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Abstract

The increasing prevalence of automated image acquisition systems is enabling new types of microscopy
experiments generating large image datasets. However, there is a perceived lack of robust image analysis
systems required to process these diverse datasets. Most automated image analysis systems are tailored
for specific types of microscopy, contrast methods, probes and even cell types. This imposes significant
constraints on experimental design, limiting their application to the narrow set of imaging methods for
which they were designed. One of the approaches to address these limitations is pattern recognition, which
was originally developed for remote sensing, and is increasingly being applied to the biology domain. This
approach relies on training a computer to recognize patterns in images rather than developing algorithms
or tuning parameters for specific image processing tasks. The generality of this approach promises to
enable data mining in extensive image repositories, and provide objective and quantitative imaging assays
for routine use. Here we provide a brief overview of the technologies behind pattern recognition and its
use in computer vision for biological and biomedical imaging. We list available software tools that can
be used by biologists and suggest practical experimental considerations to make the best use of pattern
recognition techniques for imaging assays.

Introduction

Computer-aided analysis of microscopy images has been attracting considerable attention in the past few
years, particularly in the context of high-content screening. The link between images and physiology is
well established, and it is common knowledge that a significant portion of what we know about biology
relies on different types of microscopy, as well as more modern imaging devices (e.g., MRI). Automated
image acquisition systems integrated with laboratory automation have produced image datasets that are
too large for manual processing. This trend led to a new type of biological experiment, in which the
image analysis must be performed by machines. Clearly, this approach is different than the bulk of the
microscopy performed for the past ∼400 years. However, while the availability of automated microscopy,
laboratory automation, computing resources, and digital imaging and storage devices has been increasing
consistently, in some cases the bottleneck for high-throughput imaging experiments is the efficacy of
computer vision, image analysis, and pattern recognition methods [1]. Computer-based image analysis
provides an objective method of scoring visual content independently of subjective manual interpretation,
while potentially being more sensitive, more consistent and more accurate [2]. These advantages are not
limited to massive image datasets, as they allow microscopy to be used as a routine assay system even
on a small scale.

An effective computational approach to objectively analyze image datasets is Pattern Recognition
(PR, see Box 1). PR is a machine learning approach where the machine finds relevant patterns that
distinguish groups of objects after being trained on examples (i.e. supervised machine learning). In
contrast, the other approach to machine learning and artificial intelligence is unsupervised learning,
where the machine finds new patters without relying on prior training examples, usually by using a set of
pre-defined rules. An example of unsupervised learning is clustering, where a dataset can be divided into
several groups based on pre-existing definitions of what constitutes a cluster, or the number of clusters
expected. A review of machine learning in the context of bioinformatics (as opposed to imaging) can be
found in [3].
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Traditionally, analysis of digital microscopy images requires identifying regions of interest (ROIs) or
“objects” within the images. Once a region is isolated from the background, the resolution and dynamic
range afforded by digital microscopy allows many types of measurements and statistics to be collected
about the object in question, such as intensity, shape, size, position as well as the number of objects,
and their distribution [4]. This region selection can be done manually by drawing boxes or free-hand
regions using an interactive tool [5], or automatically using computer algorithms known as segmentation
algorithms [4,6]. While most image analysis continues to rely on region identification, pattern recognition
can also be used to process whole images or images tiled on a grid without a prior region identification
step [7].

Traditional image processing is therefore predicated on the question: “Can my objects of interest be
identified?”. In contrast, pattern recognition is predicated on the question: “Can these groups of images
be distinguished?”. In this context, the input to a PR algorithm may be an entire image, a sub-image
region identified with segmentation algorithms, or simply image samples in the form of rectangular tiles.
Thus, in contrast to selecting and tuning a segmentation algorithm, PR requires training a computer
to distinguish groups of images. These groups correspond to experimental controls, and the set of
images within a group encompasses the variation within each control. Given these groups of images,
the machine can learn on its own what aspects of the images represent natural experimental variation
and are therefore irrelevant, and what aspects are important for distinguishing the groups of control
images from each other [1, 4, 8]. This ability to sort image measurements by their relevance to a given
imaging experiment allows the use of a great variety of generic image description algorithms that are not
specifically related or tuned to each imaging problem, potentially making the collection of algorithms
very general. The selection of algorithms and the rules for combining them are done automatically as
part of the machine-learning process, eliminating the need for a microscopist to select the set of imaging
algorithms to use, or adjust the parameters with which to run them.

Images taken with phase contrast, differential interference contrast (DIC) or other methods for visu-
alizing gross morphology are notoriously difficult for computers to analyze because the perceptual model
may not be visually apparent, or challenging to encode in algorithms [9]. The types of image measure-
ments that can be used for PR are not limited to what we can perceive, model and encode in segmentation
algorithms, making it possible to use automated methods to analyze gross morphology rather than being
limited to specific probes, or a priori perceptual models.

The applicability of PR in a specific imaging experiment depends entirely (and solely) on the avail-
ability and distinguishability of control images. Thus, a PR approach to an imaging experiment is very
closely tied to the biological experiment itself rather than intermediate measurements from image pro-
cessing, or familiarity with the algorithms necessary to produce these measurements. PR can be used
in tandem with segmentation algorithms when possible in order to exploit benefits provided by both ap-
proaches. Except in a limited sense such as analyzing the confusion matrices of classification experiments
as discussed in Section 5, most PR approaches do not yield the types of quantitative results one gets from
segmentation algorithms. Instead, it can lead directly to a qualitative experimental result, such as finding
the “hits” in a screen. In general, PR is useful as an exploratory imaging assay that is independent of
any preconceptions of the nature or existence of morphological differences in the imaging experiment.
PR requires little effort or expertise to try. It can be used to check whether morphological readouts exist
and develop more specific imaging algorithms if warranted.

In this review we describe the general outline common to all pattern recognition systems used for
biological microscopy, and focus on techniques and specific software packages that have been used suc-
cessfully in biological image analysis. We discuss some of the requirements of the experimental setup that
are necessary to take full advantage of pattern recognition and point out some of the differences between
pattern recognition experiments and traditional manual evaluation of microscopy images or model-based
image analysis.
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Box 1. Pattern Recognition:
Pattern recognition is the task of automatically detecting patterns in datasets and using them
to characterize new data. Pattern recognition is a form of machine learning, which itself is
a field within artificial intelligence. Machine learning can be divided into two major groups.
In Supervised learning, or Pattern Recognition, a computer system is trained using a set of
pre-defined classes, and then used to classify unknown objects based on the patterns detected
in training. In Unsupervised learning there are no classes defined a priori, and the computer
system subdivides or clusters the data, usually by using a set of general rules. An example
of supervised learning is automatic detection of protein localization, in which the computer
system is trained using images of probes for known sub-cellular compartments [10]. An
example of unsupervised learning is clustering an expression profiling microarray experiment
into groups of genes with similar expression patterns.
Other approaches to PR include semi-supervised learning, which uses pre-defined classes
to find new similarity relationships and define new groups, and reinforcement learning, in
which decisions are improved iteratively based on a feedback mechanism and specified reward
criteria. In this educational article we focus on the application of supervised learning to
automated analysis of microscopy image datasets.

1 Overview of bioimage pattern recognition systems

Although there are many examples of pattern recognition systems, the process can be summarized in
several steps (Figure 1).

As with traditional image processing approaches based on object identification alone, pattern recog-
nition can also benefit from various techniques to subdivide images into regions of interest (ROIs). The
three principal reasons for doing so are 1) reduce the number of pixels the PR algorithm needs to consider
all at once to improve response time or increase statistical power, 2) bias the PR algorithm to process
objects of interest rather than background, and 3) center or align objects that have inherent orientation.
ROI detection algorithms and tools are described more thoroughly in Section 2.

The second step is the extraction of image content descriptors (image features), which are values that
describe the image content numerically. These values can reflect various texture parameters of the image,
the statistical distribution of pixel intensities, edges, colors, etc. While the dimensionality of the raw
pixels can typically reach ∼1,000,000 (assuming a microscopy image of 1000×1000 pixels), the number of
image features ranges between a dozen to a few hundred. While each pixel value describes the intensity
at a given X,Y position, each feature value describes a specific image characteristic. A more detailed
description of the types of features commonly used can be found in Section 3.

In the next step, the image features are used to draw conclusions about the data. Generally, pattern
recognition methods select features and potentially assign weights based on their ability to discriminate
the classes. The refined feature set is then used to infer rules for combining them in a classifier. These
two steps constitute the training stage in PR, where the goal is to correctly classify the training images.
The trained classifier is then tested on control images that were excluded from the training stage. This
cross-validation is important to establish the classifier’s ability to identify new images, ensuring that it
is not restricted to recognizing images it was trained with. More information about feature selection and
classification can be found in Section 4.

Finally, the results of image classification need to be interpreted by the researcher in an experimental
context to reach a biological conclusion. There are special considerations in this interpretation specific
to PR, which is further discussed in Section 5.
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2 Finding regions of interest

As discussed in Section 1, the first step of computer-aided image analysis is usually to reduce the number
of pixels considered by the PR algorithm. The most labor intensive approach to this is to manually define
regions of interest. While in some cases this can be the only option, this method introduces bias and
inconsistency, and is too labor intensive to be practical for the analysis of large scale screens. In this
case, the definition of ROIs can be automated by simply dividing the image into tiles using a regular grid
pattern. This simple reduction in pixel number can increase the throughput of the PR algorithms, as
well as provide greater statistical power by considering a larger number of individual tiles.

In cases where objects of interest can be easily identified by segmentation algorithms (e.g. fluorescently
labeled cells or structures), subsequent image analysis can be more effective if only the regions of interest
are processed and analyzed, while the background areas are left out of consideration. Similarly to naive
tiling, rejection of biologically irrelevant areas reduces the response time of the system. A more important
role for this type of ROI detection is that it can potentially eliminate the presence of artifacts which can
add noise, and degrade the efficacy of the computer analysis. In cases where the objects of interest are
difficult to detect among all the objects that appear in the image, PR-based analysis can be used to
“learn” which of these objects have biological meaning relevant to the experiment.

Some implementations of segmentation algorithms are designed for a specific type of object (e.g.,
cells), and therefore do not require intensive tuning of the system, while other tools are more general,
and require adoption to the objects of interest. Widely used methods for ROI detection include global
thresholding [11], watershed algorithms [12–14], model-based segmentation [15], and contour methods
[16]. In some cases automatic edge detection can be used to segment regions of interest [17].

A useful tool for cell segmentation is the open source CellTracer [18], which is written in Matlab and
can be downloaded at http://www.stat.duke.edu/research/software/west/celltracer. Another
powerful tool for ROI detection is ITK (Insight Segmentation and Registration Toolkit) [19] (http:
//www.itk.org), which is an open source package designed to detect regions of interest in 2D and 3D
microscopy images, as well as other types of biomedical imaging such as MRI and CT. VTK [20] (http:
//www.vtk.org) enhances ITK with a graphical user interface. GemIdent [21] (http://gemident.com)
is a multi-purpose tool for detection and segmentation of objects of interest in color images, and provides
an interactive graphical user interface that allows the user to tune and optimize the detection. Another
tool for automatic detection of spot-like objects in microscopy images is FindSpots [22], which is based on
the global thresholding method, and is capable of detecting objects in 2D as well as 3D images. FindSpots
is available as part of the OME software package [23] (http://www.openmicroscopy.org). sephaCe [9]
(http://www.sephace.com) is a tool that applies advanced edge and cell boundary detection to address
the difficult problem of cell segmentation in brightfield images. A powerful tool for 3D segmentation is
V3D-Neuron [24], which can visualize, trace, and analyze 3D images of neurons.

A practical approach to ROI detection is the popular ImageJ software (http://rsbweb.nih.gov/ij).
ImageJ allows the use of external plugins, which enhance it with features that are not supported by Im-
ageJ built-in functions. Examples of ROI detection and segmentation plugins developed for the ImageJ
platform include NeuronJ [25] (http://www.imagescience.org/meijering/software/neuronj) and
NeuriteTracer [26] for working with images of neurons, ITCN (http://rsbweb.nih.gov/ij/plugins/
itcn.html) for finding nuclei in various cell and image types, a generic watershed segmentation al-
gorithm [12], and many more listed at http://rsbweb.nih.gov/ij/plugins. A project called Fiji
(http://pacific.mpi-cbg.de) repackages ImageJ along with a selection of plug-ins and other features
useful for bioimage processing.

Often objects of interest have an inherent orientation which is not preserved by the imaging system.
Examples include polarized cells, as well as images of tissues and whole organisms. In these cases the
efficacy of PR can be improved if the objects of interest are registered, so that the orientation variance
introduced by imaging is eliminated. In some cases, objects may differ not only in orientation, but also
in scale or local geometry, requiring positional and rotational registration as well as local morphing.
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Combined with the required accuracy of segmentation algorithms to identify landmarks, registration can
be a challenging task. Some software tools for ROI detection and segmentation, such as ITK, also offer
tools for registration. An application-specific example is the registration of various images of C. elegans
nematodes. Normalization of these objects for the purpose of image processing can be performed by
“straightening” the worms and rotating them to a fixed orientation [27].

Sophisticated segmentation algorithms can greatly increase the signal to noise ratio, but the perceptual
models they implement or the parameters used can also lead to errors. When segmentation errors are
random (non-systematic), there will be a corresponding reduction in the signal to noise. Importantly
though, these errors can be correlated to the experimental question, leading to systematic bias and
skewing of the experimental results.

In some cases, the dataset includes a large number of ROIs, and using all of these images might
severely slow down the response time of the system due to the computing resources required to compute
image features for high volumes of image data, as will be explained in Section 3. In these cases, to
improve system response time, a subset of these ROIs can be selected randomly for classifier training.
Some bioimage analysis tools also use interactive user interfaces to select the ROIs manually, and refine
them based on classifier performance. This can be done iteratively, until the researcher is satisfied
with the classification results. CellProfiler-Classifier provides an example of this iterative selection and
classification refinement [28]. For 3D images, objects for classification can be selected and annotated using
tools such as OMERO [5], VANO [29] and V3D [24], which can allow ROI or image-based annotations of
large and complex 3D microscopy images, including combinations of 3D, multi-channel, and time-lapse.

It is important to note that when using segmentation software developed independently of PR, a degree
of integration with PR-based software tools is required. Often the segmentation results can be exported
as separate images which can be straightforward to transfer to PR software for subsequent analysis. In
other cases this integration requires scripting or substantial programming. Therefore, experimentalists
are encouraged to first consider software packages developed specifically for PR in microscopy images,
providing a full start-to-finish solution. These comprehensive software tools are described in Section 7.

3 Computing image features

After reduction of the image size by ROI selection, raw pixel data is usually still not appropriate for direct
processing by PR algorithms. Instead, the pixel data is further summarized for its “image content” using a
set of feature extraction algorithms. Each algorithm reads image pixels and outputs one or more numerical
values that describe various aspects of the image. These algorithms are usually very general in that they
can operate on any set of pixels without specifying any parameters. The types of image features vary
depending on the PR software package, but generally consist of texture descriptors, statistical distribution
of pixel values, shape and edge features, coefficients of polynomial expansions representing the image,
and others.

There is no “typical” microscopy image or experiment, and the types of image content descriptors
are virtually unlimited, therefore there is no standard set of feature extraction algorithms. Additionally,
different image features can be relevant to different experiments - even when they are based on the same
types of images. Finally, image features calculated by computers can be almost arbitrarily detailed,
and can describe patterns that people cannot readily perceive. The ability to detect differences between
images automatically without the requirement for a pre-conceived perceptual model is an important
advantage of PR for bioimage informatics. Therefore, in most bioimage PR systems, a larger set of image
content descriptors is computed than is ultimately used after feature selection and training. This is done
to cover a variety of possible morphological aspects of the images and preserve the generality of the
approach [10,28,30].

As low-level image features are not related to any specific imaging problem, they have little utility
outside of PR. Thus, modules for computing image features are normally a part of broader applications,
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and are not distributed as independent software products. Higher-level tools such as CellProfiler [35],
Wndchrm [34] and PSLID [33] apply image feature extraction as an intermediate step, but the values
can be exported to third party tools.

4 Feature selection and classification

After the image features are computed for all images in the dataset, the samples can be classified or
assessed for similarity by using pattern recognition tools. Image classification is a task in which the
computer system automatically assigns images to one of several user-defined image classes. An image
class is simply a collection of images from an experimental control. Classification is normally done by
first splitting the dataset into training and test image pools. The training data are used to automatically
define the classification rules, and the test data are used to assess the effectiveness of these rules, and
their ability to consistently reflect the data. Typically, several training/testing experiments are done
automatically by randomly splitting the dataset and running multiple trials, as described in Section 6.

Many of these image features are expected to be irrelevant to the specific imaging problem being
considered and contribute only to noise, while others contribute varying degrees of discriminative power
to the classifier. Selection of relevant features is generally performed automatically using one of the
methods described below. The automated computation and selection of image features without user
intervention or parameter tuning is a key factor allowing robust automation of PR and its adaptability
to virtually any image type.

There are two major approaches to feature selection: filters and wrappers. The filtering approach
typically uses statistical methods to process the entire set of features to select those most informative.
The selection is independent of the classifier ultimately used in the imaging experiment, and thus the
features selected are not specific to the downstream classifier. Wrapping, in contrast, is based on selecting
subsets of features by testing them in a classifier. Thus, wrapping can select features specific to the
downstream classifier being employed.

A simple example of the filtering approach is computing the Fisher score for each feature, and rejecting
a certain percentage of the features with the lowest scores. The Fisher score is a ratio of the variance in the
feature value between classes to its variance within classes, giving features with high discriminative power
higher scores. This approach is implemented in the wndchrm image analysis tool (can be downloaded
at http://ome.grc.nia.nih.gov/wnd-charm), where the Fisher scores are also used as feature weights.
While providing accurate results for a variety of image types [36], a potential downside of this method is
feature redundancy due to correlations in feature values between seemingly unrelated feature extraction
algorithms. Selecting more than one image feature from a group of inter-correlated features will not
add to the the overall effectiveness of the feature set, and may contribute to noise by over-representing
a certain type of image content. An effort to address this issue directly is the minimum redundancy
maximum relevance (mRMR) algorithm [37], available at http://penglab.janelia.org/proj/mRMR.

Another approach is Remapping, where the original feature space is substituted with another of lower
dimensionality and possibly improved separability. A common transformation used in several areas of
bioinformatics is Principal Component Analysis (PCA) that has been successfully used for the analysis
of DNA microarray data [38], and has also been applied to image feature reduction [42]. PCA maps the
feature space into a smaller number of mutually orthogonal principal components. While the primary
criterion of PCA is preservation of data variance, other techniques have been proposed that use different
principles for the purpose of dimensionality reduction. One such family of methods is Manifold Learning
where a manifold [41] is assumed to be embedded in the higher dimensional feature space. Determin-
ing this manifold effectively implements a non-linear transformation into a smaller sub-space. There
are several additional algorithms and implementations for these transforms, including isomap [44], local
linear embedding [45], graph embedding [41], and others. Unfortunately, the public availability of soft-
ware that use these techniques is currently lagging, and where available, the software requires additional
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programming to be practically useful. Examples of implementations available include Matlab libraries
for ISOMAP (http://isomap.stanford.edu/), a demonstration example of several manifold algorithms
with a graphical user interface (http://www.math.ucla.edu/~wittman/mani), as well as a Matlab tool-
box for dimensionality reduction containing a mixture of linear and non-linear algorithms (http://ict.
ewi.tudelft.nl/~lvandermaaten/Matlab_Toolbox_for_Dimensionality_Reduction.html). Several
feature selection and transformation techniques for identifying sub-cellular organelles are compared in [42],
but to date, a systematic analysis of manifold learning approaches applied to biological imaging problems
has not been attempted.

Wrapping selects features based on their actual performance in the classifier, in many cases providing
better feature selection and greater classification accuracy than filtering. It should be noted that in most
cases filtering is significantly faster than wrapping, which relies on running many iterations with different
subsets of the feature bank. A collection of several wrapping methods is available through the ToolDiag
software suite, that can be downloaded at http://sites.google.com/site/tooldiag.. Another useful
tool for feature selection and classification is RapidMiner [46], which can be downloaded at http://www.
rapidminer.com, and provides various feature selection and classification algorithms with a graphical user
interface environment. WEKA [47] is another open source utility that provides a rich set of classification
and feature selection tools, and can be downloaded at http://www.cs.waikato.ac.nz/ml/weka.

Classifier training automatically deduces rules for combining the most informative features into a
trained classifier that can be used to associate unknown images with the user-defined classes. One of
the simplest types of classifiers is nearest-neighbor, where the class of the unknown image is determined
from the training image with the most similar feature values. WND (a part of WND-CHARM [30]), is
a variation of this approach where the training images are used to model a probability distribution for
each class. One of the first applications of pattern recognition classifiers to biological imaging [10] used
neural networks for identifying sub-cellular organelles. The current implementation of this approach is
in PSLID [33]. Another classification approach is GentleBoosting [43], which is used by CellProfiler [28].

More recently, Support Vector Machines (SVM) [48] have become popular in biological image pro-
cessing as well as pattern-recognition in general [49]. This type of classifier is used in Enhanced Cell-
Classifier [50], as well as in an analysis of drug response in single cells [51]. An implementation of SVM
is SVMlight [52] (http://svmlight.joachims.org), and SVMperf [53], which can be downloaded at
http://svmlight.joachims.org/svm_perf.html. These tools also provide a user interface and can be
used as independent tools, as opposed to some other available SVM libraries such as LIBSVM [54], which
are meant to be integrated into other programs and thus require programming skills. Another useful
software package that offers a wide selection of classification methods is the ToolDiag pattern recognition
toolbox.

Most classifiers reported in the literature are tested using a relatively low number of classes, typically
not more than a few dozen. Biological ontologies, however, can extend to thousands of terms, and if
they are used as the basis for classification, the number of classes can increase dramatically [55–57]. One
approach to working with large numbers of classes is to reformulate the classification problem as a system
of classifiers, each operating on a small set of classes [58]. Some types of classifiers [30] do not appear
to be negatively affected by even a thousand classes (L. Shamir, unpublished results using the FERET
dataset from NIST, consisting of 994 classes. [59]). In some cases it is also possible to exploit estimates
of class similarity (see Section 5 below) to cluster a large set of classes into a smaller subset [7, 34].

5 Analysis of the image classification output

The most basic piece of information obtained when validating a classifier is the classification accuracy.
Determining this requires reserving a pool of test images that were not used for training, but whose
class is known. Classification accuracy is measured by the number of test images that were classified
correctly, divided by the total number of images that the classifier attempted to classify. This number
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reflects the ability of the classifier to accurately associate a test image with its correct class. Clearly, a
higher classification accuracy indicates that the image classifier is more informative, and can discriminate
between images that belong in different classes. However, as explained in Section 6, the classification
accuracy itself sometimes does not have any biological meaning, and can lead to false conclusions unless
analyzed carefully and tested against the appropriate controls.

In binary classification, the accuracy is often reported in terms of sensitivity and specificity, which
are commonly used in disease diagnosis. The sensitivity of a classifier is defined as the proportion of true
positives that were correctly detected by the classifier as positives, and the specificity is defined as the
proportion of the negatives that were correctly classified as negatives. Other performance metrics for
binary classifiers include the False Positive Rate (FPR) and the False Negative Rate (FNR). A thorough
discussion about performance metrics for binary classifiers can be found in [60].

A more informative output of a classifier validation experiment is the confusion matrix (see Table 1).
Each cell contains the number of test images known to be members of the class specified by the row label
that were classified as the class specified by the column label. The number of correctly classified images
for each class is found on the diagonal, and the cells off of the diagonal report mis-classifications. Thus
the overall classification accuracy is the total on the diagonal divided by the total of all cells.

The confusion matrix also allows estimating the degree of similarity between classes. For instance,
if the confusion matrix shows that the image classifier has a high degree of confusion between a pair of
classes in a given row, it is an indication that these two classes are more similar to each other than the
other classes in the row. These similarities can have interesting biological implications. Depending on
the classifier and the imaging problem, however, these similarities can also be a property or limitation of
the classifier itself. Therefore these types of similarities need to have independent confirmation - either
biological, or using a different approach to PR, and ideally both.

In some cases the differences between the classes reflect an inherent order. For instance, if each
successive class is a treatment with an increasing dose, or a time course as in Table 1, the confusion
between neighboring pairs of cells in a row is expected to be higher than cells farther apart. In this case,
the highest value of each row in the confusion matrix is expected to be on the diagonal, and the other
values in each row should decrease for cells further away from the diagonal.

6 Experimental considerations for effective PR

Experiments that utilize pattern recognition for microscopy image analysis introduce several important
considerations. As described in Sections 3 and 4, the image features are selected automatically by
their discriminative power, and the classification rules are determined by the system. Therefore, if two
sets of images have biologically irrelevant differences between them (i.e. due to systematic errors), the
PR analysis could classify the two sets accurately, but the classification would be based on artifacts.
Image analysis using PR can discriminate between images taken using different microscopes, objectives,
cameras, etc., and potentially lead to false conclusions. In addition, it can also discriminate images taken
by different experimentalists. For example, if two different treatments are studied, and images for each
treatment are collected by a different person, the experimenter’s acquisition parameters (which could be
subjective) can lead to a detectable difference between the sets of images where no biological difference
exists.

The potential for observer bias skewing PR results means that little or no quality control should
be done during manual acquisition or subsequent to automated acquisition. Traditionally, images are
selected manually for being representative of the biological treatment. In contrast, when applying PR,
it is the entire set of images for a particular treatment that represent the class, rather than individual
images. Manual selection of images introduces considerable observer bias which may skew the PR results.

Since image analysis using PR is sensitive to artifacts, image collection should be as consistent as
possible to reduce the number of non-biological differences. For this reason, it is important to collect
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control images in every session of image collection or for each experimental batch. Control images can
be images of subjects that do not reflect any biological differences (e.g., untreated cells). If the classifier
is able to differentiate between the sets of control images from the different sessions or experimental
batches, the analysis may be affected by artifacts. If the classifier is not able to differentiate between the
sets of control images, but can classify between the different treatments, then it can be deduced that the
different treatments are reflected in the image content.

Consider a classifier that can differentiate between biologically equivalent controls as well as between
treatments. For example, an accuracy of 55% between controls compared to 85% between treatments
indicates that though systematic errors are present, the biological signal predominates. Here, the relative
classification accuracy between the two can be compared and the classification result can be accepted be-
cause the difference in accuracy is sufficiently great. A better approach is to make unavoidable systematic
bias non-systematic. For example, if two researchers must collect data, it is better for each researcher
to collect the entire set of treatments so that their data can be equally pooled into classes for classifier
training. The effectiveness of this approach can be confirmed experimentally by testing the classification
accuracy of acquisition controls from the different experimenters pooled together.

Image classifiers differentiate image classes based on the strongest morphological signal, which for
various reasons may not be of interest to the experimenter. An example of this is a cell growth effect that
is not of interest combined with a morphological effect that may be of greater interest. One option for
eliminating the growth effect is to use segmentation to identify individual cells followed by pattern recog-
nition on classes composed of balanced cell numbers. When segmentation is not possible or undesirable,
an alternative is to force the classifier to disregard effects that are considered unimportant. One example
of this was discussed above, where data collected by different researchers is mixed together in each of the
defined classes. An undesired growth effect can similarly be eliminated from consideration by defining
each experimental class using several different cell densities. A third option was used by our group to
reduce variation between experimenters [61], as well as eliminating recognition of individual mice when
analyzing the gender or age of liver sections [62]. Here, we trained a classifier to discriminate classes
composed of the artifact we wanted to eliminate (i.e. images collected by one experimenter vs. images
collected by someone else; liver sections from individual mice to train a one mouse per class classifier).
We eliminated the undesired classification signal from the experimental classifier by subtracting the fea-
ture weights of the artifact classifier from the experimental one. For mouse livers, we were able to show
that this corrected classifier could resolve gender equally well, but could no longer identify individual
mice [62]. Similarly, using this approach to eliminate a growth effect would involve training an artifact
classifier composed of classes with different cell densities, where each class contained the full range of
experimental effects. This type of correction is highly dependent on the type of classifier being used, and
is not feasible in most types of classifiers.

When testing a classifier for its ability to differentiate between sets of images, the classification accu-
racy should be measured in several runs, where different images are used for training and testing in each
run. These multiple trials test whether the classifier’s performance is overly dependent on the specific
images used in training. When the number of control images is extremely limited, validation can also be
performed in a “leave one out” (or round-robin) manner, where training is performed using all but one
of the images, and the left-out image is used to validate the classifier. This is normally systematically
repeated, such that each image in the dataset is tested in turn.

It should also be noted that it is important to have the same number of training images in each class
to avoid potential bias caused by an unbalanced image distribution. If the classifier was capable only of
random guessing, then it should assign test images to the defined classes with equal probability. If one
of the training classes was much larger than the others, a classifier may assign test images to the larger
class at a rate higher than expected for random guessing, while the smaller classes would be assigned
with a less-than-random probability. There are several mechanisms that could lead to this result, and
some classifiers are more prone to this bias than others. The safest approach is to use the same number
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of images in each class for training. If this is not practical, a negative control experiment can reveal
if the classifier suffers from this bias. In this case the class assignments of the training images should
be randomly scrambled, and the resultant classifier should be checked to report the expected random
distribution of class assignments.

While it is important to train a classifier using an equal number of images per class, using the same
number of test images can also be important to obtain an unbiased assessment of classifier performance.
For instance, if a classifier of two classes has 40 test images of class A and 10 test images of class B, correct
classification of all class A images will lead to an accuracy of 80%, even if the classifier misclassified all
test images of class B. These results might mislead the experimentalist to believe that the classifier is
performing adequately, even though it classifies all images as class A. Another approach to address this
problem is to measure the mean classification accuracy for each class separately [34] rather than relying
solely on the overall percentage of images that were classified correctly. For instance, in the case above,
the 100% accuracy of the test images of class A will be balanced by the 0% accuracy of class B, providing
a per-class average classification of 50%, clearly indicating that the classifier does not work.

The image classifier must be trained with a sufficient number of sample images for each of the pre-
defined classes. Therefore, an experiment that is based on PR requires a significantly larger number of
images than an experiment in which the conclusions are made by manual inspection or by the use of
segmentation tools alone. Normally, accuracy increases as the training set gets larger, eventually reach-
ing a plateau where the classifier is said to be “saturated”. This number can be determined empirically
by running the classifier repeatedly with different numbers of training images, plotting the classification
accuracy against the number of training images. This classifier analysis can also be used to determine
whether poor classification performance is due to insufficient training images, or due to the classes being
indiscernible by the chosen classifier.

The number of training images required for accurate classification can vary depending on the difficulty
of distinguishing the classes, and the variability within each class. In our experience with Wndchrm, if the
classes are easily distinguishable by eye and the images within classes are visually consistent, generally
no more than a dozen images are required for training. An extreme example is identifying binucleate
phenotypes. Here a classification accuracy of 98% can be achieved using a single training image. In
contrast, our study of C. elegans muscle degeneration throughout lifespan [61] used 85 training images
for each of 7 classes, and could have used more. In this case, human observers could reliably distinguish
only very young worms from very old ones. In cases where smaller training sets can provide reasonable
performance, using larger training sets was not found to be deleterious.

7 Software tools

While there are numerous publicly available stand-alone software tools that can perform specific tasks
in the process of PR-based image analysis such as segmentation, feature selection, classification, etc.,
using these together may require programming skills for their integration. Fortunately, some software
packages have been developed to provide a start-to-finish solution for bioimage analysis and high-content
screening, and are often equipped with user-friendly graphical user interfaces targeted at bench biologists.
Unfortunately, not all pattern recognition software is well integrated and user-friendly, and in these cases
some additional help should be sought from bioinformaticians, or the growing number of biologists with
significant expertise in computing and information technology.

The software discussed in this section was selected based on four parameters: Usability without fur-
ther software development, integration of pattern recognition techniques discussed above, an established
user community and open source code. Although availability of source code would seem to be of little
consequence to non-programmers, it is an important consideration. The foremost reason scientifically
is that at least in principle, the implementation of the algorithms by the software is independently ver-
ifiable. There are also practical considerations. If the original authors abandon the software project
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without providing the source code, then the software may soon stop running on new versions of operating
systems and hardware. If the software was an integral part of the processing pipeline, then all previous
experiments may need to be repeated with a new software package in order to compare them to new re-
sults. The availability of source code usually also means that there is a widely distributed pool of experts
that can modify the software or just keep it updated. Even when this pool doesn’t exist, a professional
programmer can be hired to fix, modify or update the software if this becomes necessary.

In this section we mention one of the most popular image processing programs, ImageJ, and discuss
four complete systems for biological imaging that rely on PR techniques: CellProfiler-Classifier, PSLID,
WND-CHARM, and CellExplorer, listed in Table 2. Although ImageJ is not specifically designed for
pattern recognition, there are many plug-ins available for segmentation, which can be valuable for data
reduction prior to classification as discussed above. Manipulation of image groups is an integral part
of analysis by PR, and ImageJ does not provide a mechanism for associating images with each other.
The grouping of images would allow consequent grouping of the ROIs produced by various segmentation
plug-ins. A PR plug-in could then use these multi-image ROIs to define classes for training. There are
several scripts available for batch processing images together in ImageJ, so the notion of image groups
may be implemented in the future.

The Protein Subcellular Location Image Database (PSLID) [33] was the first application of pattern
recognition for microscopy images [31]. This project aims to eventually enumerate and discern all sub-
cellular localization patterns. Even though this may seem quite specialized, localization is not limited
to identifying organelles, but can be used to describe any type of subcellular distribution for a protein,
stain or other biomarker. PSLID has evolved over the years to analyze patterns in multiple fluorescence
channels as well as in 3D and over time. PSLID can be used with a database to manage large image
collections. A full installation can also include a web service to perform image-based or localization-based
searches.

The goal of the CellProfiler project is to provide a user-friendly image processing environment for
high-content screening (HCS) [32]. In HCS, high-resolution imaging of cells is used as an assay in a
screen of chemical compounds or RNAi libraries. These experiments easily involve tens or hundreds of
thousands of images, where manual scoring is impractical. Similarly to ImageJ, CellProfiler includes tools
to identify (segment) cells and nuclei, and report various statistics on the objects found in an image. In
contrast to ImageJ, CellProfiler is designed around image processing pipelines, where many thousands
of images can be analyzed in batch. The recent addition of CellProfiler-Classifier [28] introduces pattern
recognition techniques to classify cells into user-defined phenotypes. Interestingly, CellProfiler-Classifier
can also find cells that do not fit into any of the predefined phenotypes, making it useful for identifying rare
or low-penetrance phenotypes. Similarly to PSLID, CellProfiler places constraints on how the imaging
experiment is conducted - mainly that the cells must be easily identifiable by the segmentation algorithms
used. Generally this requires staining with a fluorescent cytoplasmic marker as well as a fluorescent nuclear
marker in addition to any markers being used in the actual experiment. In light of these considerations,
the work done with CellProfiler and PSLID thus far is limited to fluorescence microscopy. In contrast to
PSLID, CellProfiler is meant to be used on a user’s desktop rather than provide a centralized web-based
service, so it is somewhat easier to install and use.

The WND-CHARM [30] project was initiated to provide pattern recognition tools for the analysis of a
broad variety of image types, and provide a means to explore different classifiers trained by grouping the
same images in various ways. This software is a command-line tool [34] that processes images arranged
into folders representing the image classes, and produces reports in HTML format that are viewable
in any web browser. Unlike PSLID and CellProfiler, WND-CHARM has been extensively tested on a
variety of image types, including phase-contrast, differential-interference contrast, histological stains, as
well as fluorescence microscopy [36]. Other than dividing the images into tiles, WND-CHARM does not
supply any segmentation tools of its own, although any software that can produce cropped images of
segmented cells can be used to provide images to WND-CHARM. Despite the lack of segmentation tools,
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WND-CHARM has been shown to accurately score imaging assays that have been traditionally analyzed
by segmentation algorithms, such as scoring a screen for binucleate phenotypes with 100% accuracy [36].
WND-CHARM is self-contained and does not rely on extensive external math software such as Matlab,
or database infrastructure such as Oracle and MySQL. This portability allows it to be easily integrated
into other software that provides segmentation and database functionalities.

Another useful tool for automatic analysis of biological images is CellExplorer [39]. CellExplorer was
designed for the analysis of C. elegans images, but was also found effective for other model organisms such
as drosophila. The package includes advanced segmentation, annotation and straightening algorithms [40]
of three-dimensional microscopy images. The segmented nuclei can also be classified automatically using
an SVM classifier. CellExplorer is freely available for download, however, it requires the installation of
Matlab, which is commercial software.

The software tools described above and the segmentation tools described in Section 2 can be tested
using publicly available biological image datasets, which include images of different organisms acquired
using different types of microscopy, magnifications, etc. Some useful publicly available image datasets
include the PSLID datasets http://murphylab.web.cmu.edu/data, the IICBU benchmark suite [36]
(http://ome.grc.nia.nih.gov/iicbu2008), and the Broad Bioimage Benchmark Collection http://

www.broadinstitute.org/bbbc.

8 Discussion

In this review we describe the basic concepts, terminology and software tools for pattern recognition-based
imaging assays for biology. The information provided is directed towards the “bench scientist” looking for
an alternative to traditional image processing approaches. Although most of the current applications of
pattern recognition are used for analyzing very large image datasets (e.g. PSLID, CellProfiler-Classifier
[28, 33]), these techniques can be applied just as easily to more conventional imaging assays performed
in non-specialist laboratories. The principal advantage of the approach is its potential for processing a
broad variety of image types without requiring customized software or parameter tuning for each imaging
experiment.

The ability to compare images to each other regardless of image type can lead to the discovery
of new knowledge from existing data. General sequence comparison algorithms such as BLAST have
transformed the archiving and retrieval of sequence data in public repositories such as GenBank into a field
(genomics) where new knowledge is routinely synthesized from existing sequence collections. By analogy,
the integration of generalized image comparison algorithms with large, diverse and well-annotated public
image repositories is an essential step toward more complete data extraction from biological images. For
example, meta-data fields used to annotate images either manually or by using specialized algorithms
can serve as the basis for defining training classes for pattern recognition algorithms. The resulting
classifiers can then annotate images where these fields haven’t been defined. While this process can be
fully automated, the tools developed for this approach can also be used interactively to pose questions
about potential new relationships within these image collections.

Although the techniques outlined in this review can lead to general image comparison algorithms,
image data poses several challenges that are only now beginning to be addressed: Quantitative image
comparisons within multiple contexts, relevant ranking algorithms and integrated image repositories.
Context can be understood in text searching by considering the query “Orange”. The results of this query
will depend on whether the context is colors, fruit, computer companies, or cellular service providers. This
level of ambiguity is typical for image-based queries where every image can be viewed in several distinct
contexts. The practical implication for pattern recognition is that a given image in a repository may be
used for training several different classifiers, or alternatively a group of unrelated classifiers may analyze
an image along several distinct contexts. Search interfaces typically allow only a limited specification of
context if they allow one at all (e.g. Google Images, Videos, Maps, News, etc.). This is not adequate for
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image-based search due to the high degree of ambiguity in the search context, the difficulty of defining
an implied context, and its complete dependence on the experimental question being asked.

A relevant ranking algorithm is a key characteristic of a useful search interface because the results
most relevant to the user are presented first. In scientific image-based searching, the ranking of search
results should be based on image similarity measured along one or more biologically relevant contexts,
specified by the user. Bisque and PSLID provide image-based search algorithms that return sets of images
from the database that are most similar to the query image. However, it is not possible to refine the
search context (i.e. similar in what way?), and the biological relevance of the result ranking cannot be
easily evaluated. Quantitative image similarity is an important tool for imaging assays such as dose-
response, time courses, and comparisons of phenotypes. In addition, measures of similarity can form the
basis for clustering algorithms, where new groupings of images can be discovered based on existing or
related contexts using objective statistical criteria. Pattern recognition techniques have been previously
used to quantify image similarity within an experimental context. For example, a mis-classification rate
was used to measure cellular response to varying drug doses [51], and a direct measurement of similarity
using a linear classifier was used to measure sarcopenia in the C. elegans pharynx [61]. Currently, direct
measurements of contextualized image similarity using general pattern recognition techniques is an area
of active and ongoing research.

Ultimately, for image informatics to mature, it requires both contextual image comparison algorithms
and fully integrated image repositories. The last decade has seen the creation of several specialized
image repositories, some examples of which include the Visible Human Project (http://www.nlm.nih.
gov/research/visible/visible_human.html), the Biomedical Informatics Research Network (BIRN,
http://www.birncommunity.org), the cancer Biomedical Informatics Grid (caBIG, http://cabig.nci.
nih.gov), the JCB Data Viewer (http://jcb-dataviewer.rupress.org), and a new initiative called
The Cell: An Image Library (http://cellimagelibrary.org). Currently, these are collections of images
that can be searched solely by their annotations and used to exemplify various biological processes
and features. The software infrastructure for these image repositories has matured in parallel over the
past decade from early projects such as OME [63, 64] and PSLID [33] to projects like Bisque [65] and
OMERO [5] which are maintained by full time developers and used by an increasing number of imaging
labs. These types of image data management systems are primarily concerned with the definition and
structure of imaging meta-data, and provide interfaces for annotation, search, and browsing. Furthermore,
these systems allow queries based either on comparisons between entered text and textual annotations
in the database, or image features extracted from a query image compared to those of the archived
images. The integration of image repositories like these with universal, contextualized image comparison
algorithms will substantiate the premise of image informatics: That pre-existing image datasets can be
analyzed in-silico to find new relationships between images, leading to new knowledge and discovery.
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Figure Legends

Tables

Table 1

1 month 6 months 16 months 24 months
1 month 245 22 43 10
6 months 218 719 117 66
16 months 47 18 225 30
24 months 73 99 227 705

Confusion matrix for classifying H&E-stained mouse liver sections by age
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Figure 1. High-level architecture of bioimage analysis systems.
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