Teaching GUI in Operating Systems Courses

Lior Shamir
Michigan Tech
1400 Townsend Dr.
Houghton, Ml

Ishamir@mtu.edu

ABSTRACT

Graphical User Interface is an integral part of many modern
operating systems, and GUI-based features have been at-
tracting considerable attention from operating system devel-
opers. However, while OS concepts such as CPU scheduling,
memory management, disk management, file systems and
security are typically covered in operating systems courses,
GUI is poorly studied in colleges in the sense of operating
systems. In this paper, a section discussing GUI topics in an
operating systems course is described. Due to the increasing
popularity of GUI components as integral parts of modern
operating systems, we suggest to include a GUI section in
undergraduate level operating systems courses.

Categories and Subject Descriptors

K.3 [Computers and Education]: Computer and Infor-
mation Science Education—Curriculum

General Terms
Keywords

Operating Systems, GUI, Graphical User Interface

1. INTRODUCTION

Since the early 1990’s, operating systems that include
an integral graphical user interface have been becoming in-
creasingly popular. This can be reflected by the success of
Microsoft’s Windows and Apples’s MacOS. The ease-of-use
introduced by GUI operating systems is an important ad-
vantage over traditional command-line systems that allows
non-computer experts to access and effectively use comput-
ing machines. In fact, the ease-of-use and enhanced acces-
sibility of GUI operating systems is considered by many as
one of the most influencing technologies in the history of
computer systems, and is often associated with the personal
computer revolution [3, 4]. Traditional command-line op-
erating systems such as Linux have also been enhanced by
GUI features.

Permissionto malke digital or hard copiesof all or part of this work for
personalor classroomuseis grantedwithout fee provided that copiesare
not madeor distributedfor profit or commercialadvantageandthatcopies
bearthis noticeandthefull citationonthefirst page.To copy otherwiseto
republisho poston senersor to redistrituteto lists, requiresprior specific
permissiorand/orafee.

WOODSTOCK '97 El Paso,TexasUSA

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

However, while the importance of effective graphical user
interface as an integral part of modern operating systems
has been becoming increasingly important, this topic has yet
seem to attract just little attention in undergraduate oper-
ating systems courses, and many of the popular textbooks
such as ”Operating System Concepts” [9] and ”Modern Op-
erating Systems” [10] do not cover this topic.

Some schools indeed offer courses of graphical user inter-
face design. However, these courses are usually focused on
topics of human-computer interface, rather than discussing
the internal mechanisms that enable these interfaces. GUI
design courses are not as common as introductory operating
systems courses, and are usually offered as electives. There-
fore, in many colleges, computer science students can grad-
uate without taking a GUI course.

In this paper we propose to consider the inclusion of graph-
ical user interface in the curriculum of undergraduate level
operating systems introductory courses (e.g. ”Introduction
to Operating Systems”). The paper describes the GUI sec-
tion that covered in the course ”Introduction to Operating
Systems” in the summer semester of 2006. In Section 2 the
computing environment used for the course is described, in
Section 3 the course details are discussed, and in Section 4
the student evaluation of the section is presented.

2. THE COMPUTING ENVIRONMENT

The computing environment selected for the GUI section
of the course was Windows XP with Visual Studio 2005.
The main reasons for selecting Windows XP were its pow-
erful integral GUI and its popularity. Since Visual Studio
is the most popular development suite under MS-Windows,
it seemed natural to use it in the course. Although using
just a small part of this software suite in the course, working
with the newest version of Visual Studio was considered by
many students important.

Like some other schools, Michigan Tech typically gives a
relatively low priority to programming in MS-Windows en-
vironment, so that students earn just a little experience in
Windows while studying toward their CS degree. However,
this approach does not always meet the industry demand for
knowledge and experience in some common programming
environments [5]. Therefore, this section of the operating
systems introductory course also provided the opportunity
to introduce students to programming in this popular envi-
ronment. As explained in Section 4, students reported that
they believed that the Windows programming section was
the most practical section of the course, and also rated it as
the most likely to be used in real-life programming.

Since Windows labs are typically smaller than UNIX labs,
the number of students registered to the course should be
taken into considerations when opening the course. The case
described in this paper was a summer course with only 11
students, which provided a friendly environment for experi-
menting this new topic.

The programming environment was Microsoft Visual C++
which is included in the Visual Studio 2005 suite. Although
some students indicated they were familiar with Visual Stu-
dio, no student in the class actually had programming expe-
rience in that environment. Mastering Visual Studio is not
beyond the capabilities of the average CS college student [6,
7], but a learning curve still exists. In order to allow stu-
dents to compile and run their projects without spending
too much time studying Visual Studio, students were pro-
vided with a detailed explanation of how to start, compile
and debug a simple consol application in Visual C++. Al-
though some students reported that a significant portion of
their time was consumed by attempts of starting and compil-
ing their projects, all students managed to use Visual C++
effectively.

3. GUI SECTION DETAILS

The purpose of the GUI section in the operating systems
introductory course is to discuss basic concepts of graphical
user interfaces in the sense of operating systems, and 3 one-
hour classes were sacrificed for studying the topic. The sec-
tion included system components, resource allocation, win-
dow painting and handling, and application programmer in-
terface. The course did not include topics related to GUI
design such as usability and ease-of-use, which are typically
discussed in User Interface Design courses.

The section started with a general description of graphical
user interfaces and their role in modern operating systems,
along with a brief history of GUI, starting from the mytho-
logical LISA to X-Windows and Windows XP. The purpose
of this discussion was to provide an incentive for studying
the topic by discussing terms students were familiar with
from outside their CS college education.

The technical part of the course started with the descrip-
tion of the GDI (Graphical Device Interface) and User sub-
systems in Microsoft Windows. This included the purposes,
scope and interface of each sub-system. The advantages of
using GDI are explained in the light of the limitations of this
design. The main downside of GDI is obviously the sacri-
fice of speed and its inability to support high-performance
graphics, which results in poor animation and rendering ca-
pabilities, making it unsuitable for multimedia and com-
puter games. Since many students are particularly inter-
ested in computer game technology [1, 2], the discussion
also included solutions to the GDI performance problem in
the form of DirectX or OpenGL, that provide faster access
to the graphics hardware.

The next discussion focused on describing how windows
are handled by the system. The discussion included window
hierarchy, window positioning (X, Y and Z axes) the organi-
zation and use of the Z-order, window painting, parent and
child windows, and pre-defined control windows provided by
MS-Windows (such as Button, Edit, etc’). The discussion
also included message transferring and a general description
of the event-driven approach used by MS-Windows graphical
user interface. The discussion was demonstrated by analyz-
ing some simple situations. For instance, students needed

)

to analyze which windows will receive a WM_PAINT mes-
sage from the system, and by which order, given a specific
event and window positioning. Students were also required
to analyze situations of I/O events such as mouse move-
ments, mouse clicks or keyboard events. The analysis in-
cluded specifying which messages were sent by the system,
and which windows received these messages.

The last discussion in the GUI section of the course was
focused on the GUI programmer interface in MS-Windows.
This discussion was a more pragmatic approach to the con-
cepts studied in the previous discussion, and included win-
dow procedures, message processing, and basic Windows
APIs such as Create Window, FindWindow, Set WindowPos,
etc’. The discussion was demonstrated by short C codes
of MS-Windows programs. These programs described ba-
sic Windows GUI features such as creating simple windows,
creating control windows, and handling Windows messages
using window procedures. Slightly more advanced features
were retrieving and setting windows positioning (size, loca-
tion and Z-order), and receiving messages triggered by 1/0
events. Programming assignments included programming a
simple key logger that records a macro of keystrokes and
mouse movements, and then plays the macro by simulat-
ing the mouse movements and keystrokes using the APIs
SetCursorPos and keybd_event. Another simple program-
ming exercise that attracted some student attention was a
program that closes all open browsers using Find Window
and SendMessage APIs.

Programming assignments of other sections of the operat-
ing systems course that were given before the GUI section
was studied required students to work both in Windows and
UNIX. The idea of using more than one operating system
was to let students learn how the same OS concepts are im-
plemented in different operating systems, and to make the
course as general as possible by detaching it from a spe-
cific operating system. Previous reports indicated that us-
ing Linux and Windows programming in the same course
leads to a more inclusive and effective studying [8]. There-
fore, by the time students started working on the assignment
of the GUI section, they had some basic knowledge in pro-
gramming using Visual Studio under Windows XP. However,
since most students did not have any previous experience in
Windows programming before taking the course, students
were allowed to work on the programming assignments in
pairs.

4. RESULTSAND STUDENT EVALUATION

An anonymous survey was given late in the semester (sum-
mer 2006) to students enrolled in the operating systems in-
troductory course (CS-4411). In the survey, students were
asked to evaluate each of the topics that were discussed in
the course based on three questions. The topics were pro-
cess scheduling, process synchronization, Windows multi-
threading, Windows GUI, memory management, inter-process
communication, deadlocks, secondary storage devices, and
interrupts. In their answers to all three questions, students
expressed their particular interest in the GUI section. Few
students commented on the large amount of work they had
to sacrifice while solving the programming assignments. The
questions and the survey results are the following:

1. In a scale of 1 to 5, how do you think each of the fol-
lowing sections contributed to your general understanding

of computer systems?

2. Do you think you will find the following sections of the
course practical in real-life programming?

3. On which of the following subjects would you want to
learn more?

Student answers to these questions are described in Tables
1,2 and 3.

Section Average Student
Evaluation (1 to 5)
Process scheduling 4.0
Process synchronization 4.3
Windows multi-threading 4.4
Windows GUI 4.2
Memory management 4.5
Inter-process communication 4.1
Deadlocks 3.5
Secondary storage devices 3.9
Interrupts 3.7

Table 1: Average student evaluation of question 1

Section Average Student
Evaluation (1 to 5)
Process scheduling 3.7
Process synchronization 4.1
Windows multi-threading 4.8
Windows GUI 4.8
Memory management 4.0
Inter-process communication 4.4
Deadlocks 2.5
Secondary storage devices 3.1
Interrupts 3.0

Table 2: Average student evaluation of question 2

Section Average Student
Evaluation (1 to 5)
Process scheduling 3.5
Process synchronization 3.8
Windows multi-threading 4.3
Windows GUI 4.7
Memory management 4.1
Inter-process communication 3.8
Deadlocks 2.9
Secondary storage devices 2.6
Interrupts 2.6

Table 3: Average student evaluation of question 3

The operating systems course described in this paper was
a summer course, and therefore had only 11 registered stu-
dents. However, it was noticeable that the discussions at-
tracted more student attention than other sections studied
in the course. This observation is also reflected by the results

of the survey, and was the driving impetus for the creation
of this paper.

5. CONCLUSION

Due to the increasing importance of graphical user inter-
faces in modern operating systems, we suggest to include a
brief discussion of this topic in undergraduate level operat-
ing systems courses.

In the sense of operating systems, we suggest that the GUI
section will cover the top-level GUI system design and com-
ponents, window painting and handling, GUI messages, and
programmer interface. Simple programming assignments
were based on Visual Studio 2005 under MS-Windows XP.

The results of the student evaluation and the active dis-
cussions in the class indicated that students were particu-
larly interested in the subject, and believed the subject was
important both for their knowledge as computer scientists
and for practical real-life programming.

6. REFERENCES

[1] K. Becker. Teaching with games: the minesweeper and
asteroids experience. Journal of Computing in Small
Colleges, 17:23-33, 2001.

[2] K. Becker and J. R. Parker. All i ever needed to know
about programming, i learned from re-writing classic
arcade games to be presented at future play. The Intl.
Conf. on the Future of Game Design and Technology,
October 2005.

[3] M. Dempsey. Jobs in the computer industry. Nature,
357:40-41, 1992.

[4] C. Depcik and D. Assanis. Graphical user interfaces in
an engineering educational environment. Computer
Applications in Engineering Education, 13:48-59,
2004.

[5] J. D. Fernandez and P. Tedford. Evaluating computing
education programs against real world needs. Journal
of Computing Sciences in Colleges, 21:259-265, 2006.

[6] T. Goulding and R. DiTrolio. Incorporating realistic
constraints into a student team software project. ACM
SIGCSE Bulletin, 37:54-58, 2005.

[7] B. Higgs and M. Sabin. Towards using online
portfolios in computing courses. Proc. of the 6th
conference on information technology education, pages
323-328, 2005.

[8] J. Phillips, J. and N. Ander. Design of a two-course
sequence in web programming and e-commerce.
Journal of Computing Science in Colleges, 19:208-217,
2003.

[9] A. Silberchatz, B. G. Galvin and G. Gagne. Operating
System Concepts. John Wisely and Sons, New York,
2004.

[10] A. S. Tanenbaum. Modern Operating Systems.
Prentice Hall, 2001.

