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Abstract—We propose a report on automatic classification of 

three common types of malignant lymphoma: Chronic 

Lymphocytic Leukemia, Follicular Lymphoma, and Mantle Cell 

Lymphoma. The goal was to find patterns indicative of lymphoma 

malignancies and allowing classifying these malignancies by type. 

We used a computer vision approach for quantitative 

characterization of image content. A unique two-stage approach 

was employed in this study. At the outer level, raw pixels were 

transformed with a set of transforms into spectral planes. Simple 

(Fourier, Chebyshev, and wavelets) and compound transforms 

(Chebyshev of Fourier and wavelets of Fourier) were computed. 

Raw pixels and spectral planes then were routed to the second 

stage (the inner level). At the inner level, the set of multi-purpose 

global features was computed on each spectral plane by the same 

feature bank. All computed features were fused into a single 

feature vector. The specimens were stained with hematoxylin (H) 

and eosin (E) stains. Several color spaces were used: RGB, gray, 

Lab, and also the specific stain-attributed H&E space, and 

experiments on image classification were carried out for these 

sets. The best signal (98-99% on previously unseen images) was 

found for the HE, H, and E channels of the H&E data set. 

 
Index Terms—Automatic image analysis, pattern recognition, 

lymphoma images 

 

I. INTRODUCTION 

ymphoma [1] is a clonal malignancy that develops in 

lymphocytes. Lymphoma [1] is a clonal malignancy that 

develops in lymphocytes.  It can develop in either T- or B-

cells though about 85% of cases are B-cell-derived.  The 

WHO Classification of Lymphoid Malignancies includes at 

least 38 named entities. Lymphoma types are usually 

distinguished by their pattern of growth and the cytologic 

features of the abnormal cells.  In addition, genetic, 
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immunologic, and clinical features often aid in making the 

diagnosis.  However, the most important diagnostic criteria for 

lymphoma are the morphologic features of the tumor as 

observed by light microscopy of hematoxylin- and eosin-

stained tissue sections and interpreted by an experienced 

hematopathologist.  Lymphoid malignancies were diagnosed in 

nearly 115,000 people in 2008 [2].    

Pathologists make a distinction between malignant and 

healthy (or benign) tissue, and further differentiate between 

malignancy types.  These distinctions are essential because the 

diagnosis allows predictions of the natural history of disease 

and guides treatment decisions [3]. Typically pathologists 

identify a tumor by visual inspection of a mounted tissue 

sample on microscope slides using high and low 

magnifications.  Searching for patterns in medical images 

could be facilitated by implementing recent breakthroughs in 

computer vision [4, 5].   

Pattern classifiers are commonly implemented in content-

based image analysis. However, several uncertainties pose 

significant challenges to achieving accurate classification of 

lymphoma. First, histological lymphoma features may not be 

present across the whole area of a slide. Second, it is unclear 

that a single magnification is capable of distinguishing the 

different types.  Third, an individual tumor may contain a 

range of cell types that, while derived from the same clone, do 

not share cytologic features. Fourth, individual types of tumors 

may be heterogeneous. For example, follicular lymphoma 

contains at least two types of cells and the relative proportions 

of the two types are used to grade the tumor.  Another type, 

mantle cell lymphoma, exhibits several patterns.  A useful 

classifier should account for the range of histologies that 

comprise a single disease entity. 

Computer vision methods [4-6] are emerging as a new tool 

in medical imaging [5, 7-9], bridging a gap between cancer 

diagnostics [3, 10] and pattern analysis.  Nearly all cancer 

classification based on computer vision methods relies on 

identifying individual cells, requiring segmentation or pre-

selected ROIs.  The reliance on segmentation leads to the use 

of image features highly specific to cell biology, or in more 

extreme cases, only capable of processing H&E-stained cells 

or limited to specific stains and specific cell types. However, 

despite these limitations, segmentation has proven effective for 

the diagnosis of selected cancer types. In several studies, 

overall classification accuracy was as high as 90%, comparing 

favorably with pathologists, even exceeding the accuracy of 

human scorers in some cases. 
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In biology, biomedicine and related fields, an image 

processing approach without prior assumptions or constraints 

may be of considerable interest. Biomedical applications 

produce images of many kinds [4, 6] where there is neither a 

typical imaging problem, nor a typical set of content 

descriptors. This diversity of image types requires either a 

broad variety of application-specific algorithms, or an 

approach that is not application-specific.  Avoiding task-

specific preprocessing steps will lead to the development of 

more general machine vision approaches that could be applied 

to a greater number of imaging problems in biology and 

medicine. 

The general method we developed (WND-CHARM, [11]) 

has been previously characterized in a diverse set of imaging 

problems.  These included standard pattern recognition 

benchmarks such as face recognition, object and texture 

identification [11], and detection of comet dust tracks in 

aerogel [12].  Biological microscopy applications included 

identification of sub-cellular organelles [11, 12], classification 

of pollen [11, 12], characterization of physiological age and 

muscle degeneration in C. elegans [13, 14], and scoring of 

high-content imaging screens [12].  Human knee Xrays were 

also analyzed to diagnose osteoarthritis [15], predict 

osteoarthritis risk [16], as well as identify individuals from 

these radiographs [17].  Much of this work is summarized in 

an imaging benchmark for biological applications called 

IICBU-2008 [18].  All of these applications of WND-CHARM 

used the same set of algorithms with the same parameters, 

differing only in the arrangement of images into training 

classes.  Several of these examples required discriminating 

morphologies in images of cellular fields, which are 

traditionally pre-processed using segmentation. Examples 

include high-content screens for absence of centromeres, 

presence of binucleate cells, and morphology of phylopodia 

[12, 18]. 

In this report, we present an experimental study of three 

common types of lymphoma (see in Fig. 1): chronic 

lymphocytic leukemia / small lymphocytic lymphoma (CLL), 

follicular lymphoma (FL), and mantle cell lymphoma (MCL).  

These are the three most common types of lymphoma, and 

were chosen because of their clinical relevance.  The 

lymphoma cases used in this study were chosen to be 

representative of the three lymphoma classes, consisting of 

typical morphologies that could be used for training human 

pathologists.  This slide collection contained significant 

variation in sectioning and staining and was thus more 

representative of slides commonly encountered in a clinical 

setting rather than being representative of the type more 

commonly found under tightly controlled laboratory 

conditions. The high degree of variation prompted us to 

compare the relative information content in grayscale, the 

original three RGB channels, a color transformation into CIE-

L*a*b* (Lab) color space, and a reconstruction of the RGB 

channels into hematoxylin and eosin channels (HE).  

Furthermore, generic image features from these color spaces 

were analyzed using three different classifiers, including 

WND-CHARM’s weighted-neighbor distance (WND), radial 

basis functions (RBF) and a naïve Bayes network (BBN). 

Our findings were that the WND classifier operating on E 

channel of the HE color space produced an average 

classification rate of 99% for the three tissues.  Significant 

differences in classification accuracies were found between the 

four color spaces tested, with HE consistently more accurate 

than the others followed by RGB, grayscale and Lab.  The 

relative accuracies obtained in these color spaces were 

consistent between the three classifiers used. The differences 

in classification accuracies between the three classifiers were 

not as pronounced, with WND and RBF producing nearly the 

same accuracies for all four color spaces and slightly lower 

results for BBN.  We also tested three feature selection 

algorithms for WND, including Fisher linear discriminant 

(FLD), minimum redundancy maximum relevance (mRMR), 

TABLE  I 

Source 
CLASS 

NUMBER 
Segmentation 

Accuracy 

Reported 
Color 

Sertel et al [7] 3 Yes 90.3% Yes 

Foran et al [11] 4 Yes 89% Yes 

Tuzel et al [9] 5 Yes 89% No 

Nielsen et al [8] 2 Yes 78% No 

Tabesh et al [5] 2 Yes 96.7% Yes 

Monaco et al [50] 2 Yes 79% No 

This work 3 No 99% Yes 

Comparison of reported results in the relevant research. 

 

 
Fig. 1.  Patterns for three lymphoma types: a) CLL, pale areas as proliferation centers; b) FL, follicular structure; c) MCL, neoplastic lymphocytes in the 

diffuse/blastic sub-type. 
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and a Fisher/Correlation algorithm (F/C) described below.  As 

with the classifier comparisons, there were no significant 

differences between these three feature selection algorithms.  

The only significant differences in classification accuracy 

found in this study were attributed to the different 

representations of the color information in these images. 

Our report is organized in the following way: Section II 

discusses image content and describes the features used; 

Section III discusses the relative contributions of 

morphological and color information. The classifiers employed 

are described in Section IV, and Section V reports results of 

classification. Section VI contains the discussion, followed by 

future work in Section VII, and a summary in Section VIII. 

II. CONTENT AND FEATURES 

A. Summary of Previous Work 

As mentioned in the introduction, much of the previous 

work in lymphoma classification and medical image 

processing of tissues in general involves a prior segmentation 

step to identify cells, nuclei, or other cellular structures.  

Important advances were made in this field using segmentation 

(summarized below and in Table I), and serve as a basis of 

comparison for our approach that does not rely on 

segmentation.  In many cases, the initial segmentation step is 

used as a basis for extracting generic image features followed 

by classification algorithms, similarly to what we have done.  

Other than the lack of segmentation, our approach differs in 

the quantity of generic image descriptors generated, as well as 

the resulting need to adopt an automated dimensionality 

reduction technique. 

In [7] Sertel et al. used color texture analysis for classifying 

grades of malignant lymphoma (FL), achieving 90.3% 

accuracy. Foran et al. [19] applied elliptic Fourier descriptors 

and multi-resolution textures to discriminate between 

lymphoma malignancies.  A total of four classes were used, 

including three lymphoma types and one normal tissue.  This 

computational approach (89% accuracy) outperformed the 

traditional method of evaluation by expert pathologists (66%). 

In [9] the authors used machine vision to discriminate five 

lymphoma types. They used texton histograms as image 

features and applied a Leave One Out test strategy to obtain an 

overall classification accuracy of 89%.  Notably, they reported 

56% correct classification for their worst data type (FL). 

Nielsen et al. [8] studied ovarian cancer cells using adaptive 

texture feature vectors from class distance and class difference 

matrices.  They reported 78% correct classification for a two 

class problem (good and bad prognosis).  In [20] the authors 

applied the back-propagation neural network to diagnose 

pathology of lymph nodes.  The two classes in the study were 

malignant nodes (metastasis of lung cancer) and benign tissue 

(sarcoidosis).  Their computer vision approach resulted in 

higher classification accuracy (91%), than the diagnostic 

accuracy of a surgeon with five years of experience (78%).  In 

[21] Monaco et al. used probabilistic Markov models for 

classifying prostate tissues; they reported overall classification 

accuracy 79% on a two-class problem. 

B. Mapping Pixels to a Global Feature Space 

It is inefficient to deal directly with pixels when learning 

patterns, which leads to the concept of mapping pixels into 

feature space [22], for applications like classification, search 

and retrieval [23, 24].  We note that there are some methods 

for texture analysis dealing directly with local pixel 

neighborhoods (see in [9]) or under-sampling the original 

images (as in [25]).  

Let us define     I = ℝ
m×n  as the image pixel plane, and   

�
f  as 

its corresponding     ℝ
N×1  feature vector. Then the mapping 

     
ℝ
m×n →

ψ

ℝ
N×1  can be expressed in the form 

     

�
f = ψ I( ).  This 

conversion could be performed with a function, equation, 

algorithm, or a combination of algorithms (the later was used 

in this study). The conversion does not require images to have 

the same dimensions, while the resulting feature space has the 

same dimensionality for all images.   

The mapping implemented in this report is a composite of 

several algorithms.  The feature set encompasses a 

representative collection of global features [11] assessing 

texture content, edges and shapes, coefficients in polynomial 

decompositions, and general statistics, as shown in Table II.  

The feature set contains eleven families of different algorithms 

for numerical assessment of the content.  Experiments 

 
Fig. 2.  Use of transforms in the framework: three simple transforms 

(wavelets, Chebyshev and Fourier) and two compound transforms 

(Chebyshev of Fourier and wavelets of Fourier). The feature bank is applied 

to each pixel plane shown. 

  

TABLE  II 

Feature Name Output Size 

Polynomial Section 

Chebyshev features 32 

Zernike features 72 

Chebyshev-Fourier features 32 

Texture Section 

Tamura features 6 

Haralick features 28 

Gabor features  7 

Other Features 

Radon features 12 

Multi-scale histograms  24 

First four moments with comb filter 48 

Edge statistics 28 

Object statistics 34 

Feature vector output sizes. The raw pixels and spectral planes (transforms) 

were fed into the feature bank in the computational chain. 
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performed in [11, 12, 14, 18] convincingly support the 

assertion about efficacy of this feature set for diverse imaging 

applications. 

C. Fusing Features: Two-Stage Approach 

We used the two-stage approach suggested in [11].  In this 

method, the raw pixels at the outer level were transformed with 

a set of given transforms to corresponding spectral planes.  

The organization of the transforms is given in Fig. 2.  The 

approach used Fourier (FFTW [26]), Chebyshev and wavelet 

(symlets5
1
, level-1 details) transforms.  The compound 

transforms producing super-spectral planes included 

Chebyshev of Fourier and wavelets of Fourier.  The set of 

multi-purpose global features [11, 14] was computed for every 

pixel plane (transforms included) by the same feature bank 

(described in previous section).  Finally, all computed features 

were fused into a single feature vector.  Therefore, all 

algorithms for multi-purpose features (see also in Table II) – 

combined with several transforms – resulted in a vector of 

1025 elements.  We refer to the scheme shown in Fig. 2 as a 

computational chain. 

Using spectral features in pattern analysis is not entirely new 

[23, 24]; on the other hand, fusing features from different 

transforms for enhancing class discrimination is not common 

either. The motivation for this way of combining features came 

from the realization that mapping pixels into spectral planes is 

equivalent to using alternative content for the same 

classification problem. The given set of transforms is linear 

with respect to intensity but is non-linear with respect to pixel 

indices with the result that different spectral planes generate a 

variety of diverse patterns. 

Therefore, the desire for a multi-purpose feature set that 

 
1 www.mathworks.com/access/helpdesk/help/toolbox/wavelet/ 

could be used across the entire biological or medical domain 

can, in fact, be fulfilled with a rather moderate set of basic 

features.  Another advantage of using transforms is that there is 

little incremental cost for their development, but a 

multiplicative increase in feature diversity, with essentially all 

of the cost being computational.  To some extent, the idea of 

fusing different spectral planes together is similar to the 

concept of multi-scale representation: it also allows assessing 

content from multiple perspectives. We will pursue this topic 

elsewhere.  

D. Spectral Features and Their Meaning 

Previous work on constructing global descriptor sets was 

reviewed in Gonzalez & Woods [24], with more recent work 

by Rodenacker & Bengtsson [4] and Gurevich & Koryabkina 

[27]. It should be noted that the authors manifest their feature 

sets as algorithm toolboxes, and they promote the idea of 

specialized feature sets for each particular imaging application.  

Such an approach suffers from the shortcoming that an expert 

opinion is needed to select the useful features for every new 

imaging problem.  Further, minor changes in acquisition 

parameters could invalidate this expert-selected set of optimal 

descriptors. In contrast, in the approach suggested in [11] the 

global feature set is intended to be used as a whole, without 

manual selection of particular algorithms a priori. Instead, we 

automate the selection and weighting of these features for each 

imaging task. 

In biomedical image processing, application-specific 

features tend to be more commonly used than generic global 

descriptors [6, 28, 29].  Indeed, there are clear advantages to 

using domain-specific features: they allow to work in smaller 

feature spaces, are faster to compute and often allow some 

parameter tuning for achieving higher accuracy.  

Unfortunately, specific features restrict expansion to different 

applications that can be a disadvantage in biology and 

biomedicine, where there are many image types in common 

use. 

For certain classification problems, features have valuable 

scientific meaning, and often the selected subsets have a clear 

interpretation. A good example is the relative expression of 

genes used as features when classifying microarray 

experiments [30].  In contrast, in the transform-based feature 

set, the interpretation of even the most intuitive features (such 

as FFT-based descriptors) is rather more limited.  In some 

studies of malignancy patterns (as in [5]) authors characterize 

the selected features as visual cues and consider them 

potentially useful.  The generality of the feature set we employ 

precludes any guarantees that the selected or most highly 

ranked features will be visually informative or interpretable.  

However, it is possible that even in this general set, selected 

features can lead directly to interpretable visual cues [31].  

Additionally, by classifying sub-regions of images, it is 

possible to identify where the classification signal is greatest, 

potentially leading to spatial visual cues [16].  

E. Feature Ranking and Feature Selection 

Fig. 3 outlines the general classification scheme.  We 

 
Fig. 3.  Multi-purpose features are computed and weighted in accordance to 

their task-specific discriminative power. Weighted features are used by the 

WND classifier. 
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employed the Fisher Linear Discriminant [23] (FLD) as our 

major feature ranking tool.  In multi-class problems the FLD 

operates on ‘between’ and ‘within’ data variations as 

     

�
S
B

= N
c

�
µ
c

−
�
µ
2

2

c∑ ,
�
S
W

=
�
X
j

(c) −
�
µ
c
2

2

j∈c∑c∑ , 

and the class separation score is the ratio 
    

�
w
Fisher

=
�
S
B

�
S
W

. 

Here 
   

�
X
j

(c)  are the training samples in class  c , 
   

�
µ
c

 are class 

average, 
  

�
µ  is the average on all classes, and 

 
N
c

 is the number 

of training samples in the  c -th class.  

Similarly to the Fisher score, the colinearity measure ranks 

each individual feature as a ratio of between/within data 

scattering with different figures measuring data variations. The 

colinearity approach operates in terms of angles between 

individual samples p
k
, p

l
:
     
α
kl

= cos p
k
,p
l( )= p

k
,p
l
p
k
p
l

.  

Let the vector f  be an arbitrary row of data X , then 

 
f = p

cc∪  is a combination of partitions belonging to 

different classes.  The variation between different classes for 

this row can be measured with 
    
αB = mean

k,l
α
k,l

 for all 

C (C − 1) 2  pairs of   k,l .  Now, if 
    
⌢
q
s

c ,
⌣
q
s

c  are two randomly 

shuffled sub-samples of pc
, then the within-class variation is 

      
αW = mean

c,s
cos

⌢
q
s

c ,
⌣
q
s

c( ){ }. The corresponding feature score 

here is 
     

�
w
Coll

=
�
α
B

�
α
W

.  The third ranking scheme used the 

Pearson correlation coefficient 

     

�
w
Pears

= ρ X
fj{ }
j=1

N
c

,
�
ζ











 

describing the correlation between the given feature and the 

intended class values 
  

�
ζ  (as the ground truth).  

FLD was implemented to select features having the most 

discriminative power.  We gradually increased the pool of 

selected features by starting with the highest ranked features, 

progressing to less discriminative ones, and stopping feature 

addition once classifier performance stops improving.  We 

also used a heuristic F/C approach for subspace construction:  

For each candidate feature to be added to the feature pool, 

we compute a Pearson correlation between the candidate and 

each feature in the pool. The average of these correlations is 

the denominator in a ratio where the numerator is the 

candidate feature’s Fisher score.  Features are added to the 

pool in descending order of their Fisher score until this ratio 

stops increasing.  In this way, features are selected that have 

highest Fisher discrimination and least Pearson correlation at 

the same time. A third method for feature selection was the 

mRMR algorithm [32], which maximizes relevance 

(discrimination) while minimizing redundancy.  Comparison 

of these three feature selection algorithms are shown in Table 

VI and discussed further in Section V. 

III. LYMPHOMA DATA: MORPHOLOGY AND COLOR 

A. Malignancy Patterns 

Although there are as many as 38 different lymphoma types, 

the three most clinically significant B-cell derived lymphomas 

were selected for this study.  These three major types are also 

commonly used in other machine-classification studies  (see 

Table I). 

Depending on the magnification, malignancy patterns in 

pathology specimens are revealed jointly by the texture and 

low-to-mid scale spatial features of the image.  Specifically, 

the common pattern for the CLL type in low resolution shows 

pale areas (nodules) that are interpreted to be proliferation 

centers (Fig. 1). In high magnification, these areas show small 

cleaved cells (small round nuclei) with condensed chromatin 

that cause their relative paleness at lower magnification. 

Abundant pale cytoplasm at high resolution may also be 

indicative of CLL type [33]. 

The MCL malignancies in high resolution feature irregularly 

shaped nuclei; in low magnification MCL type may reveal 

several patterns, including mantle zone, nodular, diffuse, and 

blastic. In diffuse and blastic types (see in Fig. 1) neoplastic 

lymphocytes replace the node. Given high structural 

variability, the MCL type is often difficult to diagnose.  For 

the FL type, low magnification exhibits the follicular pattern, 

with regularly shaped nuclei in higher magnifications.  

B. Color as an Experiment Variable 

From the pathologist’s standpoint, color has no direct 

involvement in diagnostics of the sample; malignancy of the 

tissue is reflected in morphology.  At the same time, 

histopathology specimens are colored to highlight the 

morphology of nuclei and cytoplasm [10, 34, 35].  One of 

most commonly used stain combinations is Hematoxylin-Eosin 

(H&E), targeting nuclei and cytoplasm, respectively. It is not 

quite clear a priori whether the signal is in the nuclear and 

cytoplasmic morphology exclusively, or whether color itself 

also plays a role, for example due to the interaction of the two 

stains. As one can see from Table I, use of color in analyzing 

histopathology images is not uncommon. Approaches on color 

use in these applications range from mainstream techniques 

(color histograms [36] or color moments [37]) to color 

textures [38] and unusual solutions for color quantization, as in 

[7, 39].  The CIE-L*a*b (Lab) color space is often used for 

analysis of H&E-stained samples [40-42] and color images in 

general [43] due to its ability to represent color in a device-

independent and perceptually uniform way. 

An issue with H&E stain is that the relative intensity is 

subject to variation, case-to case and hospital-to-hospital. This 

stain variability, especially pronounced in the samples used in 

this study, led us to avoid the use color features.  Instead, we 

treated color as an experimental variable.  We used four 

separate color schemes to discern the three types of 

malignancy in our lymphoma set. The first scheme is a 

grayscale intensity computed from the RGB colors using the 

NTSC transform [44], where the intensity value is 

Gray = 0.2989 0.5870 0.1140[ ]× R G B[ ]
T . 

Second, we used a standard RGB color scheme which was 
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the direct camera output.  Third, Lab color scheme.  This 

representation of colors implements perceptual uniformity of 

the luminance scale [44, 45]. Lab color is a nonlinear scaling 

of device-dependent RGB signals producing an orthogonal 

space where distances between colors correspond to perceived 

color differences [7, 39, 41, 46]. Our motivation for using Lab 

scheme was to minimize the within-class variation of stain 

color.  Lastly, the fourth color scheme required color 

deconvolution, as described in the next sub-section. 

C. Color Deconvolution 

In H&E staining, hematoxylin targets cell nuclei (blue), and 

eosin stains the cytoplasm red.  Combinations of stained nuclei 

and cytoplasm form macro patterns that are indicative of 

hematologic malignancies [10, 34, 35].  The color CCD 

camera collects a tri-color RGB image, while the original 

signal has only two components, representing chromatin and 

cytoplasm.  

One important aspect is that dyes (H&E) have complex 

overlapping spectra. Ruifrock and Johnston [47] suggested a 

deconvolution method for the separation of overlapping 

spectra into independent channels corresponding to H&E stain 

concentrations in the specimen. The optical density is 

measured on representative areas having highest stain 

concentrations.  The optical density of the dye (i.e., the pixel 

value) measured allows to then compute stain concentration 

everywhere in the image [47].  We used this technique in our 

study as the forth color scheme.  In Fig. 4 an example of 

separating H- and E- channels with the color deconvolution 

algorithm is shown for an image of the MCL type. 

D. Acquisition Specifics 

Ten different cases of three different lymphomas (CLL, FL, 

MCL; 30 slides total) were imaged on a Zeiss Axioscope white 

light microscope with a 20x objective and a color CCD camera 

AxioCam MR5. The slides were imaged with the same 

instrument settings and same objective lens, camera, and light 

source. Therefore, no other normalization was performed for 

the camera channels. 

Slides were selected with tumors present, providing 

representative cases, but information of the distribution of the 

malignant cells on the slides was not used.  The slides were 

imaged randomly to avoid making assumptions about the 

distribution of malignancies.  Tumor heterogeneity was 

expected to result in a different level or type of signal in 

different tiles within a complete image.  A given image would 

have been classified correctly only if sufficient signal of the 

correct type was present in its constituent tiles.  When 

reporting accuracy, we averaged the classifications of each of 

the constituent tiles and classified the entire image as one of 

the three lymphoma types. In this way, the heterogeneity of the 

tumor at the scale of individual tiles was downplayed relative 

to the scale of the whole field of view.  Each image  (1040 ×  

1388 pixels) was tiled into thirty sub-images on a 5× 6 grid 

with a tile size of 208 × 231 pixels.  The number of images 

used for training was 57 (or 1710 image tiles) for each class, 

which is roughly six images (or 171 tiles) per slide. For testing 

there were 56, 82, and 65 images used for CLL, FL and MCL 

types, respectively. 

IV. STATISTICAL CLASSIFIERS EMPLOYED 

In our experiments three classifiers capable of working with 

multi-category data were employed: Weighted Neighbor 

Distance (WND), naïve Bayes network (BBN) and radial basis 

functions (RBF). Previous experiments [11] demonstrated 

good performance of the WND classifier compared to state-of-

the-art algorithms in a variety of imaging problems. Results 

from BBN and RBF classifiers are given for comparison.  

Feature ranking was applied to the global CHARM feature-set. 

While the BBN and RBF classifiers used ranking for 

conventional dimensionality reduction, the WND classifier 

used the feature weights to compute similarities to training 

classes. 

A. WND Classifier 

The general classification scheme in Fig. 3 uses the WND 

classifier. The WND algorithm relies on the sample-to-class 

distance 
   
ρ
c
t(): 

     
ρ
c
t()= mean

j
ρ
cj
t(), ρcj t()=

�
δ
cj

w
t()
2

2

, c = 1,..,C , where 

 
Fig. 4.  Color deconvolution example. MCL lymphoma sample stained with H&E combination in RGB (a). Deconvolved images in HE color space: H-channel 

(b) and E-channel (c). 
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the weighted difference   
� 
δ w  is 

     

�
δ
cj

w =
�
w ⋅

�
t −

�
X
j

(c)( ), and 

   

�
t ,

�
X
j

(c)  are the test and training samples, respectfully;  C  is 

the total number of classes.  Note that in effect, 
  
ρ
c

 is the 

square of a Euclidean distance.  Fisher scores [48] were used 

as weights in   
� 
δ w , penalizing weak features and rewarding 

strong ones.  Similarity of the sample   
�
t  to the class c  is 

defined as [11] 
    
s
ci

= ρ
cj

−p

j=1

N
c∑ , where 

 
N
c

 is the number of 

samples in the class c , and p  is a parameter that provides an 

absorbing effect to individual variation.  Although the 

parameter has rather broad range (from 0.01 to 20) with 

satisfactory classifier performance, we fixed it at 5.   

Experiments demonstrated that p = 5  works well in a range of 

different imaging applications [11].  The classification method 

calls the class c pred  when the similarity of the test sample is 

highest for this class, i.e. 

    
cpred(

�
t )= argmax

c

s
ci

.  The 

probability of the sample t
�

 belonging to the class c pred  is 

defined as 
    
P(t |c)= ρ

cpred ,i
ρ
cic∑ . This probability 

distribution represents the similarity of an individual test 

sample to each separate class. 

Probabilities of each set of 30 tiles get averaged, and 

reported as the image probability distribution.  Each image is 

assigned to a class based on the highest probability in the 

distribution. We made eight random splits of the image pool 

into training-test partitions and determined overall accuracy of 

the classifier as the average of the per-split performance scores 

(i.e., the accuracy is computed with an eight-fold cross-

validation scheme). 

B. Naïve Bayes and Radial Basis Functions 

The Bayes classifier [48] is based on the concept of 

inference. The naïve Bayes classifier originates from applying 

the Bayes’ theorem with an assumption of independence of 

feature variables.  The joint probability 
 
P X1, X2 ,…, X

n
c( ) 

does not account for the interaction of variables, it is rather 

considered as a product of individual probabilities 

corresponding to different nodes of the Bayes network.  We 

used the naïve Bayes classifier [49] that works with discrete 

data and employs a discretization algorithm [50] for adopting 

data to network inputs.  

RBF network [48] has only two layers of nodes; it is easy to 

implement as no topology optimization is required. The top N  

features form the input layer. The network maps N -

dimensional features to C  dimensions of the predicted class. 

The network approximates the target function in the form 

     

y
c

�
X( )= w

k
φ

�
X,

�
µ
k( )

k

∑ , c = 1,…,C; y
c

∈ 0,1





 with 

weights 
 
wk  and approximants 

     
φ

�
X,

�
µ
k( ) (radial functions). 

Index c  corresponds to c -th output variable, and 
   

�
µ
k

 are the 

function centers.  The Gaussian form of radial functions was 

used: 

     

φ
�
X,

�
µ
k( )= exp −

�
X −

�
µ
k 2

2
2σ2( )











, here σ  were 

heuristically set to a multiple of the average distance between 

function centers of a corresponding class.  The multivariate 

network output 
   
y
c{ }
c=1

C

 is subject to the constraint 
   
∑y

c
= 1  

that represents marginal probabilities. 

V. RESULTS 

The HE set of channels (e.g., HE, H, and E) resulted in the 

best classification accuracy.  Table III presents comparison of 

performances for a total of nine data sets (Gray, RGB, Red, 

Green, Blue, Lab, HE, H, and E) achieved using the three 

classifiers WND, BBN, and RBF.  As Table III shows, the HE 

set of channels result in the best classification on three 

lymphomas (> 88% for BBN and > 98% for the other two 

classifiers), the RGB set gave the second-best result (90%), the 

Gray set produced second to worst accuracy (85%), while the 

Lab set gave the worst classification of all sets (maximum of 

74%). We found that the WND classifier demonstrated the 

best overall performance with RBF performing very similarly, 

and with BBN never reporting the best accuracy. 

TABLE  III 

Data Set WND-5 BBN RBF 

GRAY 0.85 ±±±± 0.03 0.72 ± 0.04 0.83 ± 0.06 

RGB 0.90 ±±±± 0.02 0.74 ± 0.06 0.87 ± 0.03 

RGB, Red 0.84 ± 0.02 0.69 ± 0.03 0.86 ±±±± 0.04 

RGB, Green 0.81 ±±±± 0.02 0.66 ± 0.04 0.77 ± 0.03 

RGB, Blue 0.78 ±±±± 0.01 0.61 ± 0.01 0.77 ± 0.02 

Lab 0.74 ±±±± 0.02 0.52 ± 0.05 0.71 ± 0.04 

HE 0.98 ±±±± 0.01 0.92 ± 0.03 0.98 ±±±± 0.01 

HE, E 0.99 ±±±± 0.00 0.90 ± 0.06 0.99 ±±±± 0.00 

HE, H 0.98 ±±±± 0.01 0.88 ± 0.05 0.98 ±±±± 0.00 

Performance comparison for different sets: WND, BBN, and RBF classifiers. 

Data in bold correspond to the strongest result for each data set. 

 

 
Fig. 5.  WND classifier accuracy for different number of features used in 

different color spaces (HE, RGB, Gray, and Lab). 
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 One important property of a classifier is the number of 

features employed. In our experiments we found that WND 

worked most effectively in the range of 12-200 of the top-

scoring features (scored by the methods described in Section 

II.E). Fig. 5 illustrates the convergence of accuracy as a 

function of number of features ( N ) for the WND classifier. 

As one can see in Fig. 5, the curve for HE channels remains 

flat for the entire range, while other color spaces show peaks 

and declines in accuracy for certain ranges of N .  Also, 

200N =  features are optimal only for the Lab set, while other 

sets require less than 100 features. BBN [49] worked optimally 

with as few as four top-scoring features.  RBF worked best in 

relatively higher dimensional spaces: its accuracy peaked at 

about 400 features.  

Uniformity of per-class scoring is also a desirable property, 

and this was more significantly affected by the choice of color 

representation that it was by the choice of classifier. Table IV 

shows per-class accuracy for all nine data sets.  The MCL 

class in Lab classified by WBD had a much lower accuracy 

(65%) than the other two classes (72% and 86% for CLL and 

FL respectively), affecting the uniformity of per-class scoring. 

In contrast, the MCL class in HE (98%), H (99%) and E (99%) 

was more accurately classified by WND than CLL (96%, 97%, 

94% for HE, H and E respectively), and these three channels 

also gave the most uniform per-class scoring.  This trend 

persisted in all three classifiers tested. 

We compared the effect of the three different feature 

ranking schemes described in the Section II.E on the three 

different classifiers in the HE color space (see Table V).  We 

found that overall, FLD feature ranking demonstrated the best 

classification accuracy for all three classifiers. Table VI 

compares the effect of feature selection (FLD, F/C, and 

mRMR [32]) on the WND classifier in four color spaces 

(Gray, RGB, Lab, and HE) and shows that feature selection 

techniques do not have a marked effect on classification 

accuracy.  

VI. DISCUSSION 

Results of automated lymphoma classification reported here 

on the three most prevalent malignancy types demonstrate the 

fruitfulness of whole-image pattern recognition without 

reliance on segmentation.  The independence of this method 

from segmentation contributes to its potential generality, as 

previously demonstrated with its accuracy classifying many 

different image types both related and unrelated to 

histopathology.  The absence of a segmentation step also 

allowed us to directly compare various color spaces for their 

information content as assayed by the classification accuracy 

of different down-stream dimensionality reduction and 

classification techniques. 

The color spaces used in this study can be separated into 

three categories: original or camera-originated (R, G, B, and 

RGB); derived (Gray, Lab); and histological (HE, H, and E).  

For the original and derived categories it was observed that no 

single-channel data set could outperform the RGB set, where 

the WND accuracy is 90%.  In contrast, the histological 

channels alone or in combination outperformed all other 

combinations of original and derived channels.  It could be 

argued that the channels in the HE set are more orthogonal to 

each other than the channels in the RGB or Lab set because 

these color spaces are convolutions of the different 

information represented by the separate H and E stains, mainly 

nuclei and cytoplasm.  The features computed from the HE 

channels would then be more unrelated to each other and thus 

represent a greater variety of image content than features 

computed from the RGB channels, each of which contains 

both H and E in different proportions. 

The orthogonality of color channels cannot explain the poor 

performance of Lab compared to RGB.  The Lab color space 

was designed as an orthogonal color space specifically to 

allow measuring Euclidean distances between colors.  At the 

same time, the transformation between RGB and Lab is 

reversible, meaning that it preserves all information content.  

Yet Lab had the worst performance of all color spaces tried.  

In contrast, the Gray transformation from RGB is clearly not 

reversible and represents information loss, and yet Gray 

performed better than Lab.  The performance of Gray relative 

to Lab also contradicts the argument that more channels result 

in better performance, even though this was observed for RGB 

relative to R, G and B separately.  These observations indicate 

TABLE  IV 

Data sets CLL FL MCL 

WND-5 classifier 

Gray 0.91 0.90 0.75 

Lab 0.72 0.86 0.65 

RGB 0.86 0.97 0.87 

RGB, Red 0.86 0.91 0.76 

RGB, Green 0.80 0.89 0.73 

RGB, Blue 0.82 0.86 0.66 

HE 0.96 1.00 0.98 

HE, H 0.97 1.00 0.99 

HE, E 0.94 0.99 0.99 

BBN classifier 

Gray 0.77 0.85 0.52 

Lab 0.39 0.75 0.41 

RGB 0.80 0.90 0.49 

RGB, Red 0.72 0.92 0.43 

RGB, Green 0.62 0.86 0.50 

RGB, Blue 0.71 0.73 0.39 

HE 0.88 0.95 0.93 

HE, H 0.80 0.87 0.96 

HE, E 0.86 0.92 0.94 

RBF classifier 

Gray 0.85 0.88 0.78 

Lab 0.70 0.82 0.60 

RGB 0.85 0.91 0.84 

RGB, Red 0.89 0.91 0.78 

RGB, Green 0.83 0.81 0.67 

RGB, Blue 0.85 0.86 0.60 

HE 0.93 1.00 1.00 

HE, E 0.98 0.99 1.00 

HE, H 0.95 0.99 0.99 

Per-class accuracies. With almost no exceptions, FL type demonstrates the 

best per-class performance in nearly all sets. For HE sets the performance for 

FL and MCL become very close. 
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that neither diversity nor quantity, or even completeness is 

sufficient to yield the best classification results. 

When pathologists classify these samples, they tend to 

identify landmarks, similarly to the segmentation process in 

machine vision.  They tend to use several magnifications to aid 

in identifying these landmarks, and focus their attention on 

particular areas of tissue for a small number of diagnostic 

markers.  In contrast, whole-image pattern recognition seems 

to be entirely unrelated to this process as it doesn’t use 

segmentation, processes random collections of images, and 

relies on many weakly-discriminating features in concert to 

achieve a diagnosis. Our observations of classification 

accuracy in different color domains indicate that those 

domains that are best at preserving biological morphology 

(HE, H, and E) perform best in direct comparisons. Despite the 

differences between how machines and pathologists process 

visual information, it is apparently the preservation of 

biologically relevant cellular morphology that allows machines 

to achieve the best classification results. 

VII. FUTURE WORK 

Our ultimate goal is a diagnosis of new cases on previously 

unseen slides.  The major difficulty of this objective is the 

variability of existing data: the slide collection used in this 

study contains a broad range of variables including different 

sectioning and staining performed at different clinics. We 

believe that standardization in sample preparation is an 

important factor in machine-assisted or automated diagnostic 

histopathology just as it is for manual diagnosis [51, 52]. In 

future studies we will evaluate the performance of this 

classifier on tissue micro-arrays (TMAs), where biopsies from 

different patients and hospitals can be arrayed on the same 

slide and stained in bulk to eliminate much of this variability.  

While TMAs may themselves not be practical in a clinical 

setting, a demonstration that a more uniform sample produces 

more accurate diagnosis will encourage the standardization of 

these processing techniques. 

In this study we revealed image processing factors that 

promote separability of the three major types of lymphoma.  In 

a more clinical setting, additional considerations would have to 

be accounted for, including a greater diversity of cases as well 

as an expansion in the number of different lymphomas to be 

analyzed.  In a clinical application, pattern recognition systems 

can be used in various capacities ranging from stand-alone to 

decision support.  Even a limited system like that presented 

here has the benefit of consistency, and so can act to reduce 

the degree of variation in classification ability of different 

pathologists.  

VIII. CONCLUSIONS 

A whole-image pattern recognition method can be 

successful in discriminating between three of the most 

common lymphoma types.  A classification accuracy of 99% is 

possible without segmentation, using multiple magnifications, 

or selecting training images containing diagnostic lymphoma 

markers. The strongest signal is contained in a histological 

(HE) color scheme, with the original (RGB) scheme giving 

measurably worse performance, indicating that classification is 

sensitive to biologically relevant morphologies.  
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