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Current research in the area of automatic visual object recognition heavily relies on testing the performance of new algorithms by
using benchmark datasets. Such datasets can be based on standardized datasets collected systematically in a controlled environment
(e.g., COIL-20), as well benchmarks compiled by collecting images from various sources, normally via the World Wide Web (e.g.,
Caltech 101). Here we test bias in benchmark datasets by separating a small area from each image such that the area is seemingly
blank, and too small to allow manual recognition of the object. The method can be used to detect the existence of dataset bias
in a single object recognition dataset, and compare the bias to other datasets. The results show that all tested datasets allowed
classification accuracy higher than mere chance by using the small images, although the sub-images did not contain any visually
interpretable information. That shows that the consistency of the images within the different classes of object recognition datasets
can allow classifying the images even by algorithms that do not recognize objects. Among the tested datasets PASCAL is the dataset
with the lowest observed bias, while datasets acquired in a controlled environment such as COIL-20, COIL-100, and NEC Animals
are more vulnerable to bias, and can be classified by the sub-images with accuracy far higher than mere chance.

Index Terms—Object recognition, performance evaluation, benchmarks, validation, computer vision, pattern recognition.

I. INTRODUCTION

As the field of computer vision has been growing consis-
tently, automatic visual object recognition has been becoming
an increasingly important topic of study. Numerous methods
for automatic object recognition have been proposed and
implemented in the past few decades, and efforts are still being
continued. To assess new object recognition algorithms and
compare their performance to previously proposed methods,
it is common to use pre-defined publicly available object
recognition benchmarks, allowing a standard comparison of
the efficacy of different algorithms [1]. Examples of some
commonly used visual object recognition benchmarks include
Caltech 101 [2], Caltech 256 [3], COIL-20 [4], COIL-100
[5], Tiny [6], LabelMe [7], Fifteen Scenes [8], SUN2012 [9],
ImageNet [10], PASCAL [11], and more. Since benchmarks
have become critical in the development of object recognition
methods, it is important to assess their ability to reflect real-
world object recognition.

Ideally, an algorithm that demonstrates accuracy in classify-
ing images contained in object recognition benchmark datasets
should also be able to be equally efficient in recognizing real-
world objects. However, recent studies have shown that some
of the commonly used datasets are biased [12], [13], [14],
and do not necessarily provide a reliable tool to measure
the ability of algorithms to automatically recognize objects
in a real-world environment. That can be evident from the
observation that when using training and test data from two
different datasets the performance is significantly lower than
the performance achieved by separating the same dataset into
training and test sets [12]. That observation is counterintuitive
to most machine learning systems, in which the classification
accuracy is expected to increase as the number of training
samples gets higher [15].

Another set of experiments showed dataset bias when the
training and test samples are taken from the same dataset, com-
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pared to the recognition accuracy when the training images
are taken from one dataset and the test images are taken from
another dataset [13]. Such experiments are limited to image
classes that are common across several datasets such as car and
cow. Combining several datasets in a single experiment can
be done in a leave-one-dataset-out fashion, leaving one dataset
for testing, to avoid dataset bias when using heterogeneous
datasets [14].

The use of natural images for the purpose of object recog-
nition has been challenged by evidence showing that these
datasets are biased, and might not be fully reliable as tools for
testing the real-world accuracy of object recognition methods
[16]. For instance, high-level features such as the size of the
object can lead to false detections, and the false detection
rate of objects that are too small or too large varies between
different object classes [16]. On the other hand, it has been
shown that state-of-the-art object recognition methods applied
to benchmarks such as Caltech 101 [2] can be outperformed
by using merely global low-level features that do not aim at
identifying objects [17]. These results demonstrate the exis-
tence of dominant low-level features leading to classification
accuracy higher than the accuracy achieved in a real-world
setting [17].

Low-level features have been identified as a source of bias
that can have substantial impact on the validity of quantitative
results produced using benchmark datasets. For instance, it has
been shown that many face recognition benchmarks can be
identified with accuracy far higher than random, sometimes
even close to 100%, even if the part of the image being
analyzed has no face or hair features in it [18]. That is, by
analyzing a seemingly blank background area of the face
image, the image can be identified and correctly matched
with the gallery face images of the same person [18]. These
experiments show that high classification accuracy of face
recognition datasets can be achieved without recognizing faces
[18].

Another example is the field of bioimage informatics, where
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removing cell areas from the microscopy images used in
machine learning experiments provided results very similar to
experiments done with the original images [19], demonstrating
that the performance of computer vision methods reported in
the literature could be biased, and driven by artifacts of the
image acquisition process rather than identifiable biological
features of the cells [19]. In the field of automatic speech
recognition, separating one second of silence from the be-
ginning of each speech sample provided very high accuracy
of accent classification, although no accent information was
contained in the samples [20].

In this paper we examine some common object recognition
datasets and test their ability to provide a reliable assessment
of the performance of visual object recognition algorithms.
The experiments are based on separating a small seemingly
uninformative area from each image such that the image
content in that area is insufficient for human recognition of
the object. Ability of the algorithm to recognize the objects
using the small blank sub-images in accuracy higher than mere
chance is an indication that the computer analysis outperforms
human identification, which is not expected in automatic object
recognition and indicates that the computer uses other visual
aspects of the image for the classification rather than the visual
information of the objects. These low level features can be
difficult to sense by the unaided human eye, but their presence
can be used by machine vision algorithms to distinguish
between the object classes, and therefore the object recognition
accuracy of these datasets might not reflect the actual ability
of the object recognition algorithm to detect objects in a real-
world environment.

II. DATA

We used image data taken from nine commonly used visual
object recognition benchmarks: COIL-20 [4], COIL-100 [5],
NEC Animals [21], Caltech 101 [2], Microsoft Research Cam-
bridge Object Recognition Image Database (MSRCORID)
[22], SUN2012 [9], PASCAL [11], [23], ImageNet [10], [24]
Large Scale Visual Recognition Challenge (ILSVRC2011),
and Fifteen Scenes [8]. From each image we separated a small
20×20 pixel area from the center of the image.

The reason for using 20×20 pixel areas is that these small
sub-images do not contain information that is sufficient to
identify the object visually. Effective machine vision for object
recognition is expected to provide the same output as the
human vision given the same input data. Using the 20×20
images, the human vision is not able to recognize the imaged
objects, and therefore differences between the performance of
machine and human vision can indicate that the performance
of the machine vision is not based on the recognition of
the object, but instead uses other information contained in
the image. If the human vision outperforms machine vision
in object recognition we can reasonably conclude that the
machine vision algorithm does not match the performance of
the brain in that highly complex cognitive task. However, if
computer vision can recognize objects that the human vision
cannot, it is required to investigate whether the computer uses
some patterns in the data that assist it to classify the images,
rather than actually identifying the objects in them.

Fig. 1. Example 20×20 images separated from COIL-20 images.

Fig. 3. Example 20×20 images separated from images of the Fifteen Scenes
dataset.

Figure 1 shows examples of small 20×20 areas separated
from images of each of the 20 classes of COIL-20 displayed in
Figure 2. The position of each sub-image displayed in Figure 1
corresponds to the position of the full image in Figure 2. As
can be seen in the figure, it is not possible to identify the object
from these small sub-images, and in some cases they seem
blank and identical to the small areas separated from images
of other object classes. For instance, the top right image is
an image of a small bowl, but in the 20×20 sub-image no
information that implies that the imaged object is a bowl is
present, and visual inspection of the image does not provide
information related to a bowl. The bottom right image is taken
from an image of a cup, but the sub-image does not contain
visual information sufficient to identify a cup.

Figure 3 shows 20×20 windows separated from one image
in each class of the Fifteen Scene dataset. Like with COIL-20,
the small images do not contain visual information that can
identify the scene. For instance, the top left image is an image
of a bedroom, the image next to it is an image of a suburb, and
the third image in that row is an image of industry, separated
from the original images displayed in Figure 4. Some of the
sub images are seemingly blank, and contain no interpretable
information.

The samples of each dataset were separated to training
and test sets as specified in Table I, and each classification
experiment was repeated 20 times such that in each run
different images were randomly allocated to training and test
sets. For the SUN2012 dataset only classes with 64 or more
samples were used, which reduced the number of categories
to 39 classes that had 64 or more images.
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Fig. 2. Example images taken from COIL-20, from which the example sub images of Figure 1 were separated.

III. IMAGE ANALYSIS METHOD

The image analysis method used in the experiments was
Wndchrm [25], [18], [26], [27], [28]. Wndchrm utilizes several
different image analysis algorithms to extract from each image
a comprehensive set of numerical image content descriptors.

In summary, Wndchrm computes a total of 2885 numerical
image content descriptors from each image which include tex-
tures [29], [30], edges [31], shapes [26], statistical distribution
of the pixel intensities [32], polynomial decomposition of the
image [33], and fractal features [34].

These features are computed from the raw pixels, but also

from the image transforms and multi-order transforms. The
image transforms include the Fourier, Chebyshev, Wavelet,
and the edge-magnitude transform, as well as combinations of
multi-order transforms [25], [28], [18], [26]. The combinations
of transforms include the Fourier transform of the Chebyshev
transform, the wavelet transform of the Chebyshev transform,
the Fourier transform of the wavelet transform, the wavelet
transform of the Fourier transform, the Chebyshev transform
of the Fourier transform, and the Fourier and Chebyshev
transforms of the edge magnitude transform [25], [28], [18],
[26].

After the numerical image content descriptors are computed,
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Fig. 4. Examples of full images taken from the the Fifteen Scenes dataset from which the 20×20 example sub images displayed in Figure 3 were separated.

TABLE I
THE NUMBER OF TRAINING AND TEST SAMPLES PER CLASS USED IN THE

DIFFERENT OBJECT RECOGNITION DATASETS. EACH EXPERIMENT WAS
REPEATED 20 TIMES SUCH THAT IN EACH RUN DIFFERENT IMAGES WERE

RANDOMLY ALLOCATED TO TRAINING AND TEST SETS

Dataset # classes # Training samples # Test samples
per class per class

Fifteen Scenes 15 60 12

Caltech 101 101 26 4

COIL-20 20 60 12

COIL-100 100 60 12

MSRCORID 20 60 8

ImageNet 689 60 12

NEC Animals 60 60 5

SUN2012 42 60 4

PASCAL 19 60 12

each numerical image content descriptor is assigned with its
Fisher discriminant score [35], computed using the training
samples. The numerical image content descriptors are then
ranked based on their Fisher discriminant scores, and the
85% of the least informative features with the lowest Fisher
scores are rejected from the analysis [25], [27], [18], [28].
The images are then classified using the Weighted Nearest
Neighbor scheme such that the Fisher discriminant scores are
used as weights.

The comprehensive set of numerical image content de-
scriptors makes the algorithm informative for different types
of visual content, and it has been tested and demonstrated
efficacy in several different domains [36], [37], [38], [39], [40],
[41]. A detailed description of the method and comprehensive
performance analysis is available in [25], [18], [26], [42]. The
source code of the method is publicly available, as well as
binaries for MS-Windows [43].
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TABLE II
CLASSIFICATION ACCURACY ACHIEVED WHEN USING 20×20

SUB-IMAGES SEPARATED FROM THE ORIGINAL IMAGES

Dataset Mere chance Sub-image Improvement over
accuracy (%) accuracy (%) mere chance (%)

Fifteen Scenes 6.7 27.5 310

Caltech 101 1 4.5 350

MSRCORID 5 21.6 332

ImageNet 0.15 0.69 360

SUN2012 2.6 7.2 177

PASCAL 5.3 7.6 43

COIL-20 5 81.1 1522

COIL-100 1 70.6 6960

NEC Animals 1.7 33.7 1882

IV. RESULTS

The method described in Section III was applied to the
modified object recognition benchmark datasets described in
Section II. Each experiment was run 20 times such that in
each run the images were randomly allocated to training
and test sets based on the numbers specified in Table I.
The classification accuracy achieved with the modified object
recognition datasets are specified in Table II.

As the table shows, in all cases the classification accuracy
was higher than the accuracy achieved by mere chance,
showing that the objects could be identified by images in
which no information that can visually identify the object is
present. The dataset that has the lowest classification accuracy
of the sub-images compared to random accuracy is PASCAL,
with classification accuracy of ∼7.6% compared to 5.3% of
random classification accuracy.

The experimental results also show that the standardized
datasets COIL-20, COIL-100, and NEC Animals show much
higher classification accuracy compared to the datasets com-
piled from many different sources, and contain images that
were not necessarily taken for the purpose of developing object
recognition systems. The most extreme example is COIL-100,
where random guessing accuracy of 1% was increased by
almost 7000% to ∼70.6% when using just a 20×20 pixel
area of each original image. These results show that image
features that are irrelevant for object recognition but can
differentiate between the image classes are more dominant
in object recognition benchmarks acquired in a controlled
fashion, and are less dominant when the images are collected
from various sources.

The results also show that automatic classification using
the sub-images of Fifteen Scenes, Caltech 101, ImageNet
and MSRCORID has similar improvement over mere chance.
COIL-20 and NEC Animals also have a similar improvement
of the classification accuracy compared to mere chance accu-
racy, and that improvement is much higher compared to the
datasets compiled from the internet. PASCAL and SUN2012
have the mildest improvement when classified with the sub-
images, showing that the information in the sub-images is less
consistent within the classes of these datasets, and therefore
does not allow achieving high classification accuracy by using

Fig. 5. Example 20×20 images separated from the bottom right corner of
the first five objects of NEC Animals dataset

merely small parts of the original images.
In COIL-20 and COIL-100 the background has been re-

moved, but in NEC Animals the standardized background is
present in the images. That allows repeating the experiment
such that the small 20×20 sub-image is taken from the back-
ground, and does not contain any foreground pixels. Figure 5
shows the background images of the first five images of the
first five objects, such that the 20×20 sub images are taken
from the bottom right corner of each original image.

As the figure shows, each object is represented in the dataset
by a sub-image that does not contain any information about
the object, and since the background has been standardized
all images look similar to the unaided human eye. However,
applying the image classifier described in Section III to that
dataset provided classification accuracy of ∼33.7%, clearly
higher than the ∼1.7% of mere chance accuracy. When using
200×200 areas taken from the bottom right corner of each
image the images in the new dataset were also similar to
each other and did not contain foreground pixels, but the
classification accuracy was elevated to 45.5%. These results
show that the images in the dataset contain artifacts that allow
the recognition of the object regardless of the apparent visual
content of the images. While contextual information can be
used to recognize objects [44], the information that allowed
the recognition is clearly not contextual, as no contextual
information was included in these sub images.

In another experiment we separated a 20×20 pixel area
from each image such that the 20×20 window was selected
randomly. In the case of COIL-20 and COIL-100, the area
was selected such that it did not contain just black pixels
with intensity value set to 0. The results of the experiment
are displayed in Table III.

As the table shows, there was no substantial change when
the 20×20 regions were selected randomly. Some higher
difference is observed in the case of COIL-20 and COIL-100,
although the classification accuracy is still far higher than mere
chance.

When the size of the sub-image increases, it is reasonable
to assume that the classification accuracy increases as more
information is contained in the sub-images. Figure 6 shows the
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TABLE III
CLASSIFICATION ACCURACY ACHIEVED WHEN USING 20×20

SUB-IMAGES SEPARATED FROM RANDOM LOCATIONS IN THE ORIGINAL
IMAGES

Dataset Accuracy (%)

Fifteen Scenes 27.7

Caltech 101 4.8

MSRCORID 21.3

ImageNet 0.69

SUN2012 7.1

PASCAL 7.9

COIL-20 75.6

COIL-100 63.5

NEC Animals 31.5
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Fig. 6. The classification accuracy of the different datasets when using
different sizes of sub-images separated from each image

changes in the classification accuracy of the different datasets
when the sub-images are of different sizes. As the figure
shows, the classification accuracy indeed increases when the
sub-image gets larger, but the increase is weaker in controlled
datasets such as COIL-20 and COIL-100, compared to datasets
of images collected from the internet such as Caltech 101 and
Fifteen Scenes. A possible explanation is that the controlled
datasets can be classified by artifacts of the image acquisition
as discusses in Section VI, and therefore increasing the size
of the sub-image does not necessarily contributes substantial
information that was not included in the smaller window. The
classification of images collected from the internet, on the
other hand, can be improved by adding more information that
can assist in recognizing the object.

Computer vision does not necessarily follow the human
vision, and the small areas selected from the images in
some cases might not include intelligible information, but the
computer can still use that information to identify the object.
To test whether the sub images contain information that can
be used to identify the object, we separated the training and
the test datasets [12], such that the classifier was trained with
20×20 sub-images separated from one dataset and tested with
the 20×20 sub-images separated from the other dataset. If
the sub images contained information that can identify the
object, we would expect some classification accuracy higher

TABLE IV
CLASSIFICATION ACCURACY WHEN USING 20×20 SUB-IMAGES OF CARS

AND ANIMALS, AND TRAINING THE CLASSIFIER WITH ONE DATASET
WHILE TESTING WITH ANOTHER DATASET

Dataset Caltech 101 MSRCORID SUN2012 PASCAL

Caltech 101 72.6% 51.5% 51.8% 50.4%

MSRCORID 51.4% 70.2% 52.1% 48.4%

SUN2012 50.2% 50.8% 68.5% 49.2%

PASCAL 48.9% 49.2% 50.5% 62.7%

than mere chance.
For the experiment we used classes that are common in

two or more datasets. Following [12] we used the classes
cars and person, available in PASCAL and Caltech 101. The
classification accuracy between these two classes of 20×20
sub-images is ∼64% and ∼71% for PASCAL and Caltech 101,
respectively. However, when training with the sub-images of
Caltech 101 and testing with the sub-images of PASCAL the
classification accuracy was ∼52.0%, and was ∼49.3% when
training with PASCAL and testing with the sub-images of
Caltech 101.

To test with more datasets, we performed another experi-
ment such that the two classes were cars and animals, two
classes that are common to four of the tested benchmark
datasets. Table IV shows the results of training the classifier
with one dataset (the rows) and testing with another dataset
(the columns). In the experiments the numbers of training and
test sub-images per class were the numbers specified in Table I,
and each experiment was repeated 20 times such that in each
run the images were randomly selected to training and test
sets.

The diagonal of the table, which shows the classification
accuracy when the same dataset was used for both training
and testing, shows that when separating the same dataset
into training and test images the classification accuracy is
higher than random when using the sub-images. However,
when training with sub-images of one dataset and testing
with sub-images of another dataset, non of the experiments
provided classification accuracy beyond mere chance. These
results show that the sub-images do not contain information
that the classifier use to identify the object.

A. Computational complexity

Although Wndchrm is computationally intensive, its compu-
tational complexity is a function of the size of the image. An
Intel Core-i7 processor can compute a single 20×20 image
within less than eight seconds, so that a single core can
compute the 1950 images of “Fifteen Scenes” in about four
hours and 20 minutes, and the 7200 images of COIL-100 can
be computed within ∼16 hours using a single core. The largest
dataset used in this study, ImageNet, required computing
49,608 images, and can be completed by a single core in ∼4.6
days. However, to reduce the response time Wndchrm can be
easily parallelized with negligible overhead [25]. In this study
a Linux machine with 64 cores was used, so that COIL-100
was computed in about 15 minutes, and ImageNet in less than
two hours.
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V. CONCLUSION

While the field of computer vision has been expanding
rapidly and new problems are introduced [45], [46], [47], [48],
[49], automatic object recognition has been one of the primary
and most studied machine vision tasks. Like some many other
tasks in computer vision, it is modeled as a labeling problem
[50], and studied using benchmark datasets. These object
recognition benchmark datasets are highly useful tools for the
development and evaluation of automatic object recognition
methods. Here we tested possible bias in object recognition
benchmark datasets by classifying small sub-images separated
from the original images such that the sub images do not have
sufficient information that allows the recognition of the object.

The difference between the accuracy achieved by the
method and the expected mere chance classification accuracy
provides an indication of the magnitude of the dataset bias.
For instance, the experiments showed that PASCAL has the
smallest difference between the accuracy achieved with the
method and mere chance accuracy. On the other hand, in
COIL-100 mere chance accuracy was 1%, while the accuracy
of the method was over 70%. The observation that 20×20
sub-images that contain no interpretable visual information
can be classified in accuracy higher than mere chance shows
that the datasets can be classified by algorithms that do not
necessarily identify objects, but can take advantage of the
image selection and the consistency of the images within the
classes to accurately classify the images.

Some object recognition methods apply a first step of
object segmentation to separate the background from the
object in the image. However, the fact that the seemingly
blank background of the image contains information that can
differentiate between the classes makes it reasonable to assume
that information that can differentiate between the images
also exists in the foreground, so separating the foreground by
automatic segmentation does not guarantee unbiased classifica-
tion. Because the foreground area of the objects also contains
the differences between the objects, using just the foreground
makes it difficult to know whether the classification accuracy
can be attributed to dataset bias or to the actual differences
between the objects. Because the foreground and background
are part of the same image, the foreground areas can not be
safely considered unbiased.

The proposed method can be used to identify the existence
of bias in new benchmark datasets before they are released,
or to measure the magnitude of such bias in comparison to
other object recognition benchmark datasets. Source code of
the image classification algorithm is publicly available [43],
and can be used by researchers to detect possible bias of object
classification algorithms.

As the results showed, some commonly used object recog-
nition datasets can be classified with accuracy higher than
random even when using small parts of the images that
do not contain sufficient information to identify the object
manually. However, the effect is much more dominant in the
object datasets that are acquired in a controlled environment
such as COIL-20, COIL-100, and Nec Animal, compared to
datasets compiled from natural images downloaded from the

internet such as Caltech 101. The fact that these datasets were
classified with accuracy much higher than random by using
just seemingly identical background areas shows that these
artifacts exist in the images, and it is reasonable to assume that
they can exist also in the foreground object areas, allowing
machine vision algorithm classify the images even without
identification of the imaged object.

Also, datasets compiled from natural images collected from
the internet are also vulnerable to dataset bias, as the collection
of the images is also dependent on the human perception of
the person selecting the images and constructing the dataset.
The results show that PASCAL and SUN2012 are less biased
compared to Fifteen Scenes, Caltech 101, ImageNet, and
MSRCORID. That means that information that is not related
to the imaged objects in the classes of these datasets is less
consistent within the classes, and therefore does not allow
accurate recognition of the images.

VI. DISCUSSION

A. Possible dataset bias factors

One of the possible reasons for the stronger bias identified
in datasets collected in controlled environment is that all
images are taken in the same session [18], [19]. Image datasets
compiled such that images of each class are acquired in the
same session can have common characteristics that are driven
by the image acquisition session rather than by the object being
imaged. That is, the images are classified by the session in
which they were acquired rather than by the object in them.
The same can happen when all images of a certain object are
acquired in a single video, and then the frames are separated
to create a dataset of single images.

While image acquisition is done in attempt to normalize the
images, it is difficult to control all aspects to provide a fully
standardized dataset. One cause for dataset bias can be the
object being imaged itself, as evident by dataset bias in face
recognition caused by different facial expressions, orientation
of the face, clothes, background, etc [51], [52]. Image quality,
resolution, and number of images can also lead to differences
in the measured performance of face recognition algorithms
[51].

However, bias can exist also within a single dataset even
when all images in the dataset is acquired in the same fashion.
For instance, acquiring all or some of the images of a certain
object in the same session can lead to a dataset that supervised
machine learning algorithms can classify by the image acqui-
sition session rather than by the object. Effects such as subtle
changes in the lighting conditions or the temperature of the
camera CCD at the time of imaging can result in artifacts that
are difficult to sense visually, but might lead to differences that
can be detected by computer algorithms. For instance, if the
environment is slightly darker when imaging a certain object,
simple global features such as pixel intensity statistics can be
used to identify that class, while the human eye is not sensitive
enough to sense such subtle differences.

The effect of acquiring a class of images in one session
has shown substantial bias in face recognition [18] and mi-
croscopy image classification [19]. For instance, if during the
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preparation of the dataset all images of object 1 are acquired,
and then all images of object 2 are acquired, the two classes
of images can be differentiated by the different conditions or
status of the camera when each set of images was taken.

Another reason for such differences can be different pho-
tographers imaging different classes of objects. For instance,
if photographer A acquires all images of object 1, and pho-
tographer B acquires all images of object 2, the two classes
can be differentiated by the person taking the images rather
than by the imaged objects. Different photographers can hold
the camera differently or use the focus in a different manner,
leading to systematic differences between the sets of images
that allows computer classification between them regardless of
the imaged objects.

B. Reducing dataset bias
The problem of differences between images that are not

driven by the imaged objects can be addressed by acquiring
the images such that the images within the different classes
are acquired in random order rather than all images of a
certain class at a time, so that each session has a random
order of images of different classes [19]. Taking one image
from each class at a time requires more efforts, but in that
case the images cannot be distinguishable by the session in
which they were acquired, as the images of each class are not
taken consequently, and each session collects just one image.

The image acquisition process should also be normalized
by the photographer such that all images are acquired by the
same person, or images are imaged randomly by different
photographers, but the imaging process should not by based
on a strategy according which imaging duties are shared
such that different classes of objects are imaged by different
photographers. If the camera is placed on a tripod, the tripod
or camera should not be touched until the image acquisition
process ends.

A different solution can also be separating the acquisition of
the training and the test sets. In automatic object recognition
it is common to first acquire all images of all classes, and
before the experiment separate each class into training and
test images. If systematic artifacts in a certain class exist, the
training stage can identify the patterns of these artifacts, and
use them to classify the test samples. However, if the training
and test sets are acquired in two completely separate sessions,
these artifacts are not expected to exist in both the training
and test sets, and the classification accuracy achieved should
be unbiased [19].

Datasets compiled by collecting natural images from the
Internet can also be biased by the preferences of the person
collecting the images. Therefore, also when compiling bench-
mark datasets from the world wide web it can be safer to
avoid sharing image collection duties such that each class is
collected by a different person, and use as many data collectors
as possible to increase the diversity in the image selection
and avoid a bias driven by the perspective of the person
who happen to collect the images, and might consciously or
subconsciously prefer one type of images over another.

Computer vision does not necessarily aim at mimicking
the way the human eye or brain work, but at providing the

same output given the visual input. That allows machines to
identify visual objects by analyzing visual elements of the
image that are not necessarily the same elements used by the
brain. Therefore, machine vision algorithms may validly use
contextual information that can assist in recognizing objects.
However, in this study we do not apply low-level features
computed from the entire image [17], but instead we separate
very small areas of the image that are either completely blank,
or do not have information that allows visual identification
of the object. Computers may operate differently from the
human brain, but machine vision is measured by comparing
the input and output of the computer to the input and output
of human manually processing the visual data, even if the
information processing itself is done in a completely different
fashion. In the experiments above, the input does not allow
human identification of the object by either the object itself
or by contextual information, and therefore the fact that the
images can still be classified by the computer shows that the
performance achieved in classifying these benchmarks might
be biased as a tool to evaluate real-world object recognition
performance. Experiments using the sub-images of one dataset
for training and another for testing did not result in classifica-
tion accuracy higher than mere chance, also showing that the
classifier did not identify the objects with the information in
the sub-images.

Automatic object recognition is an increasingly important
task in computer vision and image analysis, allowing better
interaction of machines with the real world. To satisfy that im-
portant need it is important to review the existing assessment
methods that are used to advance the field, and correct these
methods to make them as reliable as possible for the purpose
of assessing the performance of automatic object recognition
in real-world settings.
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