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Abstract

We propose an image computing-based method for
quantitative analysis of continuous physiological pro-
cesses that can be sensed by medical imaging, and
demonstrate its application to the analysis of morpho-
logical alterations of the bone structure, which correlate
with the progression of osteoarthritis (OA). The purpose
of the analysis is to quantitatively estimate OA progres-
sion in a fashion that can assist in understanding the
pathophysiology of the disease. Ultimately, the texture
analysis will be able to provide an alternative OA scor-
ing method, which can potentially reflect the progres-
sion of the disease in a more direct fashion compared
to the existing clinically utilized classification schemes
based on radiology. This method can be useful not just
for studying the nature of OA, but also for developing
and testing the effect of drugs and treatments. While in
this paper we demonstrate the application of the method
to oseoarthritis, its generality makes it suitable for the
analysis of other progressive clinical conditions that can
be diagnosed and prognosed by using medical imaging.

1 Introduction

Osteoarthritis (OA) is a highly prevalent chronic clin-
ical condition that limits mobility and causes substan-
tial disability in late life [1]. It is estimated that ∼80%
of the population over the age of 65 have radiographic
evidence of osteoarthritis [2], and given the increasing
longevity in the industrialized world the prevalence of

osteoarthritis is expected to increase further in the de-
veloped countries. While OA is one of the most preva-
lent diseases in the industrialized world, the physiolog-
ical mechanisms of OA are poorly understood [3]. Yet,
due to the increasing prevalence of knee osteoarthritis
and its consequent effects on functional limitation and
general life quality at older ages, there is a growing need
for scientific tools that can be reliably used to study the
mechanisms of OA.

The presence and progression of osteoarthritis is usu-
ally evaluated by trained radiologists, who read knee
xrays and score them by using the standard Kellgren-
Lawrence (KL) system [4, 5]. The KL classification
scheme is a validated method for classifying individ-
ual joints into one of five grades, with 0 representing
healthy joints, 1 representing doubtful OA, 2 represent-
ing mild OA, 3 moderate OA, and 4 being the most se-
vere radiographic disease. This classification is based
on features of ostephytes (bony growths adjacent to
the joint space), narrowing of part or all of the tibial-
femoral joint space, and sclerosis of the subchondral
bone, which reflect the progression of the disease. Fig-
ure 1 shows four knee X-rays of KL grades 0 (normal),
1 (doubtful), 2 (mild) and 3 (moderate).

It should be noted that while the Kellgren-Lawrence
classification is the most commonly used classification
scheme, there is no scientific evidence that the KL sys-
tem provides an accurate direct assessment of the pro-
gression of OA [6, 7]. This downside of the KL classi-
fication scheme limits its potential as an objective tool
that can be used to directly study the mechanisms and
nature of OA, as well as assess the efficacy of drugs and
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Figure 1: X-ray images of four different KL grades: a.
0 (normal), b. 1 (doubtful), c. 2 (mild), d. 3 (moderate)

treatments.

Another downside of the KL scoring system is that the
parameters used for the classification are not discrete,
and therefore different readers may have different as-
sessments of the progression of each parameter, lead-
ing to a different conclusion regarding the presence or
severity of OA [8, 9]. This subjectiveness makes the
KL scores rough approximations of the actual progress
of the disease. Although the KL scale has just five de-
grees of severity, even well-trained and highly experi-
enced readers assign the same score to the same knee
xray in just ∼80% of the cases [6, 10].

An alternative way to diagnose and evaluate the pro-
gression of OA is by applying quantitative image anal-
ysis methods that can measure subtle changes in the
bone structure, which have been correlated with bio-
chemical, biomechanical and structural alterations of
the articular cartilage and the subchondral bone tissues
[11, 12] associated with cartilage degeneration [13, 14].
Previous studies have shown that the alteration of the
bone structure can be sensed by analyzing features of
the radiographic bone texture, and can be used to de-

tect osetoarthritis by using image computing methods
[10, 15, 16, 17, 18, 19, 20].

While these previous studies used the radiographic bone
texture for the purpose of automatic detection of os-
teoarthritis, the high prevalence of OA introduced an
emerging need for clinical and scientific tools that can
provide an objective and quantitative measurement of
OA progression. These tools can be used for under-
standing the mechanisms of the disease, and ultimately
for studying the effect of drugs and treatments that may
be proposed in the future and will require testing and
evaluation. In this study we propose a method that ap-
plies image computing to quantitative measurement of
the progression of OA, and show how this method can
be used to study the nature of the disease and potentially
be used to better understand the mechanisms that are
associated with cartilage degeneration. The analysis re-
vealed little difference between healthy and doubtful os-
teoarthritic knees (KL grade 0 and KL grade 1), a find-
ing that could be confirmed by using images obtained
with a different imaging technique, MRI. This showed
that the presented technique is sensitive to changes in
the disease state of an individual knee, regardless of
imaging technique used to analyze the joint in question.
We argue that the multi-purpose nature of the method
can potentially make it a useful tool for studying other
progressive clinical conditions that can be diagnoses or
assessed by using imaging.

2 Methods

The image analysis method used in this study is wnd-
chrm [21, 22], which has been found effective for the
analysis and detection of osteoarthritis using knee X-
rays [10]. Wndchrm is a multi-purpose image classi-
fication method that makes use of a large set of im-
age features, extracted from several image transforms
and compound transforms. The image features used by
wndchrm can be classified into high-contrast features,
textures (e.g., Haralick, Tamura), statistical distribution
of the pixel values (e.g., multi-scale histogram, first four
moments), and polynomial decomposition of the image.
The image transforms that are used are Fourier trans-
form, Chebyshev transform, Wavelet (symlet 5, level 1)
transform, and edge transform. A detailed description
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of the image features can be found in [21, 22]. In this
study the larger set of image transforms was used, as
described in [21].

After all image features are computed, Fisher scores
are computed individually for each image feature, and
93% of the features with the lowest Fisher scores are re-
jected. The rejection of the 93% of the features was de-
termined experimentally, but as thoroughly discussed in
[22, 23], changing this value has marginal effect on the
performance. The classification can then be made by
using the remaining 7% of the features with a Weighted
Nearest Neighbor rule, such that the Fisher scores are
used as weights. This type of non-parametric classifi-
cation can be used not just for finding the class that is
the closest to a given test sample, but also to measure
the distances between any given test image m to any
training image n, by using Equation 1

Dm,n =
√∑

f

Wf · (mf − nf )2, (1)

where Wf is the Fisher score of feature f, and mf , nf

are the values of the feature f in the images m and n,
respectively.

Similarly, the similarity between an image m and a cer-
tain class c can be measured using Equation 2

Sm,c =
1

min(Dm,c) ·
∑N

i=1
1

min(Dm,i)

, (2)

where Sm,c is the computed similarity between the im-
age m and the class c, N is the total number of classes,
and min(Dm,c) is the shortest weighted Euclidean dis-
tance between image m and any image in the training set
that belongs in the class c, as described by Equation 1.
This assigns each feature vector of an image with a vec-
tor of N values within the interval [0, 1], representing
the similarities of the image to each class. Naturally,
for classification purposes the class that has the short-
est weighted Euclidean distance to a given test image
can be determined as the predicted class of that test im-
age. Averaging all similarity vectors of all images of
a given class provides a vector that reflects the similar-
ity of that class to each of the other classes. Repeating
it for all classes results in a similarity matrix, which
represents the similarities between all pairs of classes,
and can be also visualized as a phylogeny by using the
Phylip package [24]. The analysis of the similarities
between classes is described in further detail in [21].

Once each class is assigned with a numeric value, the
similarities of any given test image can be used to com-
pute and interpolate a value for that image using Equa-
tion 3

vi =
N∑

c=1

Si,c · Vc, (3)

where vi is the interpolated value, N is the number of
classes, Si,c is the similarity of image i to the class c as
determined by Equation 2, and Vc is the value assigned
to class c. This interpolation can be used to deduce the
values of test images of “in-between” cases, which do
not fit perfectly into a single class.

The classes in this study are the KL grades assigned by
readers who manually assessed each of the knee xrays.
A more detailed description of the KL scoring proce-
dure and protocols is described in [10, 28]. As de-
scribed in Section 1, the KL grades are subjective and
dependent on the perception of the individual reader.
However, the method described here is based on the as-
sumption that a large set of knees that were all assigned
the same KL score provides a reliable representation of
that OA stage. This assumption can be used to provide
an automated classifier, which can automatically deter-
mine the KL grade for a given knee xray, but also esti-
mate the KL grade for each test xray image with reso-
lution that is higher than the individual KL grades. For
instance, an xray of an osteoarthritic knee that is be-
tween KL grade 2 and KL grade 3 can be assigned with
the score of 2.6, rather than classified into KL grade 2
or KL grade 3.

Data for the experiment were xray images taken from
the BLSA project [25] that were used in [10], and MRI
images taken from the Osteoarthritis Initiative [26]. The
KL grades of each of the BLSA xrays were determined
by two highly experienced readers, such that a third
reader adjudicated knees with discordant grades. Previ-
ous studies showed that the classification method used
here could automatically classify between KL grade 3
and healthy knees with accuracy of ∼91%. with sen-
sitivity and specificity of ∼95% and ∼86.5%, respec-
tively. KL elements from the Osteoarthritis Initiative
(OAI) knees were scored by different readers in each
of the four independent centers that participate in the
project, and the individual assessments of the KL ele-
ments were compiled into a final KL score of the knee.
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The images were pre-processed such that the center of
the joint is detected using the method described in [10],
and then the area around the joint center was separated
from the image. Figures 2 and 3 show sample X-ray
and MRI images used for this study, respectively.

 

Figure 2: A sample image of a center of a knee X-ray
used in this study

Figure 3: A sample MRI image used in this study

3 Results

In the experiment with the X-ray images, 30 images
of each class were used for training, and nine images
per class for testing. The experiment was repeated 100
times such that in each run different images were allo-
cated randomly for training and testing. The predicted
values of the test images were scored as described in
Section 2, and the averaged scores for the different KL
grades are shown in Figure 4.

As the figure shows, the mean predicted KL grades
of healthy and doubtful OA joints are nearly identi-
cal, showing that there are no substantial differences
in the bone texture between healthy joints and doubt-
ful OA joints, while significant differences are clearly
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Figure 4: Predicted KL grade values by the radio-
graphic bone texture using X-rays scored by radiolo-
gists. The figure shows that knees that were scored by
radiologists as KL grade 0 are determined by wndchrm
to be highly similar to knees scored by radiologists as
KL grade 1, indicating that the bone texture does not
change significantly between these two grades.

noticeable for the image analysis of the bone textures
of doubtful and mild OA, and mild and moderate OA.
It should be noted that KL grade 1 is determined by
the presence of mild osteophytes, which are not present
in the joint itself, and are often difficult to detect us-
ing xray. KL grade 1 patients usually do not suffer
from pain symptoms, but more importantly, are not in
the phase of fast loss of cartilage that starts around KL
grade 2, and estimated in ∼0.25 mm per year [27].
While the correlation between the radiographic bone
texture and cartilage loss has been identified as de-
scribed in Section 1, this finding shows that rapid loss
of cartilage is accompanied by a faster alteration of the
radiographic bone texture, suggesting that both can be
related to the same mechanism, and become more dom-
inant when OA progresses beyond KL grade 1.

Another analysis of the predicted KL grades can be
done by using the amount of samples that were pre-
dicted to have a KL grade lower than a certain value.
Figure 5 shows, for each of the actual KL grades, the
amount of sample images (Y-axis) that their predicted
KL grade score is lower than a certain value (X-axis).
For instance, looking at the curve of the x-rays scored
by radiologists as KL grade 3,∼0.2 of these x-rays were
assigned by the computer analysis with a predicted KL
grade lower than ∼1.9.

4



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0 0.2 0.3 0.5 0.7 0.9 1.0 1.2 1.4 1.5 1.7 1.9 2.1 2.2 2.4 2.6 2.7 2.9

Predicted KL Grade

Amount of 
samples

KL Grade 0 KL Grade 1 KL Grade 2 KL Grade 3

Figure 5: Amount of sample knee X-rays scored lower
than a certain predicted KL score (X-axis)

As the figure shows, the curves for actual KL grade 0
and actual KL grade 1 are very similar to each other,
showing that the distribution of the predicted KL grade
values for these two classes is relatively close, while the
predicted KL grade distribution is noticeably different
for X-rays that were diagnosed by radiologists as KL
grades 2 and 3.

Different visualization of the analysis can be provided
by using an evolutionary tree that reflects the similari-
ties between the KL grade classes, as described in Sec-
tion 2. Figure 6 shows the phylogeny produced by using
the Phylip package to visualize the similarity matrix of
the KL grade classes.

The phylogeny shows that the system was able to de-
duce that the KL grade classes represent a continuous
process, and was also able to find the correct order of
the classes. However, it also shows that the xrays scored
as KL grade 0 (healthy joints) are very similar to the
xray images scored as KL grade 1 (doubtful OA), show-
ing that the radiographic texture does not significantly
change between these two grades of the disease. This
type of visualization can also be useful for more com-
plex experiments, with a larger number of stages and
possible paths of progression.

A similar experiment with MRI knee images, which
features different frequency and different resolution

KL-2

KL-1KL-0

KL-3

Figure 6: Evolutionary tree visualizing the similarities
between the KL classes, reflected by the image analysis
of the bone texture.

compared to the xray images, leads to a similar con-
clusion. The experiment used 100 knee images (similar
to the sample Figure 3) for each KL grade for training,
and 50 images per class for testing. The experiment was
repeated 20 times such that in each run different images
were used for training and testing. The averaged pre-
dicted values of the test images are shown in Figure 7.

0

0.5

1

1.5

2

2.5

3

0 1 2 3

Actual KL grade

Predicted KL 

grade

Figure 7: Predicted KL grade values by the radio-
graphic bone texture using MRI images. The standard
error for all KL grade classes is smaller than 0.1

As before, this shows that the progression of the alter-
ation of the bone texture shows no significant difference
between healthy (KL grade 0) and doubtful OA (KL
grade 1) joints, and a faster process of bone alteration
starts when the disease reaches KL grade 2. The fact
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that the image analysis method does not detect the dif-
ferences between healthy and doubtful OA joints shows
that the bone texture does not change significantly be-
tween these two grades, compared to the alteration of
the bone texture associated with further stages of the
disease.

4 Discussion

While osteoarthritis is one of the most prevalent dis-
eases in the industrialized world, and one of the most
significant economical burdens on the healthcare sys-
tem, little has yet been discovered about its physio-
logical mechanisms, which their understanding is acute
for the purpose of developing drugs or preventive treat-
ments. For instance, it is yet unknown whether OA is a
systemic clinical condition driven by controlled physi-
ological pathways, or simply stochastic “wear and tear”
that leads to cartilage degeneration [3].

In this study we used a quantitative comparison of x-
ray images to analyze the progression of OA and the
differences between the KL grades. The images are
compared by using a large set of image content de-
scriptors computed from each x-ray, and the weighted
Euclidean distance reflects the similarity between each
two x-rays in the dataset. This quantitative assessment
of the differences between images is used to quantify
the differences between the KL grades, which are de-
termined quantitatively by averaging a large number of
images from each grade, and providing an average dis-
tance between each two neighboring grades based on
the physiology of the knee.

The quantitative analysis of the differences between the
different KL grades show that the alteration of the bone
texture, which has been associated with OA as dis-
cussed in Section 1, does not progress at a constant rate,
which can be interpreted as an indication that OA is
not driven solely by stochastic accumulation of dam-
age, and that controlled physiological processes can
be involved in the processes of cartilage degeneration.
It also shows that the progression of the biochemical
and biomechanical processes associated with the dis-
ease progress faster between KL grade 1 and KL grade
2. These findings suggest that the KL scale might not be

linear to the actual progression of OA, and also indicate
that understanding the mechanisms of the disease might
require the analysis of changes between KL grade 1 to
KL grade 2.

While it can be assumed that the image analysis method
might not be sensitive enough for detecting the differ-
ences between healthy and doubtful OA joints, it should
be noted that the same method is sensitive enough to
detect osteoarthritis by examining the radiographic tex-
ture of the bone ∼20 years before the disease becomes
symptomatic [28], and when the joints are still scored
by radiologists as healthy.

The “gold standard” for this study is the KL grades,
which can be subjective, and not necessarily an accu-
rate quantitative reflection of the actual progression of
OA. Since the classification between doubtful OA (KL
grade 1) and non-osteoarthritic joints can be difficult,
the findings presented in Section 3 might be due to the
difficulties of the readers to distinguish between these
two grades.

The KL classification scheme is exposed to the subjec-
tiveness of the reader, and it can not be considered as an
accurate quantitative method for OA assessment. Since
computer analysis of the texture can provide an objec-
tive measurement, it can ultimately provide a systematic
and accurate scoring system for the evaluation of the
presence or progression of OA. This scoring technique
can better reflect the actual progress of the disease, and
its quantitative fashion can potentially make it suitable
for studying the disease mechanisms, or the effect of
drugs and treatments on the clinical condition. While
indicators such as the KL grade or pain symptoms are
merely rough measurements of the disease progression,
the computer analysis of the bone texture can provide a
higher resolution estimation of the state of the disease,
and its response to drugs can be more sensitive and ob-
jective than other OA indicators.

In this study we apply the wndchrm tool to the assess-
ment of the progression of OA, but it should be noted
that wndchrm is a general-purpose biomedical image
analysis tool, and can provide an informative analysis
for a variety of subjects, magnifications, and types of
imaging [29]. Therefore, we argue that it is possible that
the image analysis method described in this paper can
be used for studying and evaluating the progression of
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other continuous clinical conditions that can be sensed
and diagnosed by using microscopy or other forms of
biomedical imaging. Medical imaging is used for di-
agnosis and prognosis of very many diseases and clini-
cal conditions, and the link between image morphology
and disease progression has been well established. In
this paper we propose to use image analysis to detect
stages of rapid progression of the disease, which can be
used to better study the disease mechanisms.

Finally, while this study focused on an unbiased anal-
ysis of the image content, a more comprehensive study
can also include clinical data such as pain, history of
injuries, relevant medication information, age, weight,
BMI, and other clinical indicators that can be relevant
to OA. These data can provide a more detailed analy-
sis that can detect stages in the progression of the dis-
ease that correspond to other clinical data that affect os-
teoarthritis.

The software used for the experiments de-
scribed in this paper, including the source
code, is available for free download at
http://www.phy.mtu.edu/∼lshamir/downloads/ImageClassifier,
and users are encouraged to download and use it for the
analysis of continuous image data of disease progres-
sion. Technical description of the code is available at
[21].
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