Dynamic Reuse of Subroutine Results

Lior Shamir *

Department of Computer Science, Michigan Tech, 1400 Townsend Dr., Houghton,
MI 49931, USA

Abstract

The paper discusses a concept of dynamic reuse of subroutine results. The described
technique uses a hardware mechanism that caches the address of the called subrou-
tine along with its arguments and returned value. When the same subroutine is
called again using the same arguments, the returned value can be accurately pre-
dicted without an actual execution of the subroutine. Although this approach can
be highly effective in some cases, it is limited to subroutines that do not use side ef-
fects, and use only by-value parameter passing. Since the proposed method requires
that both the user and the compiler be aware of this mechanism, it might be more
appropriate for specific computing-intensive applications, rather than standard all-
purpose programming.

Key words: Subroutine reuse, Code optimization, Instruction reuse

1 Introduction

In computer systems, prediction of the future can be used in order to enhance
performance [10, 13]. While at compile time only little can be learnt about the
true behavior of the program execution, the future can be predicted at run-
time based on previous events. This approach is commonly used to predict
branches [1, 13] and values [10].

Many of the recent microprocessor architectures use value prediction [10, 3, 8]
in order to increase parallelism. Since the variation of values being computed
during the execution of a single program is relatively low [9], some of the
values can be predicted at run-time before the actual execution of the compu-
tation. Value prediction techniques are used for reducing latencies caused by

* Corresponding author: Tel: (906) 487-2198 Fax: (906) 487-2933
Email address: 1shamir@mtu.edu (Lior Shamir).

Preprint submitted to Elsevier Science 21 June 2006

data dependencies [4], and branch prediction is used for reducing the latencies
caused by control dependencies.

Sodani and Sohi [14] presented a technique for eliminating the execution of in-
structions by dynamically reusing previously executed instructions. However,
information about previously executed instructions can be used not only for
eliminating the execution of a single instruction, but also for eliminating the
execution of some sequences of instructions. Kumar [7], presented a technique
that uses compiler generated cache for reusing function calls, and showed
that a substantial number of identical subroutine calls are executed during
the execution of a computer program. In this paper we propose a hardware
mechanism that eliminates subroutine calls by reusing the returned values of
previous calls.

2 Dynamic Subroutine Reuse Overview

The notion of subroutines, in their various forms of functions, procedures or
object methods, is widely used among software developers. A subroutine is
a basic building block of a program that is often executed more than once
during the program execution. A typical subroutine has a well-defined lean
interface with its calling program, which is a list of arguments and a returned
value. It is not seldom that subroutines are repeatedly executed with the ex-
act same argument values, and their returned values are therefore identical.
Since subroutines usually consume a relatively substantial amount of cycles,
eliminating the execution of subroutines that have an already-known returned
value can effectively increase performance. For instance, searching and ana-
lyzing genomic DNA sequences can be more efficient if values returned from
previous computations can be used, without re-executing the computation [5].
Earth simulator [11] has also introduced the problem of intensive calls to the
same subroutine [12]. Another example is massive execution of FFT transfor-
mations using computing-intensive machines such as Blue Gene |2, 6].

If the processor caches information regarding previous calls of a certain sub-
routine, it can compare the arguments of a given call to those of previous
calls. If the arguments are identical, the processor can use the returned value
computed by the previous identical call and continue without executing the
subroutine. However, even a good and costless reuse of subroutine returned
values cannot be applied to all subroutines. Subroutines that use side-effects
must be executed even if the returned value is available from a previous call. A
simple example is the subroutine Sleep(). Although the returned value of this
subroutine is known, a programmer using this subroutine probably expects
it to cause a delay, so its actual execution cannot be eliminated. However,
many subroutines do not use side-effects, and the elimination of even a small

portion of these calls can lead to a considerable improvement in the over-
all performance. Consider the following simple code that transforms an RGB
color image to an HSV color image.

for (y=0;y<image.height;y++)
for (x=0;x<image.width;x++)

color=image[x]|[y].rgb;
hsv=RGB2HSV (color.red,color.green,color.blue);
image|[x][y].-hsv=hsv;

}

In this case, most of the CPU cycles are consumed by the computationally
expensive subroutine RGB2HSV. Since many of the pixels have the same red,
green and blue values, a mechanism that reuses the returned value of the sub-
routine RGB2HSV can eliminate the execution of many of the subroutine calls
and significantly increase the performance.

As mentioned earlier, returned values of subroutines cannot always be reused
due to side-effects, by-reference parameter passing or 1/O operations. There-
fore, the proposed method requires that both the user and the compiler be
aware of this mechanism. When the user is convinced that her subroutine has
no side-effects and that its execution is safe to be eliminated at run-time, she
can define the subroutine in a fashion that supports subroutine returned value
reuse. For instance, a subroutine in C programming language might be as fol-
lows:

long __vpcall inc(long x)

{

return(x—++);

}

The __vpcall calling convention is an indication for the compiler that this
subroutine is defined as safe for dynamic returned value reuse. The compiler
should use this indication in order to generate a newly introduced vpjsr branch
instruction (that will be discussed thoroughly in Section 3) rather than the
regular jsr branch instruction in each call to that subroutine. The wpjsr in-
struction is an indication for the processor that the dynamic returned value
reuse mechanism (that will also be described in Section 3) should be enabled.
The requirement for compiler and user awareness of this mechanism is indeed
a major downside of the proposed method. Since the proposed mechanism
introduces some specific demands from the programmer, it might not be an
optimal solution for standard all-purpose programming. However, for some
specific computing-intensive tasks such as large-scale simulators, heavy multi-
media processing and bioinformatics, using such an approach can substantially

improve the overall performance as explained in Section 4.

3 Dynamic Subroutine Reuse Implementation
3.1 Instruction Set

A traditional call to a subroutine is usually performed as follows: After the
parameters are pushed into the stack, the jsr instruction is executed. The
return address is also pushed into the stack, and the called subroutine address
is copied to the PC. The proposed new branch instruction wvpjsr is similar
to the regular jsr, but performs several additional actions explained later in
this paper. In order to exit from a subroutine call, the instruction wvpret is
introduced.

The vpjsr instruction is encoded using 3 fields:

1. Opcode

2. Subroutine address

3. Total size of subroutine arguments (in bytes)

While the purpose of the first two fields is trivial, the third field stores the
total size (in bytes) of the subroutine arguments. For instance, a subroutine
that has two arguments, each of the size of 4 bytes, will have a total size of
arguments of 8 bytes. Similarly, the vpret instruction has an additional field
that stores the size (also in bytes) of its returned value. Since the size of the
arguments and returned values are known at compile time, compilers should
find no difficulties in setting the right values to these fields.

3.2 Components

The implementation of the proposed method consists of two hardware compo-
nents: the Previous Subroutine Call Table (PSCT), and the Subroutine Argu-
ment Vector (SAV). PSCT is a table that stores information regarding previous
subroutine calls. Each entry in the table refers to one subroutine call and has
6 fields as described below:

1. Address: Stores the subroutine address. This field is used as an identifier of
the subroutine.

2. Arguments: Stores the argument values used by the subroutine call.

3. Psize: The total size (in bytes) of the arguments.

4. Rsize: The total size (in bytes) of the returned value.

5. Returned Value: The value returned from the subroutine call.

6. Valid: Indicates whether the entry is used.

For instance, let S be a subroutine with two arguments: P1, which is of the
type byte, and P2, which is of the type unsigned short int. Now assume that the
subroutine § is called with the arguments PI1=1 and P2=1025. The value of
the field Arguments would be: 000000010000010000000001, where the leftmost
8 bits are the value of P and the next 16 bits are the value of P2. The value
of the field Psize is the total size of the arguments P and P2, which is equal
to 3. The value of Rsize is determined by the type of the returned value. For
instance, if the returned value of S is double, then the value of Rsize should
be 8, which is the size (in bytes) of a double precision variable.

The space allocated for the field Arguments is of a fixed size, while the actual
size of the arguments can be different for each subroutine. Fortunately, most
subroutines have a small number of arguments. For instance, most subroutines
of the standard C math library have only one argument, and the average total
size of arguments is just 9.73 bytes. Therefore, allocating a fixed number of 16
bytes as the size of the Arguments field should be enough for a wide range of
subroutines. If a certain architecture requires a larger total size of arguments,
the field Arguments can be set to a larger size with the sacrifice of increasing
the space required for the implementation of the proposed mechanism. How-
ever, in any case, subroutines with a total size of arguments that exceeds the
size of the field Arguments will not be able to use this mechanism and will be
executed normally, without reusing their returned values. Since the total size
of subroutine arguments is known at compile time, compilers can alert on any
attempt of using the proposed method with an illegal total size of arguments.

The purpose of the SAV is to provide a fast access to the content of the top
of the stack. The size of the SAV should be equal to the size of the Arguments
field in the PSCT. The SAV is maintained by pushing and popping any value
that is pushed or popped from the stack. I.e., when a word W is pushed into
the stack, the SAV is left shifted and the value of Wis copied to the right cells
of the stack vector. When a word is popped from the stack, the SAV is right
shifted.

3.3 Dynamic Subroutine Reuse Algorithm

The proposed vpjsr and vpret instructions are similar to the traditional jsr and
ret instructions, but with several exceptions. The next paragraphs describe the
simple algorithms performed when a subroutine is called (using vpjsr) and ex-
its (using vpret).

1. Subroutine call: A subroutine call using the wvpjsr instruction is basically
similar to the execution of the regular jsr instruction. However, when vpjsr is
executed, an associative lookup in the PSCT is performed in order to find a

previous call to the same subroutine with the same argument values. Such a
previous call is found if there is a valid entry in the PSCT with an address field
equal to the address of the called subroutine, and an arguments field equal to
the SAV. Since the size of the arguments field is fixed, it might be greater than
the total size of arguments of the subroutine. Therefore, the field Psize is used
in order to ignore the irrelevant bits of the arguments field. For instance, if the
value of Psize is equal to 4, only the first 4 bytes of the SAV are compared to
the first 4 bytes of the arguments field of the PSCT entry.

Since the SAV is a reflection of the top of the stack, comparing the SAV to
the field arguments of a PSCT entry actually compares the values at the top
of the stack to the values that were at the top of the stack when the PSCT
entry was created. If the values are identical, the arguments values that were
used in that previous call are identical to the argument values that are about
to be used. In this case, the subroutine is not executed and the returned value
is simply taken from the returned value field of the PSCT entry.

If no such entry is found in the PSCT, a new entry is created. The value of
the address field in this entry is the address of the subroutine, and the value
of the SAV is copied to the arguments field. At this time, the value of the
field wvalid is 0. Since the number of entries in the PSCT is finite, a certain
replacement policy is required. Replacement policies such as FIFO and LRU
can be applied for this task.

2. Return from subroutine: Upon return from the subroutine (using the vpret
instruction), the returned value of the subroutine call is copied to the returned
value field of the PSCT entry, and the wvalid field of that entry is set.

Since associative lookup is performed each time wvpjsr is executed, it may be
that the time required for completing the lookup is greater than the actual time
needed for executing the subroutine. Therefore, programmers should avoid us-
ing the __vpcall calling convention for computationally inexpensive subroutine.
The execution time of a subroutine can be changed at runtime, and is depen-
dent on the values of the arguments, global variables, etc. Practically, in most
cases programmers can estimate the computational cost of the average exe-
cution of a given subroutine. For instance, a short subroutine that does not
include loops and does not call other subroutines is expected to be computa-
tionally inexpensive. Otherwise, execution time is expected to be shortened if
the proposed mechanism is used.

4 Performance Evaluation

The proposed method was experimented by modifying the benchmark pro-
grams such that calls to subroutines with a total size of arguments less than
or equal to 16 bytes were replaced with other subroutines doing the same
thing. For instance, calls to the function RGB2HSV(x) were replaced by calls
to the subroutine my_RGB2HSV(z) described below:

HSV my RGB2HSV(RGB x)
{
unsigned char parameters[SIZE_OF_PARAMETERS];
unsigned char ret_val_buffer[SIZE_OF_RETURNED_VALUE|;
HSV returned_value;
memcpy (parameters, &x, sizeof(x));
if (psct.sub_call((void *)my_RGB2HSV ,parameters, sizeof(x),sizeof(HSV),ret_val_buffer))
return((HSV)ret_val_buffer);

returned_value=RGB2HSV (x);

memcpy (ret_val buffer, &returned_value,sizeof(returned_value));
psct.set_ret_value((void *)my RGB2HSV parameters, sizeof(HSV),ret_val buffer);
return(returned_value);

}

The psct object (mentioned in lines 7 and 11) is a software simulation of the
PSCT component described in Section 3, so that the modification provides
a software simulation of the mechanism and allows counting the number of
subroutines that were executed or dynamically eliminated. The results of using
a PSCT with 256 entries are described in Fig. 1. In this experiment, each entry
in the PSCT has 16 bytes allocated for subroutine arguments and 8 bytes for
the returned value, and the FIFO replacement policy is applied.

In order to maintain the correctness of programs, the experiment included
only math library subroutines, which are known to be side-effect free. The
modification performed a simulation of the PSCT, by comparing the argument
values to previous calls.

The overall speedup when using the proposed method is provided in Fig. 2.

Although the results provided in Fig. 2 do not introduce a tremendous im-
provement, the proposed mechanism can be highly effective in some common
tasks of processing many repetitive data, and in some cases the performance
improvement can be dramatic. In order to demonstrate the efficacy of the
proposed method, we examined the behavior of the trivial code described in

O Criginal number of
subroutine calls
W Mumber of subroutine
Subroutine callz when using the
Calls propogzed method
450k
400k +——
350k 1—
300k
250k 1—
200k 1—
150k 4—
100k 14—
S0k 1
|:| |_|_ | —

FT.mesa 1¥3.art 186.crafty 183.quake 141apsi
Benchmarks

Fig. 1. Number of actual calls to math library subroutines with and without using
the proposed method

Section 2 that transforms an image from RGB color space to HSV color space.
Table 1 presents the results of running the code described above on a standard
525 x 320 true color image.

When using the same approach with a 256 color image, the increase in per-
formance becomes extreme as described in Table 2. Since there are only 256
possible RGB vectors in the given image, there is no need to call RGB2HSV
more than 256 times. Therefore, the proposed method allows this toy program
to eliminate all but 256 calls to RGB2HSV, and the total number of calls is
constant (at 256) and independent of the number of pixels. This approach
can be used to enhance the performance of specific computing-intensive ap-
plications such as large-scale simulators, bioinformatics, image processing and
multimedia, where repetitive calls to subroutines are not rare, and in many
cases consume a substantial portion of the total CPU resources.

Speedup [%)
14

12
10

1 —
1FT.mesa 173.art 186.crafty 183 quake 141apsi

L N N u
i

Benchmarks

Fig. 2. Overall speedup

Table 1
Percentage of eliminated subroutine calls when converting a 525 x 320 true color

image from RGB to HSV

PSCT number of number of percentage of

entries eliminated calls executed calls eliminated calls

2 69800 98200 41.5
3 76645 91355 45.6
4 80833 87167 48.1
10 91862 76138 54.6
20 98174 69286 08.4
30 103990 64010 61.8
50 109499 58501 65.1
100 115825 52175 69

256 131262 36738 78.1

5 Conclusion

Dynamic elimination of repetitive identical subroutine calls can improve per-
formance. The improvement is dependent on the behavior of program at run-
time, but also on the size of the PSCT and the entries replacement policy. More
entries in the PSCT allow storing more previous subroutine calls, and there-
fore increase the efficacy of this mechanism. The downside of this technique
is that compilers and users should be aware of this mechanism and support

Table 2
Percentage of eliminated subroutine calls when converting a 525 x 320 256-color
image from RGB to HSV

PSCT number of number of percentage of

entries eliminated calls executed calls eliminated calls

2 87733 85267 49.2
3 95466 72534 56.8
4 102212 65788 60.8
10 120602 47398 71.7
20 132309 35691 78.7
30 138376 29264 82.3
50 145707 22293 86.7
100 158643 9357 94.4
256 167744 256 99.85

it. The presented method can be applied only to subroutines that do not use
by-reference parameter passing, side-effects, or perform I/O operations. Im-
proper use of the technique might undesirably eliminate subroutine calls and
can lead to an unpredicted behavior of the computer program. Therefore, the
proposed approach might be more appropriate for specific computing-intensive
applications, rather than standard all-purpose programming.

References

1]
2]

3]

[4]
[5]

[6]

A.N. Eden and T. Mudge. The YAGS branch prediction scheme, Proc.
MICRO-31 (Dallas, TX, 1998) 69-77.

M. Eleftheriou, B. Fitch, A. Rayshubskiy, T.J. Christopher, R. Germain,
Performance Measurements of the 3D FFT on the Blue Gene/L Super-
computer, Proc. Intl. EuroPar Conf. (Lisbon, 2005) 795-803.

F. Gabbay. Speculative execution based on value prediction, FE Depart-
ment Technical Report 1080, Technion — Israel Institute of Technology,
Haifa, Israel, 1996.

J.L. Hennessy and D.A. Patterson. Computer Architecture: A Quantita-
tive Approach, Second Edition, (Morgan Kaufmann Publishers, 1996).
X. Huang, L. Ye, H. Choul, I. Yang and K. Chao. Efficient combination of
multiple word models for improved sequence comparison, Bioinformatics
20(16) (2004) 2529-2533.

IBM Journal of Research and Development 49(2/3) (2005) Special Issue
on Blue Gene.

10

[7] K.V. Seshu Kumar. Value reuse optimization: reuse of evaluated math
library function calls through compiler generated cache, ACM SIGPLAN
Notices 38(8) (2003) 60-66.

[8] M.H. Lipasti and J.P. Shen, Exceeding the dataflow limit via value pre-
diction, Proc. MICRO-29 (IEEE, Paris, 1996) 226237.

[9] M.H. Lipasti and J.P. Shen. The performance potential of value and de-
pendence prediction, Proc. EUROPAR-97 (Springer, Passau, 1997) 1043
1052.

[10] M.H. Lipasti, C.B. Wikerson and J.P. Shen. Value locality and load value
prediction, Proc. ASPLOS-7 (Cambridge, MA, 1996) 138-147.

[11] D. Normile. Earth Simulator’ Puts Japan on the Cutting Edge, Science
295 (2002) 1631-1633.

[12] A. Sinya et al., Study of the Standard Model of Elementary Particles
on the Lattice with the Earth Simulator, Annual Report of the Earth
Simulator Center (2003) 175-179.

[13] J.E. Smith. A study of branch prediction strategies, Proc. 8th Annual
Symp. on Computer Architecture (Minneapolis, MN, 1981) 135-148.

[14] 8. A. Sodani and G. S. Sohi. Dynamic instruction reuse, Proc. ISCA-25
(Barcelona, 1998) 194-205.

11

