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Abstract

We describe a multi-purpose image classifier that can be applied to a wide variety of image classification tasks
without modifications or fine-tuning, and yet provide classification accuracy comparable to state-of-the-art task-
specific image classifiers. The proposed image classifier first extracts a large set of 1025 image features including
polynomial decompositions, high contrast features, pixel statistics, and textures. These features are computed on the
raw image, transforms of the image, and transforms of transforms of the image. The feature values are then used to
classify test images into a set of pre-defined image classes. This classifier was tested on several different problems
including biological image classification and face recognition. Although we cannot make a claim of universality, our
experimental results show that this classifier performs as well or better than classifiers developed specifically for these
image classification tasks. Our classifier’s high performance on a variety of classification problems is attributed to (i)
a large set of features extracted from images; and (ii) an effective feature selection and weighting algorithm sensitive
to specific image classification problems. The algorithms are available for free download from openmicroscopy.org.
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1. Introduction

The increasing use of digital imagery in many
fields of science and engineering introduces a de-
mand for accurate image analysis and classification.
Applications include remote sensing (Smith & Li,
1999), face recognition (Shen & Bai, 2006; Jing &
Zhang, 2004; Pentland & Choudhury, 2000) and bi-
ological and medical image classification (Boland &
Murphy, 2001; Awate et al., 2006; Cocosco, Zijden-
bos & Evans, 2004; Ranzato et al., 2007). Although
attracting considerable attention in the past few
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years, image classification is still considered a chal-
lenging problem in machine learning due to the very
complex nature of the subjects in real-life images,
making quantitative similarity measures difficult.
A common approach to quantitatively measure
similarity between images is to extract and ana-
lyze a set of low-level image features (Heidmann,
2005; Gurevich & Koryabkina, 2006). These can in-
clude color (Stricker & Orengo, 1995; Funt & Fin-
layson, 1995; Tieu & Viola, 2004), texture (Smith
& Chang, 1994, 1996; Livens et al., 1996; Ferro &
Warner, 1995), shape (Mohanty et al., 2005), his-
tograms (Flickner et al., 1995; Chapelle, Haffner &
Vapnik, 1999; Qiu, Feng & Fang, 2004) and more.
However, image features perform differently depend-
ing on the image classification problem (Gurevich &
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Koryabkina, 2006), making the accuracy of a task-
specific image classifier limited when applied to a
different imaging task.

The performance of task-specific classifiers in
problems they were not originally designed for
can often be inadequate, introducing a significant
barrier to using automated image classification in
science and engineering. New image classification
problems are continually emerging in these fields,
requiring the continual development and optimiza-
tion of new image classifiers to specifically address
these problems. The knowledge and experience
needed to successfully implement such vision sys-
tems are not typically available to an experimental-
ist or application developer who does not specialize
in image analysis or pattern recognition.

The proliferation of imaging problems and clas-
sifiers to address them is acute in the field of Cell
Biology. The range of instrumentation and imaging
modes available for capturing images of cells mul-
tiplexed with the variety of morphologies exhibited
by cells and tissues preclude a standard protocol for
constructing problem-specific classifiers. There are
very few “standard problems” in Cell Biology: Iden-
tification of specific sub-cellular organelles is an im-
portant exception, but the vast majority of experi-
ments where image classification would be an invalu-
able tool do not fall into standard problem types.
The advent of High Content Screening (HCS) where
the goal is to search through tens of thousands of
images for a specific target morphology requires a
flexible classification tool that allows any morphol-
ogy to be used as a target. Since the variety of target
morphologies is vast, a general image classification
tool is required to fully exploit the potential offered
by HCS.

Here we describe a multi-purpose image classi-
fier and its application to a wide variety of image
classification problems without the sacrifice of clas-
sification accuracy. Although the classifier was ini-
tially developed to address High Content Screening,
it was found surprisingly effective in image classi-
fication tasks outside the scope of Cell Biology. In
Section 2 we describe the features extracted from
training and test images, in Section 3 we discuss the
high dimensionality classifier that computes similar-
ities between the test and training images, and in
Section 4 we present experimental results demon-
strating the efficacy of the proposed algorithm in
several test cases along with comparisons to previ-
ously proposed task-specific classifiers.

2. Image Feature Extraction

The first step in generalized image classification
is to represent the image content as a set of numeric
values (features). Due to the wide range of possible
tasks performed by generalized image classifiers, the
number of features computed during training is far
greater than in task-specific classifiers. The types
of features used by the image classifier described in
this paper fall into four categories: polynomial de-
compositions, high contrast features, pixel statistics,
and textures. In polynomial decomposition, a poly-
nomial is generated that approximates the image to
some fidelity, and the coefficients of this polynomial
are used as descriptors of the image content. Tex-
ture features report on the inter-pixel variation in
intensity for several directions and resolutions. High
contrast features, such as edges and objects, com-
prise statistics about object number, spatial distri-
bution, size, shape, etc. Pixel statistics are based on
the distribution of pixel intensities within the im-
age, and includes histograms and moments. In ad-
dition to calculating these features for the raw im-
age, we subject the image pixels to several standard
transforms (Fourier, wavelet, Chebyshev), and cal-
culate features on these transforms, as well as some
transform combinations. As will be discussed in Sec-
tion 4, the discriminating power of these features in
many of the tested image sets is greater than fea-
tures computed from raw pixels.

Together, the feature vector comprises 1025 vari-
ables, each of which reports on a different aspect of
image content. All features are based on grayscale
images, so color information is not currently used.
Since we have made no attempt to normalize this
variable space, many of these features may be inter-
dependent and cannot be considered orthogonal.
Furthermore, we make no claim that this feature
set is complete in any way. In fact, it is expected
that new types of features will be added, which will
make this classification approach more accurate,
more general or both.

Figure 1 illustrates the construction of the fea-
ture vector by computing different groups of image
features on the raw image and on the image trans-
forms (Fourier, wavelet, Chebyshev) and transform
combinations. As can be seen in the figure, not all
features are computed for each image transform.
For instance, object statistics are computed only on
the original image, while Zernike polynomials are
computed on the original image and its FFT trans-



form, but not on the other transforms. Multiscale
histograms, on the other hand, are computed for
the raw image and all of its transforms. The per-
mutations of feature algorithms and image trans-
forms was selected intuitively to be a useful subset of
the full set of permutations. Evaluation of this sub-
set has established that this combinatorial approach
yields additional valuable signals (see Figure 6). It
is quite likely that further valuable signals could be
obtained by calculating a more complete set of per-
mutations.

2.1. Basic image transforms

Image features can be extracted not only from
the raw image, but also from its transforms (Rode-
nacker & Bengtsson, 2003; Gurevich & Koryabkina,
2006; Orlov et al., 2006). Re-using feature extrac-
tion algorithms on image transforms leads to a large
expansion of the feature space, with a correspond-
ing increase in the variety of image content descrip-
tors, but without a corresponding increase in algo-
rithm complexity. For Fourier transform we used
the FFTW (Frigo & Johnson, 2005) implementa-
tion of the Fourier transform. This transform re-
sults in complex-valued plane, of which only abso-
lute values were used. For the wavelet transform, the
standard MATLAB Wavelet toolbox functions were
used to compute a Symlet 5, level 1 two-dimensional
wavelet decomposition of the image. The Cheby-
shev transform was implemented by our group and
is described in Section 2.2. Transform algorithms
can also be chained together to produce compound
transforms. In this work we also generated Cheby-
shev and wavelet transforms of the Fourier trans-
form of the image. As will be described in Section 4,
image content extracted from transforms of the im-
age is a key contributor to the accuracy of the pro-
posed image classifier.

2.2. Image features based on Chebyshev transform

Chebyshev polynomials T), (z) = cos(n-arccos(z))
(Gradshtein & Ryzhik, 1994) are widely used for
approximation purposes. For any given smooth
function, one can generate its Chebyshev approxi-
mant such as f(z) ~ XY _a,T,(x), where T}, is a
polynomial of degree n, and « is the expansion coef-
ficient. Since Chebyshev polynomials are orthogonal
(with a weight) (Gradshtein & Ryzhik, 1994), the
expansion coefficients «,, can be expressed via the

scalar product o, = (f(x), T, (z)). For a given im-
age I, its two-dimensional approximation through
the Chebyshev polynomials is I;; = I(xz;,y;) =~
S0 —0@nmTn ()T (y;). The fast algorithm that
was used in the transform computation takes two
consequent 1D transforms, first for rows of the im-
age, then for the columns of the resulting matrix,
similarly to the implementation of 2D FFT.

Chebyshev is used by the proposed image classi-
fier both as a transform (with orders matching the
image dimensions) and as a set of statistics. For the
statistics, the maximum transform order does not
exceed N = 20, so that the resulting coefficient vec-
tor has dimensions (1x400). The image features are
the 32-bin histogram of the 400 coefficients. Since
the Chebyshev features are computed on the raw im-
age and on the Fourier-transformed image, the total
number of image descriptors added to the feature
vector is 64.

2.3. Image features based on Chebyshev-Fourier
transform

The Chebyshev-Fourier 2D transform is defined
in polar coordinates, and uses two different kinds
of orthogonal transforms for its two variables: dis-
tance and angle. The distance is approximated with
Chebyshev polynomials, and the angle is deduced
by Fourier harmonics, as described by Equation 1.

2 )
Qnm(r, ¢) = Tn(Er _ 1)61771(25’0 <r<R (1)

For the given image I, the transform is described
by Equation 2.

N
2

N
Li= Ik, d1) > Y > BumQum (e, d1)  (2)

—— N n=0
m=—7%5

In the proposed image classifier, image descriptors
are based on the coefficients f3,,,, of the Chebyshev-
Fourier transform, and absolute values of complex
coefficients are used for image description (Orlov
et al., 2006). The purpose of the descriptors based
on Equation 2 is to capture low-frequency compo-
nents (large-scale areas with smooth intensity tran-
sitions) of the image content. The highest order of
polynomial used is N = 23, and the coefficient vec-
tor is then reduced by binning to 1x32 length. Since
Chebyshev-Fourier features are computed on the
raw image and on the Fourier-transformed image,
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Fig. 1. The construction of the feature vector.

this algorithm contributes 64 image descriptors to
the feature vector.

2.4. Image features based on Gabor wavelets

Gabor wavelets (Gabor, 1946) are used to con-
struct spectral filters for segmentation or detection
of certain image texture and periodicity characteris-
tics. Gabor filters are based on Gabor wavelets, and
the Gabor transform of an image [ in frequency fis
defined by Equation 3.

(3)
where the kernel G(wg,wy, f) takes the form of
a convolution with a Gaussian harmonic function
(Gregorescu, Petkov & Kruizinga, 2002), as de-
scribed by Equation 5.

G(wrv Wy fO) = e X22J;»£y2 . ei(f0X+¢)
X = w, cos(0) + w, sin(0)
Y = —w, sin(0) + w, cos(0)

(4)

The parameters of the transform are 6 (rotation),
v (ellipticity), fo (frequency), and « (bandwidth).
As proposed by (Gregorescu, Petkov & Kruizinga,
2002), the parameter ~ is set to 0.5, and « is set
to 0.56 x Qf—g The Gabor features (GF) used in the
proposed image classifier are defined as the area oc-
cupied by the Gabor-transformed image, as defined
by Equation 5.

GF(fo) = - / / GT(z,y, fo)dedy.  (5)

To minimize the frequency bias, these features
are computed in a frequency range (fo € {fx}r,),
and normalized with the low frequency component
G = GF(fL). The frequency values that are used



in the proposed image classifier are fr = 0.1 and
fo=11,2,...,7). This results in seven image descrip-
tors, one for each frequency value that corresponds
to high spectral frequencies, especially grid-like tex-
tures. Gabor filters are computed only for the raw
image, and therefore seven feature values are added
to the feature vector.

2.5. Image features based on Radon transform

The Radon transform (Lim, 1990) computes a
projection of pixel intensities onto a radial line from
the image center at a specified angle. The transform
is typically used for extracting spatial information
where pixels are correlated to a specific angle. In the
proposed image classifier, the Radon features are
computed by a series of Radon transforms for an-
gles 0, 45, 90, and 135. Each of the resulting series
values are then convolved into a 3-bin histogram, so
that the resulting vector totals 12 entries.

The Radon transform is computed for the raw
image, the Chebyshev transform of the image, the
Fourier transform of the image, and the Chebyshev
transform of the Fourier transform. The Radon
transform provides 12 feature values each time it is
applied, so the total number of features contributed
to the feature vector is 48.

2.6. Multi-scale histograms

This set of features computes histograms with
varying numbers of bins (3, 5, 7, and 9), as proposed
by (Hadjidementriou, Grossberg & Nayar, 2001).
Each frequency range best corresponds to a different
histogram, and thus variable binning allows measur-
ing content in a large frequency range. The maxi-
mum number of counts is used to normalize the re-
sulting feature vector, which has 1x24 elements.

Multi-scale histograms are applied to the raw im-
age, the Fourier-transformed image, the Chebyshev-
transformed image, Wavelet-transformed image,
and the Wavelet and Chebyshev transforms of the
Fourier transform. Since each multi-scale histogram
has 24 bins, the total number of feature elements is
6 x 24 = 144.

2.7. Four-way oriented filters for first four moments

For this set of features, the image is subdivided
into a set of “stripes” in four different orientations
(0°, 90°, +45° and -45°). The first four moments

(mean, variance, skewness, and kurtosis) are com-
puted for each stripe and each set of stripes is sam-
pled as a 3-bin histogram. Four moments in four
directions with 3-bin histograms results in a 48-
element feature vector.

Like the multi-scale histograms, the four moments
are also computed for the raw image, the three trans-
forms and the two compound transforms, resulting
in 6 x 48 = 288 feature values.

2.8. Tamura features

Three basic Tamura textural properties of an
image are contrast, coarseness, and directionality
(Tamura, Mori & Yamavaki, 1978). Coarseness
measures the scale of the texture, contrast esti-
mates the dynamic range of the pixel intensities,
and directionality indicates whether the image fa-
vors a certain direction. For the image features we
use the contrast, directionality, coarseness sum, and
the 3-bin coarseness histogram, totaling six feature
values for this group.

Tamura features are computed for the raw image
and the five transforms (three transforms plus two
compound transforms), so that the total number of
feature values contributed to the feature vector is
36.

2.9. FEdge Statistics

Edge statistics are computed on the image’s
Prewitt gradient (Prewitt, 1970), and include the
mean, median, variance, and 8-bin histogram of
both the magnitude and the direction components.
Other edge features are the total number of edge
pixels (normalized to the size of the image) and the
direction homogeneity (Murphy et al., 2001), which
is measured by the fraction of edge pixels that are
in the first two bins of the direction histogram. Ad-
ditionally, the edge direction difference is measured
as the difference amongst direction histogram bins
at a certain angle o and « + 7, and is recorded in
a four-bin histogram. Together, these contribute 28
values to the feature vector.

2.10. Object Statistics

Object statistics are calculated from a binary
mask of the image resulting from applying a the
Otsu global threshold (Otsu, 1979), and then find-
ing all 8-connected objects in the resulting binary



mask. Basic statistics about the segmented objects
are then extracted, which include Euler Number
(Gray, 1971) (the number of objects in the region
minus the number of holes in those objects), and
image centroids (x and y). Additionally, minimum,
maximum, mean, median, variance, and a 10-bin
histogram are calculated on both the objects areas
and distances from objects centroids to the image
centroid. These statistics are calculated only on
the original image, and contribute 34 values to the
feature vector.

2.11. Zernike and Haralick features

Zernike features (Teague, 1980) are the coeffi-
cients of the Zernike polynomial approximation of
the image, and Haralick features (Haralick, Shan-
mugam & Dinstein, 1973) are statistics computed
on the image’s co-occurrence matrix. While Zernike
coefficients are complex-valued, absolute values are
used as image descriptors. A detailed description of
how these features are computed and used in the
proposed classifier can be found at (Murphy et al.,
2001).

The number of values computed by Zernike and
Haralick features are 72 and 28, respectively. While
Haralick features are computed for the raw image
and the five image transforms, Zernike features are
computed only on the raw image and its Fourier
transform. Therefore, the total number of feature
values added by Zernike and Haralick features is 6 x
28 +2 x 72 = 312.

3. Feature Value Classification

Due to the high dimensionality of the feature set,
some of the features computed on a given image
dataset are expected to represent noise. Therefore,
selecting an informative feature sub-space by reject-
ing noisy features is a required step. In task-specific
image classification, selection of relevant image fea-
tures is often manual. For general image classifica-
tion, however, feature selection (or dimensionality
reduction) and weighting must be accomplished in
an automated way.

There are two different approaches of handling a
large set of features; hard thresholding, in which a
subset of the most informative features are selected
from the pool of features, and soft thresholding, in
which each feature is assigned a weight that corre-
sponds to its informativeness. In the proposed clas-

sifier, we combine the two approaches by calculating
weights for each feature, rejecting the least infor-
mative features, and using the remaining weighted
features for classification.

In the proposed implementation, the feature
weight Wy of feature fis a simple Fisher Discrimi-
nant score (Bishop, 2006) described by Equation 6,
wo— STy =Tpe)* N

f= N 2 ’ N -1 (6)

Ec:l af,c

where Wy is the Fisher Score, N is the total number
of classes, T is the mean of the values of feature fin
the entire dataset, 1 . is the mean of the values of
feature fin the class ¢, and U?’C is the variance of fea-
ture famong all samples of class c. The Fisher Score
can be conceptualized as the ratio of variance of class
means from the pooled mean to the mean of within-
class variances. The multiplier factor of % is a
consequence of this original meaning. All variances
used in the equation are computed after the val-
ues of feature f are normalized to the interval [0, 1].
This weighting method was found to be simple, fast
and effective for this classifier. After Fisher scores
are assigned to the features, the weakest 35% of the
features (with the lowest Fisher scores) are rejected.
This number was selected empirically, based on our
observations with several classification problems in-
dicating that the classification accuracy reaches its
peak when 45% of the strongest features are used.
Since the accuracy is essentially unaffected in this
wide range, we set the threshold in the middle of it.
The resulting number of features used by this classi-
fier is still significantly larger than most other image
classifiers such as (Yavlinsky, Heesch & Ruger, 2006;
Heller & Ghahramani, 2006; Rodenacker & Bengts-
son, 2003), that use 120 to 240 different image con-
tent descriptors.

These reduced and weighted features are used in a
variation of nearest neighbor classification we named
Weighted Neighbor Distances (WND-5). For feature
vector z computed from a test image, the distance
of the sample from a certain class ¢ is measured by
using Equation 7,

] T — P
_ ZteTc[Zf_1|Z|)%( f tf)2} (7)

where T is the training set, T, is the training set
of class ¢, t is a feature vector from T, |z| is the
length of the feature vector z, x ; is the value of image
feature f, Wy is the Fisher score of feature f, |T;| is
the number of training samples of class ¢, d(z, ¢) is

d(z,c)
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Fig. 2. The effect of the exponent value —p on the accuracy
of five image classification problems.

the computed distance from a given sample x to class
¢, and p is the exponent, which is set to -5. That is,
the distance between a feature vector and a certain
class is the mean of all weighted distances (in the
power of p) from that feature vector to any feature
vector that belongs to that class. After the distances
from sample z to all classes are computed, the class
that has the shortest distance from the given sample
is the classification result.

While in simple Nearest Neighbor (Duda, Hart &
Stork, 2000) only the closest (or k closest) training
samples determine the class of the given test sam-
ple, WND-5 measures the weighted distances from
the test sample to all training samples of each class,
so that each sample in the training set can effect
the classification result. The exponent (p) damp-
ens the contribution of training samples that have a
relatively large distance from the test sample. This
value was determined empirically, and observations
suggest that classification accuracy is not extremely
sensitive to it. Figure 2 shows how the performance
of several image classification problems (described
in Section 4) respond to changes in the value of the
exponent. As can be seen in the plot, a broad range
of p between -20 and -4 gives comparable accuracies.

This modification of the traditional NN approach
provided us with the most accurate classification, as
will be demonstrated in Section 4. The combination
of the feature extraction algorithms with the WND-
5 classifier was named WND-CHARM (Weighted
Neighbor Distances using a Compound Hierarchy of
Algorithms Representing Morphology).

4. Experimental Results

The performance of WND-CHARM was evalu-
ated using several datasets from different types of
image classification problems. For each dataset eval-
uated, the performance of the algorithm described
in this paper was compared with the performance of
previously proposed application-specific algorithms
that were developed exclusively for that dataset.
For biological images we used the HeLa dataset
(Boland & Murphy, 2001), consisting of fluorescence
microscopy images of HeLa cells using 10 differ-
ent labels, the Pollen dataset (Duller et al., 1999),
which shows geometric features of pollen grains,
and the CHO dataset (Boland, Markey & Murphy,
1998), consisting of fluorescence microscopy images
of different sub-cellular compartments. For face
classification we used the AT&T dataset (Samaria
& Harter, 1994) that includes a total of 400 images
of 40 individuals with different facial expressions,
and the Yale dataset (Georghiades, Belhumeur &
Kriegman, 2001) that contains 165 images of 15
individuals with different expressions and lightning
conditions. Other experiments included the Bro-
datz (Brodatz, 1966) texture dataset and COIL-20
(Nene, Nayar & Murase, 1996), which is a set of
images of 20 objects in different orientations. The
sizes of the training sets, test sets, and the num-
ber of classes in each dataset are similar to those
used for the evaluation of the reported task-specific
classifiers, and are listed in Table 1.

Dataset |No. of|No. of training|No. of test
classes images images
Hela 10 590 272
Pollen 7 490 140
CHO 5 80 262
Brodatz | 112 896 896
COIL-20| 20 1080 360
AT&T 40 200 200
Yale 15 90 75

Table 1
Datasets used for accuracy comparison

The classification accuracy of the HeLa dataset
was compared with the performance of a backprop-
agation neural network reported by Murphy (2004),
CHO was compared with with the work of Boland,
Markey & Murphy (1998), and for the Pollen dataset
we compared WND-CHARM with the application-
specific algorithm described by France et al. (1997).
Figures 3, 4 and 5 are examples of the different



images in the HeLa, Pollen, and CHO datasets, re-
spectively. Each dataset was randomly partitioned
50 times into a training set and a test set, and the
classification algorithm was applied to each parti-
tion. The reported classification accuracy is the av-
erage accuracy of these 50 runs (see Table 2). The
accuracies reported for task-specific algorithms are
as published - we did not perform these tests again
ourselves. As can be learned from the table, the ac-
curacy of WND-CHARM is greater than the bench-
mark accuracy of algorithms that were designed and
developed specifically for these datasets.

Fig. 4. Typical images of pollen grains of the 7 classes of the
Pollen dataset

Fig. 5. Typical images of the 5 classes of the CHO dataset
(giant, hoechst, lamp2, nop4, tubulin)

AT&T and Yale face recognition datasets were
compared with the accuracy of Eigenface (Turk &
Pentland, 1991), Fisherface (Belhumeur, Hespanha
& Kriegman, 1997), DLDA (Yu & Yang, 2001), dis-
criminant wavelength (Chien & Wu, 2002), and dis-
criminant DCT (Jing & Zhang, 2004), as reported
by (Jing & Zhang, 2004). The accuracy measures are
listed in Table 3. As the table shows, the accuracy
of WND-CHARM for both datasets was compara-
ble with the other methods.

The full (112 textures) Brodatz dataset (Brodatz,
1966) was compared using several different algo-
rithms as reported in (Do & Vetterli , 2002), and
showed good classification accuracy as can be seen
in Table 4.

Dataset Benchmark Benchmark No.|Benchmark| Accuracy of

algorithm of features used| accuracy |WND-CHARM
Hela (Murphy, 2004) 37 83 86
Pollen |(France et al., 1997) 8 79 96
CHO (Boland, Markey 37 87 95

& Murphy, 1998)
Table 2
Comparison of the accuracy (%) of WND-CHARM with
application-specific classifiers
Dataset|Eigenface|Fisherface] DLDA [Discriminant|Discriminant| WND-
wavelength DCT CHARM

AT&T 90 82.5 89 94.5 97.5 97
Yale 91 80 88 85.5 98 83

Table 3
Comparison of the accuracy (%) of WND-CHARM to
application-specific classifiers on face recognition datasets

Method Accuracy
L'+12 (Manjunath & Ma, 1996) 64.83
GCD (Do & Vetterli , 2000) 75.73
scalar WD-HMM (Crouse, Nowak & Baraniuk, 1998)| 76.51
vector WD-HMM (Do & Vetterli , 2002) 80.05
WND-CHARM 90.3

Table 4
Comparison of the accuracy (%) of WND-CHARM to
application-specific classifiers on the Brodatz dataset

The Brodatz dataset was also used to test the
rotational and scale invariance of the proposed
method. This test was performed using the rotated
subset of Brodatz dataset used by (Do & Vetterli
, 2002), which included the textures bark, sand,
pigskin, bubbles, grass, leather, wool, raffia, weave,
water, wood, straw, brick. The performance was eval-
uated using the method described in (Manjunath
& Ma, 1996), and (Do & Vetterli , 2002) (percent-
age of relevant images among the top 15 retrieved
images). The results were compared with the per-
formance several other algorithms as described in
(Do & Vetterli , 2002), as listed in Table 5.

Method Retrieval rate
w/o rotation invariance 52
w/ rotation invariance 87
WND-CHARM 79

Table 5

Retrieval rate (%) of WND-CHARM compared to the
application-specific classifiers described in (Do & Vetterli ,
2002) on rotated Brodatz images

The same data and settings were used to evalu-
ate the scale invariance of the proposed image clas-
sifier, but instead of rotating the images by differ-




ent angles, the images were scaled by four different
factors, ranging from 0.6 to 0.9 with a 0.1 interval.
The results were compared with the performance of
the Steer Pyramid approaches M-SPyd (Montoya-
Zegarra, Leite & Torres, 2007) and C-SPyd (Simon-
celli & Freeman., 1995), and Gabor Wavelets (Han
& Ma, 2007), as described in Table 6.

Method Retrieval rate
M-SPyd 86.5
C-SPyd 80.5

Gabor Wavelets 60.7
WND-CHARM 73.5

Table 6
Retrieval rate (%) of WND-CHARM compared to
application-specific classifiers on scaled Brodatz images

As can be seen in Tables 5 and 6, the proposed
method was less effective than algorithms designed
specifically for texture classification in different
rotations or scales. However, compared to an al-
gorithm for texture classification that was not de-
signed for rotation invariance, the proposed image
classifier recorded a significantly higher accuracy,
and also performed better than Gabor Wavelets on
scale-variant textures. These results indicate that
the method described in this paper can handle a
certain degree of rotational and scale invariance,
but may be less effective than application-specific
algorithms.

An additional experiment on rotational invariance
was performed using the COIL-20 image dataset,
and was compared to Max-tree and S.E. BV algo-
rithms described in (Urbach, Roerdink & Wilkin-
son, 2007). The results are reported in Table 7, and
show that the proposed method is favorably compa-
rable to previously proposed algorithms.

Method Accuracy
Max-tree 98.9
S.E. BV 99.0
WND-CHARM| 99.7

Table 7
Comparison of classification accuracy (%) on the COIL-20
dataset

Each of the tested image classification problems
makes use of a different set of image features. The
features used are assigned different weights for each
dataset, according to their ability to discriminate
between different image classes. Figure 6 is a bar
graph comparing Fisher Discriminant (FD) scores
for every image feature used in several of the tested
datasets. The raw FD scores for each dataset were

normalized to facilitate comparison. The vertical
scale in each row is the percentage of the feature’s
FD score compared to the highest-scoring feature
in a given dataset. The highest FD score is also re-
ported on the right for comparison. An aggregate
score for each feature over all datasets was also com-
puted in order to compare the features overall use-
fulness. We first calculated the percent contribution
of each feature to each problem by dividing its FD
score by the sum of the FD scores for all features in
a given dataset. The average percent contribution of
each feature for all datasets was used as the overall
score for that feature.

As can be seen in Figure 6, in some datasets (e.g.
CHO), a small number of image features contribute
disproportionately to classification (first four mo-
ments, Haralick textures and Radon transforms). In
other datasets (e.g. AT&T), a much larger number
of image features contribute relatively equally to
the classification. Comparing the FD scales between
CHO and AT&T indicates that CHO’s few features
are highly discriminative, while all of AT&T’s fea-
tures are relatively less informative.

The efficacy of the WND classifier described in
Section 3 was tested by comparing it to the perfor-
mance that was achieved when using Weighted NN
and the Bayesian Network implementation of Mur-
phy (2001) with feature selection using greedy hill
climbing (Kohavi & John, 1997) and the value dis-
cretization method of Dougherty, Kohavi & Sahami
(1995). The resulting performance figures are listed
in Table 8.

Dataset|Bayesian Network| WNN|WND
Hela 69 85 86
CHO 78 94 95
Pollen 78 96 96
AT&T 65 97 97
Yale 58 81 83

Table 8
Comparison of classification accuracies (%) when using
WND, WNN and Bayesian Network classifiers

As the table shows, the performance of the
Bayesian network was significantly lower than
WND-5, which also outperformed WNN for the
tested datasets. This experiment demonstrates the
effectiveness of WND when the number of features
is high.
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4.1. Image Features of Transforms and Compound
Transforms

An important aspect of the described method is
the use of image features computed on image trans-
forms and image compound transforms. The im-
age transforms used in the proposed method are
non-linear mappings of the original image content
into non-physical spaces. Although the image trans-
forms look drastically different visually than the
original image, the actual image content remains
the same, but represented in a different form where
pixels make different patterns, and pixel associa-
tions obey different rules. This allows to significantly
expand the image content descriptors, and extract
more information from each image. A simple exam-
ple is multi-frequency features, which may be hidden
when working with the raw pixels, but can easily be
extracted from their Fourier domain.

Figure 6 shows that features computed on trans-
forms and compound transforms of the image are
in many cases more informative than the same fea-
tures derived from the image itself. For instance, in
the tested datasets Chebyshev Statistics computed
on the Fourier transform are overall more informa-
tive than Chebyshev Statistics computed on the raw
image. Haralick texture features computed on the
Chebyshev transform of the Fourier transform are
more informative than either Haralick features com-
puted on the Fourier transform, on the Chebyshev
transform or on the raw image.

The contribution of image features computed on
image transforms and image compound transforms
is described in Table 9, which shows a comparison
of the classification accuracies of the tested datasets
when using image features computed only on the
raw images, raw images + image transforms, and
raw images + compound transforms.

Dataset| Raw | Raw pixel + Raw pixels +

pixels|image transforms| image transforms +

compound transforms

Hela 81 84 86

CHO 82 95 95

Pollen 91 93 96

AT&T | 94 94 97

Yale 75 " 83
Table 9

Comparison of classification accuracy (%) with and without
transforms and compound transforms

As Table 9 shows, computing image features on
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image transforms has a dramatic effect on the clas-
sification accuracy in most cases, while compound
transforms also contribute significantly to the per-
formance of the image classifier.

4.2. Computational Complexity

Perhaps the major downside of the proposed algo-
rithm is its computational complexity. With a MAT-
LAB implementation of the described method, com-
puting all image features of a 100x100 image re-
quires ~22 seconds using a system equipped with
an Intel processor at 2GHz and 1GB of RAM. This
number grows approximately linearly with the im-
age size, resulting in poor performance in terms of
computational complexity, making this method un-
suitable for real-time or other types of applications
in which speed is a primary concern. For example,
the execution time required for training the differ-
ent image classifiers for AT&T and Yale datasets are
listed in Table 10.

Dataset|Eigenface|Fisherface] DLDA [Discriminant|Discriminant| WND-

wavelength DCT CHARM
AT&T 23.7 26.4 22.1 28.5 24.9 9220
Yale 14.3 14.9 13.1 15.2 14.8 12950
Table 10

Comparison of the training time (in seconds, using a 1.4
GHZ Pentium processor) of different image classifiers

In order to compute image features for large
datasets, we used two levels of parallelism to take
advantage of modern multi-core, multi-CPU plat-
forms. Because image features are computed for
each image independently, feature computation on
different images can be easily paralleled. Another
level of parallelism used is computing several differ-
ent sets of features on the same image at the same
time. E.g., while Haralick textures are computed
by one processor, another processor can extract the
Zernike features of the same image. These two levels
of parallelism have been implemented by our group,
and the software is available as part of the OME
(Swedlow et al., 2003) open source package. More
details describing the parallelism and the algorithm
execution are provided at (Macura et al., 2008).

Another viable approach for improving the execu-
tion time is the use of FPGAs (Field Programmable
Gate Arrays). Because the proposed method per-
forms well on many different image classification
problems, it is a good candidate for an FPGA imple-
mentation to improve execution time. Similar algo-




rithms have already been implemented for common
image processing tasks such as FF'T or Convolution,
and we are currently considering implementation of
the proposed method on these platforms.

5. Conclusion

We described an image classification algorithm
that can address a wide variety of image classifica-
tion problems without modifications or parameter
adjustments, and can provide accuracy favorably
comparable to previously proposed application-
specific classifiers. WND-CHARM is based on com-
puting a very large set of image features. Since
different groups of image features are more infor-
mative for different image classification problems,
the large set of features used by this method can
provide a sufficient pool of features for an unknown
image classification task. We encourage scientists
and engineers who face new image classification
tasks to try WND-CHARM before developing their
own task-specific image classifiers. The MATLAB
code is part of the OMFE (Swedlow et al., 2003)
software suite, which is available for download at
http://www. openmicroscopy.org
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