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Abstract

Background: Biological imaging is an emerging field, covering a wide range of applications in biological and clinical
research. However, while machinery for automated experimenting and data acquisition has been developing rapidly
in the past years, automated image analysis often introduces a bottleneck in high content screening.

Methods: Wndchrm is an open source utility for biological image analysis. The software works by first extracting
image content descriptors from the raw image, image transforms, and compound image transforms. Then, the
most informative features are selected, and the feature vector of each image is used for classification and similarity
measurement.

Results: Wndchrm has been tested using several publicly available biological datasets, and provided results which
are favorably comparable to the performance of task-specific algorithms developed for these datasets. The simple
user interface allows researchers who are not knowledgeable in computer vision methods and have no background
in computer programming to apply image analysis to their data.

Conclusions: We suggest that wndchrm can be effectively used for a wide range of biological image analysis
tasks. Using wndchrm can allow scientists to perform automated biological image analysis while avoiding the
costly challenge of implementing computer vision and pattern recognition algorithms.

Background

In the past few years, pipelines providing high-
throughput biological imaging have been becoming
increasingly important, and are supported by au-
tomated microscopy and high-performance comput-
ing and storage devices. Applications include pro-
filing drug responses, screening for small molecules,

classification of subcellular localization, and more.
While image acquisition systems, network band-
widths, and storage devices are capable of support-
ing vast pipelines of biological images, human anal-
ysis can be impractically slow. Therefore, machine
vision algorithms for analysis of biological images are
necessary to complete a fully automated process for



interpreting biological experiments.
Some highly useful applications have been pro-

posed and made available to the scientific commu-
nity. OME [1, 2], as well as its derivative product
OMERO [3], provide a widely used enterprise solu-
tion to storing, handling and processing biological
and medical images. Another useful application is
CellProfiler [4], which is a tool designed specifically
for analyzing microscopy images of cells. Other tools
focus on single tasks in the process of biological im-
age analysis. An example is the utility FindSpots,
which detects objects (e.g., cells) in an image based
upon their intensity and size.

In this paper we present wndchrm - an open
source utility for biological image analysis that can
be used for a wide range of biological datasets, which
include organelles, cells, tissues, and full organisms.
Using wndchrm does not require knowledge in com-
puter vision or computer programming, allowing bi-
ologists who do not have strong programming skills
to enhance their experiments with automated image
analysis capabilities. The code can be downloaded
freely via the internet, and does not require any li-
censed commercial software. It can also be easily
integrated into existing or new software products.

Description of the Method
The image analysis method works by applying a
first step of computing a large number of different
image features. For image feature extraction we use
the following algorithms, described more thoroughly
in [5]:
1. Radon transform features [6], computed for
angles 0, 45, 90, 135 degrees, and each of the result-
ing series is then convolved into a 3-bin histogram,
providing a total of 12 image features.
2. Chebyshev Statistics [7] - A 32-bin histogram
of a 1×400 vector produced by Chebyshev transform
of the image with order of N=20.
3. Gabor Filters [8], where the kernel is in the
form of a convolution with a Gaussian harmonic
function [9], and 7 different frequencies are used
(1,2...,7), providing 7 image descriptor values.
4. Multi-scale Histograms computed using var-
ious number of bins (3, 5, 7, and 9), as proposed
by [10], providing 3+5+7+9=24 image descriptors.
5. First 4 Moments, of mean, standard deviation,
skewness, and kurtosis computed on image ”stripes”
in four different directions (0, 45, 90, 135 degrees).

Each set of stripes is then sampled into a 3-bin his-
togram, providing 4×4×3=48 image descriptors.
6. Tamura texture features [11] of contrast, di-
rectionality and coarseness , such that the coarseness
descriptors are its sum and its 3-bin histogram, pro-
viding 1+1+1+3=6 image descriptors.
7. Edge Statistics features computed on the
Prewitt gradient [12], and include the mean, me-
dian, variance, and 8-bin histogram of both the
magnitude and the direction components. Other
edge features are the total number of edge pixels
(normalized to the size of the image), the direction
homogeneity [13], and the difference amongst direc-
tion histogram bins at a certain angle α and α + π,
sampled into a four-bin histogram.
8. Object Statistics computed on all 8-connected
objects found in the Otsu binary mask of the im-
age [14]. Computed statistics include the Euler
Number [15], and the minimum, maximum, mean,
median, variance, and a 10-bin histogram of both
the objects areas and distances from the objects to
the image centroid.
9. Zernike features [16] are the absolute values of
the coefficients of the Zernike polynomial approxi-
mation of the image, as described in [13], providing
72 image descriptors.
10. Haralick features [17] computed on the im-
age’s co-occurrence matrix as described in [13], and
contribute 28 image descriptor values.
11. Chebyshev-Fourier features [18] - 32-
bin histogram of the polynomial coefficients of a
Chebyshev–Fourier transform with highest polyno-
mial order of N=23.

Since image features extracted from transforms
of the raw pixels can also be informative [5], im-
age content descriptors are extracted not only from
the raw pixels, but also from several transforms of
the image and transforms of transforms. The image
transforms are FFT, Wavelet (Symlet 5, level 1) two-
dimensional decomposition of the image, Chebyshev
transform, and Edge transform, which is simply the
magnitude component of the image’s Prewitt gradi-
ent, binarized by Otsu global threshold [14].

In the described image classification method, dif-
ferent image features are extracted from different im-
age transforms or compound transforms. The soft-
ware allows the user to choose between extracting
a smaller set of image features, which includes 1025
content descriptors, and extracting a larger set of
2659 features. The larger set of image features can



be more informative, but also requires the sacrifice
of more computational resources, which leads to a
slower response time. The image features extracted
from each transform in the smaller and larger feature
sets are described by Table 1.

While the set of image features provides a nu-
meric description of the image content, not all image
features are assumed to be equally informative for
each dataset, and some of these features are expected
to represent noise. To select the most discriminative
features and reject the noisy features, each image
content descriptor is assigned with a simple Fisher
score [19] and rank ordered, so that only the features
with the highest Fisher scores are included in the fol-
lowing analysis. This filtering of the image features
can be performed only after all image features are
computed. In the described software, Fisher scores
are computed before test samples are classified.

The feature vectors of given test samples are clas-
sified by a variation of nearest neighbor classifica-
tion. For feature vector x computed from a test im-
age, the distance dx,c of the image from a certain
class c is measured by Equation 1

dx,c =

∑
t∈Tc

[
∑|x|

f=1 Wf (xf − tf )2]p

|Tc|
(1)

where Tc is the training set of class c, t is a feature
vector from Tc, |x| is the length of the feature vector
x, xf is the value of image feature f in the vector
x, Wf is the Fisher score of feature f, |Tc| is the
number of training samples of class c, and p is the
exponent, which is set to -5. The -5 value has been
determined empirically, and is thoroughly discussed
in [5]. The distance between a feature vector and a
certain class is the mean of its weighted distances (to
the power of p) to all feature vectors of that class.
After the distances from sample x to all classes are
computed, the class that has the shortest distance
from the given sample is the classification result. A
detailed description and performance evaluation of
this method can be found in [5].

Image Similarity
Once a classifier is trained, test images can be
mapped into the image feature space. The classi-
fication of each feature vector provides a vector of
the size N (N is the total number of classes), such
that each entry c in the vector represents the simi-
larity of the feature vector to the class c, computed

by Equation 2,

Mf,c =
1

df,c ·
∑N

i=1
1

df,i

(2)

where Mf,c is the computed similarity of the feature
vector f to the class c, and df,c is the distance com-
puted by Equation 1. This assigns each image in
the test set with N values within the interval [0, 1],
representing its similarity to each class.

Averaging the similarity vectors of all images of
a certain class provides the similarities between that
class and any of the other classes in the dataset. Re-
peating this action for all classes results in a full set
of similarities between any pair of classes, which can
be presented in the form of a similarity matrix. The
similarity matrix contains two similarity values for
each pair of classes. I.e., the cell n, m is the similar-
ity value between class n to class m, and the cell m,n
is the similarity of class m to class n. Although these
two values are expected to be close, they are not ex-
pected to be identical due to the different images
used when comparing n to m and m to n. Averag-
ing the two values provides a single nominal distance
between each pair of classes, which can be used for
visualizing the class similarity in an intuitive fashion
using phylogenies (evolutionary trees) inferred auto-
matically by using the Phylip package [20], as will
be described in this paper.

Implementation
The software is written in C++, and uses the freely
available fftw [21] and libtiff libraries. The code is or-
ganized such that the feature extraction and pattern
recognition algorithms are compiled into a library
called “libimfit”, so that it can be easily integrated
into other software products. The wndchrm utility
does not have an integrated graphical user interface,
and all user interactions are performed using sim-
ple command-line instructions. The command line
is implemented by the wrapper file “wndchrm.cpp”,
which uses the functions implemented in libimfit.

To allow multi-platform support, the code uses
only standard C function calls and avoids using
machine-specific APIs. The code is compiled using
the standard gcc compiler, and can therefore be eas-
ily compiled under commonly used operating sys-
tems such as OS X, Linux, Unix, etc. Since the
source code is fully open, users may also compile it
using other compilers such as Borland C++. This



can make it easier for advanced users who wish to
modify the code for their specific needs or integrate
the source files with an existing application. For
compiling the code under MS-Windows without us-
ing gcc, it is advised to define the constant “WIN32”.
Windows users can also download and use a binary
executable file of wndchrm.

Many computer vision experts develop their soft-
ware using MATLAB, and a substantial amount of
code and utilities have been written using that tool.
Those who wish to integrate wndchrm into their ex-
isting MATLAB code can use MATLAB’s MEX files,
which are designed specifically for calling C (and
FORTRAN) functions from a MATLAB application.

An important advantage of implementing wnd-
chrm in C++ is speed, especially when compared
to MATLAB. For example, a MATLAB implemen-
tation of the smaller feature set (with 1025 image
features) is ∼4 times slower than the C++ imple-
mentation of the same set. This difference can be
highly significant when the dataset is large. An-
other matter that should be taken into considera-
tions when using MATLAB is licensing. This issue
can become crucial if the computation is performed
by clusters, where each node of each cluster requires
its own license.

Computational Complexity and Robust-
ness
An obvious downside of wndchrm is its computa-
tional complexity. Since wndchrm works by apply-
ing a chain of feature extraction algorithms, the the-
oretical computational complexity is equal to that of
the most expensive algorithm in the chain. This al-
gorithm is the Zernike feature extraction, which has
a factorial complexity in terms of its radial polyno-
mial coefficients. However, since many of the other
feature extraction algorithms in the chain are also
computationally intensive, a very large constant is
hidden inside the theoretical complexity of wndchrm.
Theoretical space complexity is linear to the image
size, with a large constant of 100MB used for com-
puting the Chebyshev-Fourier features.

Practically, the set of image features extracted
from the raw pixels and the several transforms re-
quire significant CPU resources. For example, the
large set of image features can be extracted from
one 256×256 image in ∼100 seconds using a system
with a 2.6GHZ AMD Opteron and 2GB of RAM.

Computing the smaller feature set requires ∼38 sec-
onds. The time required for processing a single im-
age increases linearly with the number of pixels, as
shown by Figure 1. However, since memory access
can become slower when large amounts of memory
are used, performance suffers considerably above a
certain image size. This can be evident by the sharp
decrease in response time when the image size gets
larger than 512×512 pixels. In these cases, users
may consider breaking very large images into tiles,
as will be described later in the paper. Since the im-
ages are processed sequentially, the overall response
time is linear to the number of images in the dataset.

In the sense of memory usage, wndchrm stores
the original image in the main memory along with
the 10 image transforms (when the larger feature set
is used). Since each pixel requires 11 bytes (eight
bytes for the intensity and one additional byte for
each of the three color channels), the total mem-
ory allocated for the image is 11×11×width×height
bytes. Computing the Chebyshev-Fourier features
requires additional 100MB. Once image features are
extracted from an image, all memory blocks are
freed, so that the memory used by wndchrm does
not grow when more images are processed.

The response time of computing the image fea-
tures can be reduced significantly by running several
instances of wndchrm, each on a different processor,
so that image features of different images are com-
puted simultaneously by different processors. To im-
plement this approach, the feature values of each im-
age are stored in a file, which is opened exclusively by
the instance of wndchrm that processes that image.
If the file already exists, wndchrm skips that image
and moves on to the next image in the dataset.

Another advantage of storing the values of the
content descriptors of each image in a separate file
is that if the image feature computation is stopped
for any reason before completion, restarting the pro-
cess does not require re-computing image features of
images that have already been processed. This as-
pect of feature extraction can be exploited if more
data become available. If new images are added to a
dataset that has already been computed, the user
can compute image features for the newly added
data without re-computing features for the existing
images. Activating this feature using the command-
line user interface is explained in the next section.

Wndchrm has been tested for robustness using a
dataset of ∼45,000 256×384 images, computed us-
ing four 2.6GHZ Opteron quad-core servers (total of



16 processors) with 2GB of RAM per core. The 16
wndchrm instances worked for 8 days with no failure,
and the memory allocated for each instance in the
last day was equal to the that of day one, indicating
on the absence of memory leaks.

Using the Command Line Utility
While the source code can be easily integrated into
existing or new software products, the software tool
described in this paper can be used in the form of
a command line utility. This allows researchers who
do not have programming skills to apply image anal-
ysis to their data.

Supervised machine learning classification con-
sists of two primary steps: Training a classifier with
a set of samples that are considered as “ground
truth” data, and testing the effectiveness of the clas-
sifier using a second set of samples such that none of
the samples of the test set are also used for training.

In order to train an image classifier, the first re-
quired task is computing image content descriptors
for all images in the dataset. These numeric values
describe the image content in a fashion that can later
be processed by pattern recognition methods. This
step is performed by using a simple command line
described below:
% wndchrm train [options] images feature file
where feature file is the resulting output file of the
image feature values, images is a path to the top
folder where the images of the dataset are stored,
and [options] are optional switches that can be spec-
ified by the user. The top folder should consist of
several sub-folders such that each sub-folder con-
tains images of a different class. The image formats
that are currently supported are TIFF and PPM.
Since the current version of wndchrm does not sup-
port three-dimensional image features, multi-sliced
tiffs are not supported at this point.

The single output file feature file contains fea-
tures for all classes in the dataset, so that there are
no separate files for the different classes. Therefore,
if a new class is added to the dataset, a new file needs
to be created using the same command line. To avoid
re-computing classes that have already been com-
puted, the user is advised to use the “-m” switch
that will be described later in this section.

Once all image content descriptors are computed,
the dataset can be tested for classification accuracy.
This can be done by using the following command

line:
% wndchrm test [options] feature file [report file]
where feature file is the output file of the train task,
and report file is an optional html file providing de-
tailed information regarding the performance of the
classifier. This instruction automatically splits the
images of each class into training and test images,
and the effectiveness of the classifier is determined
by the percentage of test images that are classified
correctly using the training images. The test images
are classified by computing the Fisher scores and as-
signing the image features with weights. The output
of this command is a confusion matrix, a similarity
matrix, and the accuracy of the classifier (the per-
centage of test images that were classified correctly).

After a classifier is trained and tested, an image
can be classified using the command line:
% wndchrm classify feature file image
where image can be a full path to the image being
classified, or a folder that contains multiple images.
If image points to a specific image file, the output
of this instruction is the predicted class in which the
image belongs, as well as a vector of similarity val-
ues to each of the classes in the dataset. If image
is a path to a folder, wndchrm classifies and prints
the predicted class and similarity vector for each im-
age in that folder, followed by a brief summary that
specifies the number of images that were classified
to each class and the average similarity vector.

Splitting the Dataset Into Training and Test Data

When testing an image classifier, the user can deter-
mine the number of images that are used for testing
and the number of images used for training. By de-
fault, 75% of the images of each class are used for
the training, and the remaining 25% are used for
testing. The user can change this ratio by using the
“-r” option. For example, “-r0.4” allocates 40% of
the images for testing, and 60% for training. The
allocation of the images to training and test sets is
performed in a random fashion. Users can repeat the
test with several different random splits in a single
command by specifying the “-n” option, followed by
the requested number of splits.

wndchrm also allows the user to set the number
of training images per class. This can be done using
the “-i” option, followed by the requested number
of training images per class. The remaining images
are used for testing, unless the “-j” option is used
in a similar fashion to set the number of test images



per class. It should be noted that “-i” and “-j” op-
tions override the “-r” value. If only one of these
options is specified, and “-r” is also used, the num-
ber of training or test images per class (the one that
is not determined by “-i” or “-j”) will be determined
by the “-r” value. We suggest using a fixed number
of training images per class (“-i”) when generating
similarity matrices.

Users can also use different feature files (gener-
ated by using wndchrm’s “train” command) for test-
ing and training, so that instead of splitting a single
dataset into training and test images, one dataset is
used entirely for training while a second dataset is
used for testing. This can be done by simply spec-
ifying two full paths to image feature files. If two
files are specified, the first will be used for training
and the second for testing.

Changing the Number of Image Features

Since wndchrm is a multi-purpose tool designed to
handle many different image datasets, it uses very
many different image features. However, for a given
dataset, not all image features are assumed to be
equally informative, and some of these features are
expected to represent noise. By default, only the
0.15 images features with the highest Fisher scores
are used. Users who wish to change this setting
can specify the “-f” option in the command line,
followed by the requested portion of the image fea-
tures to be used. Changing this value can affect
the performance of the image analysis since in some
datasets more image features may be informative,
so that using more features can contribute to the
discrimination between the classes. On the other
hand, in other datasets only few of the image fea-
tures provide discriminative information, and using
the non-informative features can add confusion and
degrade the efficacy of the analysis. Since image
features are weighed by their informativeness, the
effect of noisy features is expected to be lower than
the effect of more informative features. However, if
very many non-informative image features are used,
their large number can be weighed against their low
Fisher scores, leading to an undesirable degradation
of the performance. Therefore, the threshold for
non-informative features needs to be determined op-
erationally for each type of data, and the 0.15 thresh-
old is only a starting point.

Image Tiling

In some cases it may be useful to divide large images
of tissues or cells into several equal-sized tiles. For
example, it has been demonstrated that when each
image captures very many cells, dividing the image
into tiles can in some cases provide better analysis
than applying a first step of global-thresholding cell
segmentation [22]. Another advantage is that using
more tiles can improve the effectiveness of the Fisher
scores assigned to the image features, which are ex-
pected to improve as the size of the dataset gets
larger. Using wndchrm, this can be done by specify-
ing the “-t” option followed by the square root of the
desired number of tiles. For instance, “-t3” divides
each image into 3×3 tiles.

If segmentation of the subjects (e.g., cell segmen-
tation, bone segmentation, etc) is required, the user
has to apply a first step of segmentation using a des-
ignated utility. The output of the utility (the seg-
mented subjects) can be used as input for wndchrm,
rather than the original images.

Using Multiple Processors

As discussed earlier in the paper, response time for
computing the image features can be reduced sub-
stantially by using several wndchrm instances run-
ning simultaneously on different processors. In order
to use this feature, wndchrm should be started with
the “-m” option. This writes the computed feature
values of the images to .sig files, and checks for the
existence of these files to avoid recomputing image
features that have already been computed.

The purpose of the .sig files is to store the fea-
ture values of an image or image tile. I.e., wndchrm
creates a .sig file for each tile that it processes, so
that the number of .sig files of each image is equal
to the number of tiles each image is divided into
(one by default). If wndchrm finds an existing .sig
file, it avoids recomputing these features and moves
on to the next tile. Since the different instances of
wndchrm communicate using the .sig files, different
machines that have access to the same disk space can
effectively process the same dataset simultaneously
without wasting their CPU resources by processing
the same tiles.

To utilize this feature, the user should make sure
that the number of running instances of wndchrm is
equal to the number of available cores. For instance,
a quad-core machine will be most effective if four in-
stances of wndchrm run simultaneously. Since wnd-



chrm does not automatically determine the number
of available cores, the user should manually execute
the desired number of wndchrm instances (usually
by repeating the same command line).

In order to run wndchrm as a background pro-
cess, the user should add an ampersand (&) at the
end of the command line. This allows the user to
start several instances of wndchrm using the same
terminal window, and then close the window with-
out stopping these processes.

This feature can also be highly useful in cases
where data (classes or images) are being added to
an existing dataset. In these cases, using the “-m”
option will make wndchrm skip the images that have
already been computed, so that the response time
for generating the feature file that contains the new
data becomes significantly shorter.

Using the Large Feature Set

While the smaller feature set consists of 1025 fea-
tures, a user can use the larger feature set of 2659
image content descriptors. The larger set of image
features can be more informative, but also requires
the sacrifice of more computational resources, which
leads to a slower response time. The image features
extracted from each transform in the smaller and
larger feature sets are specified in Table 1.

In order to use the large feature set, the user
can use the “-l” option in the command line. For
example, the following command line will compute
the large set of image features:
% wndchrm train -l /path/to/images
/path/to/feature file.fit

Using Color Features

When color information is available, wndchrm can
be set to use color information by using the “-c” op-
tion in the command line. If this option is specified,
wndchrm first applies a color transform by classi-
fying each pixel into one of 16 color classes using
fuzzy logic-based modeling of the human perception
of colors [23], and then assigning each pixel with
an intensity value based on the relative wavelength
of the classified color, normalized to [0,255] interval.
I.e., pixels classified as red are assigned with 0, pixels
classified as violet are assigned with 255, and pixels
classified as other colors are assigned with values be-
tween 0 and 255, based on their relative wavelength.
After transforming the color image into a grayscale

matrix, all image features described in Table 1 are
extracted from this transform.

Additionally, each pixel of the raw image is sep-
arated into its Hue, Saturation, and Value compo-
nents, and the features listed in Table 1 are extracted
from the hue values. The same features, except from
edge features, object features, and Gabor filters are
computed on the Fourier and Chebyshev transforms
of the hue values. Although the hue component does
not necessarily represent the actual color that the
human eye perceives, it provides an objective quan-
tification of color based on physical measurements
performed by image acquisition machinery.

Other Command-line Options

In addition to the command line options described
above, the user can use the following options:

-w: Use simple Weighted Nearest Neighbor in-
stead of the WND method described by Equation 1.
If this option is used, the distance of a feature vec-
tor x from a certain class c is the shortest Euclidean
distance between the given sample and any training
sample of that class, as defined by Equation 3

dx,c = min
t∈Tc

[
|x|∑

f=1

Wf (xf − tf )2], (3)

where Tc is the training set of class c, t is a feature
vector from Tc, |x| is the length of the feature vector
x, xf is the value of image feature f in the feature
vector x, and Wf is the Fisher score of feature f.

-d: Used for downsampling the images to N per-
cents of their original size before computing the im-
age features. For instance, specifying “-d50” will
downsample the image by 50%. The default value for
this option is 100 (no downsampling). This option
can be used to accelerate the computation process
of datasets that contain large images.

-q: Normally, when testing the accuracy of a cer-
tain classifier, a correct prediction is when the clos-
est class is also the ground truth class of the tested
sample. However, in some cases a user might want
to consider a prediction as correct if one of the sev-
eral closest classes is the ground truth class. For
instance, if “-q5” is specified in the command line,
a prediction will be considered correct if one of the
closest five classes (as determined by the classifier)
is the ground truth class of the given sample. The
default value for this option is 1.



-N: Defines the number of classes. E.g., if a cer-
tain dataset has 100 different classes, and the option
“-N25” is specified in the command line, only the
first 25 classes (in an alphabetical order) will be in-
cluded in the analysis, and the last 75 classes will be
ignored. If this option is not specified, all classes in
the dataset are used.

-v: In some cases, users might want to export
or import the weights (determined using the Fisher
scores) that are assigned to each feature. This can
be done by using the “-v” options, followed by the
requested operation and the path to a weight vector
file. This gives the four following options:
-vw/path/to/weight vector file - exports the weights
to a file.
-vr/path/to/weight vector file - reads the weights
from a file.
-v-/path/to/weight vector file - compute the Fisher
scores and then subtract the values in the file from
the computed weights.
-v+/path/to/weight vector file - compute the Fisher
scores and then add the values in the file to the com-
puted weights.

-s: Eliminates the messages wndchrm prints to
the screen and making it less verbose when it runs.

-h: Shows brief instructions and few examples for
using wndchrm.

Reports

An important feature of wndchrm is the exposition
and visualization of the results in the form of reports
that can be distributed and viewed using a standard
web browser. This can be achieved by specifying
the “-p” option and a full path to an html file. For
example, a report file “report.html” is generated by
using the following command:
% wndchrm test -p /path/to/feature file
/path/to/report.html

Each report includes the classification accuracy,
confusion matrix, and similarity matrix of each ran-
dom split into training and test data, as well as the
averaged values for all splits. The number of splits
can be determined by using the “-n” option. For
instance, if the user specifies “-n5” in the command
line, the classifier will be tested five times such that
each run uses a different random split of the data
into training and test images. The report also in-
cludes the average accuracy, confusion matrix and

similarity matrix of the five runs. This feature can
be important when the size of the test set is small, so
that averaging different splits of the data can provide
a more accurate measurement of the performance of
the classifier. The report also lists the image features
that were used for the classification along with their
assigned Fisher scores, which provide information re-
garding the discriminative power of each feature.

In addition to similarity and confusion matrices,
the report also shows the classification of each indi-
vidual image. This includes the similarity values of
the image to each of the classes, and its most similar
training image. Specifying the most similar training
image for any test image can be useful for manually
checking the misclassified images and getting better
intuition about how the images are being classified.
In some cases it can also be used for finding flaws in
the dataset.

If the “-p” option is followed by a path to the
root folder of phylip 3.65 or 3.67 [20], the report
also features a phylogeny of the class similarities us-
ing the similarity values described earlier in the pa-
per. The image of the phylogeny is a postscript (.ps)
file, which is copied to the same folder of the report
file. If ImageMagick is also installed on the system,
a jpg image of the phylogeny will be generated and
added to the html page of the report. A phylogeny
can be useful, for instance, for reconstructing biolog-
ical pathways by visualizing the similarities between
images of different phenotypes [24]. Figure 2 shows
an example of a phylogeny that visualizes pheno-
type similarities of Drosophila cells with single gene
knockdowns.

In some cases users may want to export the val-
ues computed by wndchrm for further processing us-
ing external tools such as spreadsheets or statistical
analysis software. This can be achieved by specify-
ing the “+” character after the “-p” switch. If “+”
is specified, wndchrm exports the similarity and con-
fusion matrices in tsv (tab separated) format, which
is readable by most data processing tools. The files
are exported into a folder called “tsv”, created in
the folder of the report. If the user wishes to gen-
erate the tsv files and the phylogeny in the same
command, the path to phylip should follow the “+”
(e.g., -p+/path/to/phylip-3.67).

If the class names are numeric values, the re-
port also shows the Pearson correlation between the
actual and predicted values, such that a predicted
value is determined by interpolating the values of
the two nearest training samples that do not belong



to the same class, as described by Equation 4,

V = (V1
d1

+ V2
d2

)/( 1
d1

+ 1
d2

) (4)

where V is the resulting predicted value, and d1, d2

are the distances from the nearest two samples V1

and V2, such that V1 and V2 belong to two different
classes. The distances d1 and d2 are computed by
Equation 1.

Using the Source Code
All features described in the previous section can
be integrated into existing or newly developed soft-
ware products. A detailed example of how the func-
tion calls are used can be found in the file “wnd-
chrm.cpp”, which implements the command line
user interface.

The basic data structure of the code is the class
“TrainingSet”, which is implemented in the file
“TrainingSet.cpp”. This class can be used to com-
pute image features of a given dataset, test a dataset,
generate reports, and more. Generally, computing
image features for a given dataset of images can be
implemented by first creating an instance of the class
“TrainingSet”, calling the method “LoadFromDir”
to compute the image features of a dataset, and then
saving to a file as described by the following code:

#include "TrainingSet.h"

TrainingSet *ts;
ts=new TrainingSet();
ts->LoadFromDir();
ts->SaveToFile();

A dataset can be tested by first loading a file of
computed image features, splitting it into training
and test sets, normalizing the values, computing
Fisher scores using the training samples, and then
testing the classification accuracy using the samples
allocated for the test set. This sequence of opera-
tions is summarized by the following code:

TrainingSet *ts,*train,*test;
ts=new TrainingSet();
ts->ReadFromFile();
ts->split(train,test)
train->normalize();

train->SetFisherScores();
train->Test(test);

It is important that the “normalize()” method is
called before the Fisher scores are computed (using
“SetFisherScores”). The reason is that the different
image features have different ranges of values. In or-
der to use the differences between the values of each
feature as described in Equation 1, the values should
be normalized such that all image features have the
same range, which is set to [0,1]. The normalization
of a certain feature f of a specific image i is performed
using Equation 5

f̂i = [max(m|m ∈ Tf )−min(n|n ∈ Tf )] · (fi −min(n|n ∈ Tf )), (5)

where f̂i is the normalized value of the feature f of
image i, fi is the original feature value, and Tf is the
set of all values of the feature f, computed from all
images in the dataset.

In some cases, users might want to add to the
wndchrm utility more image features that are neces-
sary for their specific needs. This should be done by
modifying the file “signatures.cpp”, which is the im-
plementation of the class “signatures”. The class has
two higher-level methods for computing image fea-
tures: “ComputeGroups” for computing the larger
set of image features, and “compute” for computing
the smaller set. Functions that compute new image
features can be called from inside these methods,
and the computed values can be added simply by
using the “Add” method.

Results and Discussion
The efficacy of the proposed image analysis utility
was tested using iicbu-2008 benchmark suite of bio-
logical image datasets [25], which includes biological
images of different subjects such as organelles, cells,
tissues, and full organisms using different magnifica-
tions and different types of microscopy. The number
of classes, number of images, microscopy, image for-
mats, and image sizes are specified in Table 2.

This benchmark suite represents a broad range
of real-life biological imaging problems. The per-
formance of wndchrm on each of the datasets is
described by Figure 3. Comparing some of these
performance figures to the reported performance of
application-specific image classifiers shows that wnd-
chrm is favorably comparable, as can be learned from
Table 3. The informativeness of the different im-
age features and their importance for each of these



datasets is described in [5]. The benchmark suite of
iicbu-2008, as well as sample images of each dataset,
are available for free download at [26].

While wndchrm demonstrated convincing perfor-
mance on these benchmark datasets, it is important
to note that since there is no “typical” biological
experiment, there is also no defined scale for the ex-
pected accuracy of the classifier. The classification
accuracy is influenced by very many factors. These
include the number of classes and the number of im-
ages per class, but also parameters that are more
difficult to quantify such as the quality of the im-
ages, the consistency of the images within each class
and the differences between the classes. To improve
the performance of a classifier, one can add more
images to the dataset and increase the size of the
training set. Another way to improve the classifica-
tion accuracy is to manually curate low quality im-
ages or images that are inconsistent with the other
images in the class. Finally, highly similar classes
can be merged into one class, and then another clas-
sifier can be built to separate the images classified
into the merged class. This technique can improve
the classification accuracy because the second classi-
fier assigns higher Fisher scores to the features that
classify between these specific classes.

Many biological problems focus not only on the
classification of different sets of images, but also
on assessing the similarities between the different
classes. The similarities between the classes are re-
flected by the similarity table in the report of the
“test” command, and can be visualized using a phy-
logeny generated by the phylip package. For ex-
ample, Table 4 shows the similarity values between
different classes of C. elegans terminal bulb images,
such that each class of images was taken at a differ-
ent age of 0, 2, 4, 6, 8, 10, or 12 days. As the table
shows, the similarities between the different classes
correspond to the age differences. Visualizing these
data using a phylogeny provides an ordered list of
the different ages, shown by Figure 4. This order,
inferred automatically by wndchrm, is in agreement
with the chronological ages of the worms. The only
exception is day 0, in which the worms still grow,
and therefore expected to be significantly different
from adult worms. An interesting observation is the
large difference between day 8 and day 10. This
experiment demonstrates that wndchrm can auto-
matically deduce the continuos nature of aging by
measuring the similarities between images taken at
different ages. Example terminal bulb images as well

as a downloadable archive of the entire set can be
found at [26].

Another example uses automatically acquired
microscopy images of drosophila cells such that each
class contains images of the resulting phenotype of
a single gene knockdown. Table 5 shows the genes
and the similarity values that reflect the visual sim-
ilarities between the different phenotypes. This ex-
periment uses wndchrm in order to measure and
quantify phenotype similarities for the purpose of
reconstructing biological pathways and finding genes
that are part of the same cellular mechanisms. This
type of analysis can be used for finding similarities
between genes based on the phenotypes that they
produce, in contrast to finding similarities between
genes by analyzing their sequences using methods
such as BLAST. A similar analysis was used to pro-
duce the phylogeny of Figure 2. This dataset is pub-
licly available at [26].

Since wndchrm has been found useful for a rel-
atively wide range of biological imaging problems,
we believe that this utility can be useful for re-
searchers who wish to apply biological image analy-
sis to high content screening or other biological ex-
periments that involve high volumes of image data.
The source code can be integrated into other soft-
ware products using the source files or the “libimfit”
library, but is also wrapped as a command line util-
ity that can be easily used by researchers who have
basic computer skills and no previous knowledge in
programming. We therefore advise investigators to
first use wndchrm before taking the costly challenge
of developing application-specific image classifiers.

Future plans include the addition of three-
dimensional image features, and also analysis of the
images for finding the more informative areas and
differentiating them from other areas that produce
a weaker signal. Additionally, wndchrm will be able
to read images directly from OME image server, so
that all image formats supported by OME will be
also supported by wndchrm.

Full source code is available for free download
as part of OME [1, 2] software suite at [27], or as a
“tarball” at [28].

Conclusions
The availability of biological image acquisition sys-
tems and storage devices allows research that is
based on high content screening of vast pipelines



of biological images. However, while image analy-
sis has been becoming increasingly important in bi-
ological experiments, machine vision algorithms are
usually developed by pattern recognition and signal
processing experts, and biologists often do not have
the knowledge and resources to develop these algo-
rithms and software tools.

Here we present a utility that can be used by
experimental biologists, and has been shown to be
effective for various actual biological experiments us-
ing real-life biological data. While advanced users
can embed the code and libraries into their own
software tools, researchers who have basic computer
skills can easily use the application as a command
line utility. This can assist experimental biologists
in obtaining effective image analysis capabilities, yet
without the sacrifice involved in designing, develop-
ing, and testing new software tools.
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Figures
Figure 1 - Time required for processing a single image
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The time required for computing image features for a single image is linear to the number of pixels for
images no larger than 512×512 pixels.

Figure 2 - An example phylogeny
The phylogeny shows the visual similarities of 16 classes, where each class is a set of 25 images of Drosophila
cells with single gene knockdown. The gene classes are specified by their CG numbers. As can be learned



from the phylogeny, the resulting phenotypes when knocking down genes CG10895 and CG10873 (which
have a substrate-kinase relationship) are very similar to each other, while the phenotypes of gene CG12284
(cell death), CG3733 (unknown function) and untreated cells are different from the other cells.
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Figure 3 - Classification accuracy using iicbu-2008
As the graph shows, some of the image datasets were classified with very high accuracy, such as Pollen,
Binucleate, and Liver age (gender). Other datasets such as HeLa, Lymphoma and RNAi were classified in
accuracy of 80-85%, and the datasets Muscle Age, Terminal Bulb and Liver Aging (age) provided classifica-
tion accuracy of around 50%.
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Figure 4 - Phylogeny of the worm terminal bulb aging
The phylogeny that was automatically generated by wndchrm shows a class order that is in agreement with
the chronological ages.
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Tables
Table 1 - Image features

Image Features
Transform Radon Chebyshev Gabor Multi-scale First 4 Tamura Edge Object Zernike Haralick Chebyshev-

statistics histograms moments texture statistics statistics Fourier
Raw Pixels Both Both Both Both Both Both Both Both Both Both Both
FFT Both Both None Both Both Both None None Both Both Both
Chebyshev Both Large None Both Both Both None None Large Both Large
Wavelet Large Large None Both Both Both None None Large Both Large
FFT-Chebyshev Both Large None Both Both Both None None None Both None
FFT-Wavelet Large Large None Both Both Both None None None Both None
Edge Large Large None Large Large Large None None Large Large Large
Edge-Fourier Large Large None Large Large Large None None Large Large Large
Edge-Wavelet Large Large None Large Large Large None None Large Large Large
Chebyshev-FFT Large None None Large Large Large None None None Large None
Wavelet-FFT Large None None Large Large Large None None None Large None

The image features extracted from the different image transforms in the smaller and larger feature sets. For
each type of image feature extracted from each transform the table specifies whether these features are
extracted in the smaller feature set, larger feature set, both sets, or none of the sets.



Table 2 - Test Datasets
Test Datasets

Dataset # of classes # of images # Image format Microscopy
Pollen 7 630 25×25 8 bit TIFF Phase contrast
RNAi 10 200 1024×1024 16 bit TIFF Fluorescence
C. elegans muscle age 4 252 1600×1200 16 bit TIFF Fluorescence
Terminal bulb aging 7 970 300×300 16 bit TIFF DIC
Binucleate 2 40 1280×1024 16 bit TIFF Fluorescence
Lymphoma 3 375 1388×1040 32 bit TIFF (color) Brightfield
Liver age 18 1500 1388×1040 32 bit TIFF (color) Brightfield
2D HeLa 10 860 382×382 16 bit TIFF Fluorescence
CHO 5 340 512×382 16 bit TIFF Fluorescence

Number of classes, number of images, format, size and microscopy of the datasets.

Table 3 - Comparison of wndchrm accuracy to application-specific classifiers
Classification Accuracy

Dataset Benchmark Benchmark Accuracy of
algorithm accuracy (%) wndchrm (%)

Hela [29] 83 86
Pollen [30] 79 96
CHO [31] 87 95

HeLa dataset [32], consists of fluorescence microscopy images of HeLa cells using 10 different labels, Pollen
dataset [30], shows geometric features of pollen grains, and the CHO dataset [31], features fluorescence
microscopy images of different sub-cellular compartments.

Table 4 - Similarity matrix of the terminal bulb worm aging
Similarity Matrix

day 0 day 2 day 4 day 6 day 8 day 10 day 12
day 0 1.00 0.66 0.63 0.59 0.63 0.55 0.58
day 2 0.68 1.00 1.00 0.99 0.95 0.76 0.65
day 4 0.64 0.93 1.00 1.00 0.97 0.82 0.71
day 6 0.55 0.84 0.96 1.00 1.00 0.89 0.75
day 8 0.55 0.77 0.89 0.93 1.00 0.84 0.71
day 10 0.53 0.52 0.70 0.63 0.77 1.00 0.98
day 12 0.49 0.48 0.65 0.58 0.68 0.94 1.00

Each class consists of microscopy images of the terminal bulb of C. elegans nematodes taken at ages 0, 2,
4, 6, 8, 10, 12 days. As the table shows, the similarity values are higher for neighboring age groups. The
dataset can be downloaded at http://ome.grc.nia.nih.gov/iicbu2008/terminalbulb.tar.gz.

Table 5 - Similarity matrix of 10 different phenotypes of drosophila cells



Similarity Matrix

CG10873 CG12284 CG1258 CG17161 CG3733 CG3938 CG7922 CG8114 CG8222 CG9484

CG10873 1.00 0.74 0.85 0.84 0.96 0.96 0.83 0.89 0.92 0.90
CG12284 0.61 1.00 0.75 0.67 0.68 0.69 0.68 0.79 0.77 0.68
CG1258 0.82 0.82 1.00 0.94 0.87 0.83 0.73 0.92 0.92 0.90
CG17161 0.78 0.75 0.85 1.00 0.84 0.81 0.72 0.78 0.84 0.86
CG3733 0.97 0.72 0.91 0.90 1.00 0.95 0.81 0.90 0.94 0.88
CG3938 0.99 0.82 0.88 0.86 0.95 1.00 0.93 0.89 0.98 0.94
CG7922 0.93 0.80 0.80 0.80 0.89 0.96 1.00 0.78 0.92 0.92
CG8114 0.82 0.86 0.93 0.83 0.80 0.80 0.69 1.00 0.89 0.82
CG8222 0.92 0.88 0.96 0.90 0.94 0.93 0.86 0.95 1.00 0.91
CG9484 0.72 0.74 0.87 0.81 0.78 0.81 0.79 0.84 0.83 1.00

Each class is a set of light microscopy images (60x) of drosophila cells with single gene knockdowns. The
genes are the class names. The dataset is available at http://ome.grc.nia.nih.gov/iicbu2008/rnai.tar.gz.


