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Abstract— The post genomic era introduced the need to
define single gene functions within biological pathways. A
systems biology approach can be realized by automating image
acquisition and phenotype classification. While machinery for
automated data acquisition have been developing rapidly in
the past years, the main bottleneck remains the effectiveness
of the computer vision algorithms. Here we describe a fully
automated process for finding phenotype similarities within a
dataset acquired from an RNAi screen. The source code for the
algorithms is available for free download.

I. INTRODUCTION

In the past few years, pipelines providing high-throughput
biological imaging have been becoming increasingly popular,
and are supported by the increasing availability of automated
microscopy and high-performance computing. The availabil-
ity of such instruments enables quantitative measurements
of phenotype similarities in very large datasets. Applications
include profiling drug responses [9], screening for small
molecules [16], and classification of sub-cellular localization
[2].

The availability of full genome sequences introduces the
opportunity to perform large-scale analysis of gene function-
ality and reveal relationships between gene function and phe-
notype traits [11], [10]. However, due to the complex nature
of the data, a successful implementation is subjected to the
limitations of the computer vision algorithms, manifesting a
large barrier to overcome.

Image analysis based on a specific morphology of the cell
such as the size or shape [5], [6] may not provide clear
relationships between gene knockout and function due to
the variety of the terminal phenotypes expected. Instead, the
algorithms should be able to handle phenotype similarities
in a more general sense, covering a wide range of phenotype
instances.

Here we describe an automated method that can be used
for the purpose of automatic mining for phenotype similar-
ities. This is a new approach to finding genes with similar
functionality, and is different from finding gene similarity by
comparing sequences (e.g., BLAST).
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II. METHODS

For the purpose of measuring phenotype similarities, we
used WND-CHARM image classification algorithm. WND-
CHARM [12], [14] makes use of a large set of 1025 image
features extracted from each image. Each image feature (or
a set of image features) can be found useful in finding
similarities (or differences) between several different types
of images.

Image features extracted by WND-CHARM can be di-
vided into four groups: High contrast features, which include
edge and object information; Polynomial decomposition,
which is statistics based on the polynomial representation of
the image; Statistics, which include multi-scale histograms
and moments; and textures, which include Tamura [15]
and Haralick [7] textures. This set of image features is
computed by WND-CHARM on the raw pixels, but also on
the Fourier, Chebyshev and Wavelet (Symlet 5) transforms
of the image, and also on several compound transforms
(Fourier-Wavelet and Fourier-Chebyshev). This variety of
image features makes WND-CHARM effective for finding
similarities between the different phenotypes, not known
prior to the experiment. A more detailed description of
WND-CHARM can be found at [12], [14], and the MATLAB
and C implementations of the algorithm are available for free
download at http://www.openmicroscopy.org.

Before image features are computed, each image is broken
into 16 equal-sized tiles, and image features are computed
for each tile separately. Then, the images are split into a
training set and test set with two thirds of the images in the
training set, and the remaining images used to evaluate the
trained classifier.

Since very many feature values are being computed, some
features are assumed to represent noise. To increase signal
and remove noise, the features ranked by their discriminative
power using simple Fisher scores [1]. The lowest 35% of the
features are rejected. Once Fisher scores are computed, the
weighted Euclidean distance dt,s between a tile t from the
training set and a tile s from the test set is computed by
di,s = Y pepws(ty — sg)?, such that F is the set of 1025
image features, ¢y and sy are the values of image feature f
in tile ¢ and s, respectively, and wy is the Fisher score of
feature f.



Phenotype similarities are determined based on how im-
ages in the test set are classified using the images in the
training set. When an image from the test set is classified,
each of its 16 tiles is assigned with a similarity value to each
of the genes in the training set. This is performed using a
Weighted Nearest Neighbor rule [3], such that the similarity
value ¢, of tile 7 to gene g is t, = (1/dg)/ >, . 1/di, where
dg is the distance from tile ¢ to its closest tile of gene g in
the training set, and G is the set of all genes participating in
the experiment. The similarity values of an image to any of
the genes is computed simply by summing the 16 similarity
vectors of the 16 tiles. The sum improves the signal-to-noise
ratio of image similarity, compared to the similarity vector
computed from one tile.

The resulting phenotype similarity values are computed
by averaging the similarity values of all images for each
of the genes participating in the experiment. That is, the
similarity of the phenotype produced by knocking down gene
g1 to the phenotype produced by knocking down gene go is
the average similarity values of all images of gene g; to
images of gene go. This results in a matrix of similarity
values between all pairs of genes. This similarity matrix can
be used for finding similar phenotypes that were produced
by knocking down different genes, those findings may be
used to reconstruct biological pathways.

Manually observing the similarity matrix and searching
for high similarity values can become an exhausting task,
especially when very many genes are involved. In order to
make this task more convenient, we visualize the phenotype
similarities using phylogenies (evolutionary trees) inferred
automatically by Phylip package [4]. The phylogenies pro-
vide a tree of phenotypes with the lengths of the edges
correlated with how similar the phenotypes are reflecting the
values taken from the similarity matrix.

Deducing image similarities is considered a complicated
task for computer programs due to the complex nature of the
data, and therefore the presence of noise in the similarity
values is unavoidable. Due to the noise generated by the
image classifier, some of the phenotype similarities might not
be symmetric. That is, the similarity of g; to g» may be 0.9,
while the similarity of go to g; is 0.86. Since the distances
in the phylogeny are undirected, we simply average the two
values to obtain one distance value between the two genes.

ITII. RESULTS

To assess the efficacy of the image analysis we utilized
a small dsRNA library (Open Biosystems) to cause single
gene knockdown in cultured Drosophila cells. The library
included 14 genes as listed in Table I, and can be divided
into five expected phenotypic classes, which are Apoptotic
(dIAP1), G1 arrest (pavarotti, CyclinE, MCM2, Rad17), G1
delay (MAPk-AK2), DNA damage (p38-MPK2, FANC-M,
Cul-4) and one unknown Phenotype (CHD3).

Each gene had 50 experiments done on the same slide.
After fixation, cells were stained with DAPI, washed and
mounted, then deconvloved 1024x1024 images (one per

TABLE I
GENES INCLUDED IN THE TESTED DSRNA LIBRARY.

[ID ]| Genename [ CG# | Predicted phenotype |
1 Pavarotti 1258 Binucleate
2 MAPK-AK?2 3086 G2 delay
3 CHD1 3733 ?(chromodomain, helicase domain)
4 CyclinE 3938 G1 arrest
5 p38-MPK2 5475 G1 delay
6 MCM2 7538 G1 arrest
7 Radl17 7825 DNA repair, 911 complex loading
8 FANC-M 7922 DNA repair
9 Pebble 8114 Binucleate
10 Cul-4 8711 Gl arrest
11 Dmp53 10873 Proliferation deficient
12 Loki(Rad53) 10895 Chk2 DNA damage siganlling
13 Diapl 12284 Cell death
14 none/untreated - none

experiment) were acquired using a Deltavision (Applied Pre-
cision, Inc., Issaqua, WA) microscope setup. Sample images
are shown by Figure 1.

After the images were acquired, WND-CHARM image
classifier provided the following phenotype similarity matrix,
shown by Table II. The values for each gene are normalized
such that the similarity of each gene to itself is 1.

Figure 2 shows the corresponding phylogeny that visu-
alizes the similarities values of Table II. As can be seen
in Figure 2, the proposed method detected very similar
phenotypes for gene 11 and 12. This observation is backed
up by a clear link to previously reported studies, indicating
that gene 11 (Dmp53) is a substrate for gene 12 (Loki).

Untreated cells (14) were not found similar to any of the
other phenotypes, and so were genes 2 and 9, which dont
have a similar phenotypes in the tested group of genes. Gene
13 (dIAP1) causes cell death, and was also found by the
proposed method not to share similarities with any of the
other tested genes. Gene 3 (CHDI1) does not have a well-
defined phenotype reported in the literature, and does not
appear to be associated with any of the tested genes.

IV. CONCLUSIONS

Mining for gene similarities has been attracting a con-
siderable attention in the field of bioinformatics. Due to
difficulties in processing and comparing large sets of differ-
ent phenotypes, most attempts of finding genes with similar
functionality are based on sequence analysis methods (e.g.,
BLAST). These methods heavily rely on the contention that
genes with similar functionality should also have similar
sequences, generating similar proteins. However, in many
cases genes with different sequences can be part of the same
biological mechanisms [8], [13].

Here we described an automated process that can be used
for the purpose of automatic mining of phenotype similar-
ities. This is a new approach of finding genes with similar
functionality, and is different from finding gene similarity by
comparing sequences.

Clearly, the proposed method can only sense phenotypic
features that are visible using a microscope, and due to



TABLE I
PHENOTYPES SIMILARITY VALUES COMPUTED BY WND-CHARM.

1 T 2 [ 3 1 4 1 5 1T 6 [ 7

[

§ [ 9 [ 10 [ 11T [ 12 [ 13 ] 14|

1.00 | 0.839 | 0913 | 0.906 | 0.730 | 0.928 | 0.955
0.571 | 1.000 | 0.637 | 0.592 | 0.510 | 0.513 | 0.505
0.446 | 0.353 | 1.000 | 0.364 | 0.279 | 0.454 | 0.304
0.868 | 0.812 | 0.766 | 1.000 | 0.737 | 0.836 | 0.936
0.743 | 0.749 | 0.598 | 0.746 | 1.000 | 0.753 | 0.754
0.905 | 0.733 | 0.966 | 0.830 | 0.695 | 1.000 | 0.840
0.792 | 0.668 | 0.659 | 0.792 | 0.681 | 0.791 | 1.000
0.788 | 0.755 | 0.659 | 0.759 | 1.001 | 0.796 | 0.774
0.427 | 0.568 | 0.299 | 0.459 | 0.603 | 0.450 | 0.497
10 || 0.841 | 0.882 | 0.828 | 0.825 | 0.968 | 0.839 | 0.814
11 0.832 | 0.683 | 0.964 | 0.769 | 0.783 | 0.861 | 0.764
12 || 0.830 | 0.644 | 0.835 | 0.788 | 0.865 | 0.851 | 0.751
13 0.248 | 0.333 | 0.162 | 0.353 | 0.265 | 0.232 | 0.328
14 || 0.387 | 0.394 | 0.301 | 0.376 | 0.564 | 0.400 | 0.382

Couau s wn—5

0.730 | 0.597 | 0.782 | 0.853 | 0.822 | 0.653 | 0.571
0.506 | 0.595 | 0.509 | 0.470 | 0.442 | 0.651 | 0.533
0.293 | 0.197 | 0.360 | 0.499 | 0.400 | 0.169 | 0.218
0.726 | 0.671 | 0.745 | 0.753 | 0.735 | 1.124 | 0.639
0.956 | 0.980 | 0.908 | 0.833 | 0.888 | 0.626 | 1.027
0.705 | 0.562 | 0.782 | 0.870 | 0.823 | 0.569 | 0.534
0.683 | 0.636 | 0.694 | 0.714 | 0.713 | 0.755 | 0.560
1.000 | 0.929 | 0.922 | 0.890 | 0.958 | 0.586 | 0.960
0.606 | 1.000 | 0.537 | 0.417 | 0.459 | 0.569 | 0.819
0.990 | 0.978 | 1.000 | 0.922 | 0.946 | 0.722 | 0.936
0.802 | 0.579 | 0.833 | 1.000 | 0.973 | 0.506 | 0.585
0.889 | 0.646 | 0.876 | 0.980 | 1.000 | 0.495 | 0.662
0.262 | 0.355 | 0.251 | 0.167 | 0.184 | 1.000 | 0.330
0.542 | 0.668 | 0.502 | 0.443 | 0.485 | 0.360 | 1.000

Fig. 2. The phylogeny of phenotype similarities generated from the
similarity values of Table II.

the complex nature of the quantification of the phenotype
morphology it is not expected to detect all genes with similar
functionality. However, given that very many of the genes
in any organism are not mapped to any known function,
applying this method on large sets of phenotypes with
single gene knockdown can potentially reconstruct biological
pathways.
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Fig. 1. Sample images of genes Pavarotti (a), CyclineE (b), p38-MPK2 (c) and untreated cells (d)




