno

