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ABSTRACT 

We present a method for automatic classification of 

biomedical images. The method exploits a machine vision 

approach to analyze image content based on a global set 

of image descriptors combined with image transforms. 

High dimensional feature spaces were used, and Fisher 

ranking was applied for weighting and truncating 

dimensions of the original feature space. Weighted 

nearest distance method was used as a basic classifier. 

The approach was applied to a variety of imaging 

problems including automatic classification of lymphoma 

malignancies and data from high-content screening 

experiments. The large degree of applicability of the 

proposed global feature set allows a search for patterns in 

a wide range of image types, across different domains. 

Importantly, we demonstrate certain capabilities of the 

machine vision approach in the biomedical domain. 
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1.  Introduction 
 

Automatic image classification is becoming a practical 

research tool in many traditional and emerging fields in 

contemporary bioinformatics.  Over the last few decades 

image analysis grew from a subjective measure into a 

quantitative discipline; morphological patterns observed 

in microscopic images can be processed with 

computational algorithms measuring image content with a 

numerical value [1, 2]. Pattern recognition and automatic 

image classification can be used as practical tools in 

multiple image-driven applications.   

 

In medical imaging [1, 7], computer vision methods [1-3] 

are emerging as a new tool bridging a gap between cancer 

diagnostics and pattern analysis. Existing research on 

cancer classification with machine vision methods focuses 

on individual cells, requiring segmentation of the pre-

selected ROIs. The reported comparisons between 

computational approach and pathology expert evaluations 

demonstrate favorable advantage of machine vision 

methods [11-14].  

 

 

In biology high-content screening (HCS) experiments 

with thousands of genes (phenotypes) result in high 

volumes of images reflecting the outcomes of the 

experiments.  Automatic annotation of the output of HCS 

experiments is an important application of machine-vision 

approaches in biology and other fields. 

 

Most techniques for automatic image classification, 

clustering and retrieval employ certain domain knowledge 

for constructing image descriptors.  Such domain-specific 

feature sets may include low-level image descriptors, such 

as color [8], texture [9], histograms [10], and more. 

 

Use of domain-specific features applies significant 

constraints on the range of applications – those image 

problems that do not meet domain criteria would not be a 

good fit for the constructed features. Biomedical 

applications remain an emerging area that presents many 

diverse problems and image modalities. Therefore, an 

approach that would work effectively for broader ranges 

 
Figure 1. General classification scheme with feature extraction. 

 



of applications remains an important task in the biological 

and biomedical domains.  Such an approach is suggested 

in this report. 

 

 

2.  Feature Set for Biomedical Images 
 

In image classification images are commonly represented 

through their quantitative content. An algorithm or set of 

algorithms is used to transform pixels into image features 

I →
Ψ

ψ , where I  and ψ  represent pixel and feature 

spaces. 

 

2.1 Domain-Specific and Global Features 

 

The choice of algorithms for coding images into features 

is usually predetermined [3] by the domain, scope of the 

problem, etc.  There is often no rationale provided for 

selecting domain-specific predefined algorithms for 

image description [3, 4]. 

 

The image diversity found in biomedical applications 

makes it impossible to pre-select all relevant types of 

image descriptors. Descriptors of a general nature require 

no domain knowledge and pose no ambiguity. We chose 

global features having a broad range of applicability, and 

then selected those having the most discriminative power 

for the classification task given.  No bias was applied 

when selecting the most relevant features for a particular 

problem. 

 

Fig. 1 demonstrates the concept of using general-scope 

descriptors in image classification. 

 

2.2 Global Features Used 

 

Fig. 2 illustrates the use of Chebyshev polynomials for 

describing image content.  Image approximation by 

Chebyshev polynomials has the form 
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Chebyshev polynomials ( ) ( )( )xnxTn acoscos=  deliver 

approximation of the desired order, because the 

coefficients satisfy the condition 

 
Figure 2. Chebyshev features are based on Chebushev expansion coefficients.  Example demonstrates how three different level approximants of the 

original RNAi screen image report on different aspects of image content. 

 

 
Figure 3. Image transforms and feature bank. 
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and therefore are characteristics of the image.  Fig. 3 

demonstrates how different orders of approximation 

report on different elements of image content. 

 

Our general feature bank contains three sections.  The 

polynomial section calculates statistics on Chebyshev, 

Chebyshev-Fourier, as well as Zernike polynomials.  

Another part of the collection computes textures, 

including Tamura family (coarseness, directionality and 

contrast), Haralick set of statistics on co-occurance 

matrices, and Gabor filters to detect directionality for a 

certain spectral range.  Radon transform histograms, 

Multi-scale histograms, First Four Comb moments, Edge 

statistics on image gradient, and blob statistics on 

thresholded grayscale images all belong to the third 

section of the feature bank.  The feature bank is described 

in more detail in [5, 6]. 

 

 

3.  Image Transforms and Their Meaning for 

Image Description 
 

The general feature bank takes image pixels and converts 

them into a feature vector, as shown in Fig. 3.  One aspect 

of our approach is that we use transforms to code images 

into feature space.  Transforms remap image pixels to 

another set of pixels that is characteristic of the image, yet 

has a different image pattern (see FFT, Fig. 4).  If several 

transforms are used, and k  is a sequential index of the 

transform, we denote this mapping as I →
Fk

fk. For 

compound transforms the mappings are jk

FF

fI
jk

|

][

→ . 

 

Fig. 4 demonstrates that an image and its transforms can 

exhibit different patterns (two transforms are shown: 

[ ]( )IFFTlog  and [ ]{ }IFFT Cheb ).  Transforms 

allow a more effective use of the feature bank by 

extracting more patterns related to the same image.  For 

example, an image might have no textural features 

(detected by the Tamura set), while its Fourier transform 

may exhibit them clearly.  In this example, the benefit of 

Tamura features is revealed by the Fourier transform. 

 

Raw pixels and pixels of image transforms (as well as 

the compound transforms shown in Fig. 3) are used as 

inputs to the feature bank.  Wavelets (symlets, level-1 

details), Chebyshev, Fourier and compound transforms 

were used to generate the final feature vector (1025 

numerical values per image).  

 

 

4.  Pattern Classification 
 

The entire set of features is computed, but only effective 

ones are used for the pattern search. The computed 

features undergo ranking [6], which reports discriminative 

power for different features, and identifies the weakest 

features that are likely to represent noise. The method for 

ranking utilizes the Fisher linear discriminant which 

assigns weights to features rewarding large between-class 

variation of data and penalizing data variation within the 

class. 

 

The weighted neighbor distances method [6] was used in 

this study as a basic classifier. The classifier in this study 

uses the 660 highest-weighted features to construct a 

"weighted feature space", with each image represented by 

a point. Euclidian distances between a test image and all 

of the training images in the different classes are then 

computed, averaging the distances to each class.  The test 

image is then assigned to the class with the lowest 

average distance to its training images. 

 

 

5.  Classification Results and Discussion 
 

We applied the proposed method to several imaging 

problems, including automatic cancer categorization and 

 
Figure 4. The image and its transforms exhibit absolutely different patterns, which makes efficient using the same filter bank on image and its transforms.  

Shown: image, its Fourier transform (absolute values), and a compound Fourier transform taken from Chebyshev transform. 

 



automatic phenotype classification resulting from HCS 

experiments.  

 

Lymphoma is a cancer affecting lymph nodes [7]. The 

Lymphoma set is a collection of images taken from slides 

with hematoxylin and eosin stained biopsy samples.  

Three types of malignancies are present in the set: 

Chronic Lymphotic Leukimia (CLL), Follicular 

Lymphoma (FL) cells, and Mantle Cell Lymphoma 

(MCL). Ten slides per malignancy type were used in the 

analysis.  Images were taken with an RGB camera on a 

Zeiss microscope using a 20x objective.  The microscope 

was calibrated with a Zeiss calibration slide.  AxioCam 

MRc5 camera was the imaging device; we used the full 

dynamic range of the camera (twelve bits per pixel) and 

stored it as double precision (sixteen bits) without 

distortions or reductions. No gamma-correction was used, 

and each channel was in the same dynamic range. 

 

We tiled the images down to a manageable size for 

our feature bank (each image was split to 30 tiles, each 

was 208x231 pixels). Representative tiles for three 

malignancies are shown in Fig. 5. The feature bank works 

with one-channel data, therefore analyzing the RGB set 

results in a larger feature space.  The separate RGB 

channels were also transformed into single grayscale 

images by the NTSC transform.  

 

The trained classifier assigns a class for each tile; the 

average of all 30 tiles is the score for the whole image. 

We made four random splits of the image pool into 

training/test partitions and define the classifier accuracy 

as the per-split average of the performance score. The 

class probability is reported as the average of all test 

images in the class.  Table I demonstrates per-class 

classification accuracy achieved for both image sets. The 

average score for the RGB set on five random data splits 

was 0.84 (plus/minus 0.03); while for the gray set the 

score was 0.79 (with deviation 0.15).  

 

We also pursued another dimension in our research, 

implementing the automatic classification on data for two 

high-content screening experiments (Binucleate and Lack 

of Centromere data sets, shown in Fig. 6). The classifier 

distinguished the binucleate cellular phenotype from 

normal mononucleate cells, reporting the classification 

score as 1.0.  The classifier performance was a notch 

lower for the Lack of Centromere data set, achieving an 

average classification rate of 0.84 (standard deviation 

0.05).  

 

 

6.  Conclusions 
 

We proposed a global set of image features suitable for 

description of a wide range of image modalities based on 

a machine vision approach.  The flexibility of the set is a 

result of a) use of a thorough bank of image 

characterization algorithms, and b) an unconventional 

way of applying the algorithms to image transforms. 

 

The approach was applied to several biomedical and 

biological problems including automatic classification of 

lymphoma malignancies and high-content screening 

experiments.  The method demonstrated good 

performance for each of the image classification 

problems, despite the range of image types.   

 

 
Figure 5.  Representative tiles for three lymphoma cases in the grayscale. Panel (a) corresponds to CLL, (b) is FL, and (c) is MCL. 

 

Figure 6. RNAi screening experiment: a) control cells, b) cells lacking 

centromere. 

 



Any application producing large amounts of images needs 

an automatic method for annotation/analysis, which is 

provided by the proposed method. The method has 

demonstrated multi-purpose capabilities for a range of 

biomedical problems. The impact of using a multi-

purpose classifier is significant: the approach can be 

applied to a wide range of image types across different 

biomedical domains. 
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Gray set (0.79 ± 0.15) 

True Class Reported Class 

 CLL FL MCL 

CLL 0.84 0.07 0.09 

FL 0.05 0.91 0.04 

MCL 0.19 0.20 0.61 

RGB set (0.84 ± 0.03) 

True Class Reported Class 

 CLL FL MCL 

CLL 0.86 0.06 0.08 

FL 0.06 0.90 0.04 

MCL 0.08 0.15 0.77 

 
Table I.  Per-class accuracy for two lymphoma sets. Classification 

rates are average of four random data splits into training/test partitions.  

 


