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Abstract

Modeling the world in three dimensions has been attracting a growing interest
both in applications and science. In many cases, such 3D models are achieved by
triangulating corresponding features recorded by several images of the same field
taken from different points of view. This, however, requires the ability to match
corresponding image elements detected in different images.

In this paper, an algorithm for stereo matching in noisy pairs of outdoor images
is described. The proposed algorithm applies a standard window based correlation,
but uses a fuzzy logic-based similarity function that models the HSV color space.
This fuzzy logic modeling allows a robust color comparison that can tolerate a
certain degree of changes in the illumination conditions, and can be used for finding
corresponding pixels in noisy sets of images. While the proposed algorithm does not
introduce an improvement over existing methods in ideal conditions, experiments
suggest that it provides significantly better results when the images in the set are
relatively different from each other, and can be effective for matching corresponding
features in images taken in different weather conditions, different position of the
sun, different optics, or other real-life situation in which pinhole conditions are not
available.
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1 Introduction

Binocular vision is commonly used for constructing 3D models by using two
(or more) images of the same field taken from two cameras. The horizontal
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disparity of scene elements captured in the two images can be measured, and
the depth of image features can be deduced. This approach is commonly used
in GIS and remote sensing applications for the purpose of 3D modeling of
urban areas (Karner, 2004; Baillard & Dissard, 2000), individual trees (Larsen
& Rudemo, 2004), surface reconstruction (Bolle & Vemuri, 1991; Cochran
& Medioni, 1992; Copper et al., 2005; Fua, 1993; Fua & Leclerc, 1995; Lin
& Tomasi, 2004; Takizawa & Yamamoto, 2006) or general surface points of
interest (Zhou et al., 1996; Pong et al., 1989).

While the triangulation of corresponding elements detected in two (or more)
images is fairly simple, the more challenging problem in this process is finding
corresponding features in the images. The problem of associating features in
stereo images of the same field is sometimes referred to as the stereo corre-
spondence problem.

In the last two decades, the correspondence problem has attracted a consid-
erable amount of attention, and several algorithms have been proposed and
implemented (Bolles et al., 1987; Kolmogorov et al., 2001; Ohta & Kanade,
1985; Scharstein & Szeliski, 1998, 2002). Approaches to the stereo correspon-
dence problem can be divided into two major categories: feature based and
pixel based. In feature based correspondence, low-level features such as edges
and corners are detected and used for finding correspondences, and the re-
maining non-featured pixels are determined by interpolation of the detected
matching features. Pixel based methods use the distribution of pixel intensities
for finding corresponding pixels. Generally, pixel based methods have gained
more popularity over the years. However, while this approach can provide good
results in high quality images taken under ideal conditions, its effectiveness
is limited when the two images are taken under different illumination condi-
tion such as different position of the sun, presence\absence of other sources
of light, inaccurate optics, different weather conditions, etc’. In fact, stereo
data sets such as (Scharstein & Szeliski, 2002) and (Scharstein & Szeliski,
2003), which are designed specifically for testing stereo matching algorithms
do not include noisy pairs of outdoor images, and little has yet been reported
on solving the correspondence problem under such conditions. Approaches to
the stereo correspondence problem that can handle a certain degree of noise
in the images include non-parametric Rank and Census transforms (Zabin &
Woodfill, 1994; Banks & Bennamoun, 2001) and energy minimization using
maximization of mutual information (Kim, Kolmogorov & Zabih, 2003). Al-
though the performance of these algorithms is not dependent on the absolute
values of the pixel intensities, they assume a certain level of consistency within
the local neighborhoods of the corresponding pixels. However, in cases of ex-
tremely noisy sets of stereo images the relative order of intensities within the
local neighborhoods might not always be consistent.

In this paper we describe a stereo correspondence algorithm designed for noisy



sets of images that addresses the problem by using a robust pixel similarity
function. Noisy sets, for this matter, are sets of images in which the left image
and the right image were taken under different illumination condition, different
weather, or by different instruments. The core of the algorithm is a fuzzy logic-
based similarity function that provides a comparison of colors, rather than
comparing the pixel intensities. This comparison can tolerate differences in the
illumination conditions, so that pixels with the same color can be associated
even if their intensities in the images are different. This feature allows the
algorithm to match corresponding pixels in pairs of images that are slightly
different from each other in terms of weather conditions, luminosity, optics
etc.

In Section 2 the fuzzy logic-based color similarity function is described, in
Section 3 the upper level algorithm for finding corresponding pixel is discussed,
and in Section 4 experimental results are presented.

2 Fuzzy Logic-based Color Similarity Function

Fuzzy Logic is commonly used as an interface between logic and human per-
ception (Zadeh, 1974, 1988). The similarity function is based on a fuzzy logic
model that aims to follow a human perception of color differences. This can
be achieved by using fuzzy logic modeling of the HSV color space, which is
more intuitive than other proposed color spaces such as RGB (Smith, 1978).
Since in the HSV color space each color is defined by three values (H, S, V),
the fuzzy logic model has three antecedent variables Ag, Ag and Ay, which
are the differences in the H, S and V components of the two pixels. The do-
main of these variables is the interval (0,240). The consequent variable is the
normalized difference between the two pixels, and its domain is the interval

(0,1).

2.1 Fuzzy Sets

The fuzzy logic model uses 4 fuzzy sets for Ay, 4 fuzzy sets for Ag and 4 fuzzy
sets for Ay. All membership functions are in the form of triangular and trape-
zoidal functions (Zadeh, 1965), which are efficient in terms of computational
complexity (Johanyak & Kovacs, 2006). Since the similarity function should
be called very many times when processing a set of two stereo images, the low
computational complexity of the fuzzification is an important concern.

The fuzzy sets of the antecedent variable Ay are h_tiny, h_small, h-medium
and h_large, and their membership functions are described in Figure 1.
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Ag is defined using the fuzzy sets s_tiny, s_small, s-medium and s_large as
described in Figure 2.
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Fig. 2. The membership functions defined on Ag

Ay is defined using the fuzzy sets v_tiny, v_small, v-medium and v_large as
described in Figure 3.

The defuzzification method used in this model is weighted average (Takagi &
Sugeno, 1983, 1985), for its low computational complexity (Regattieri Delgado
et al., 2000). Since weighted average is used, fuzzy sets should not be defined
for the consequent fuzzy variable.

The values of the points of maximum of the membership functions and their
intersection with the X-axis are determined empirically by observing the values
of HSV triples of different colors, and are based on the human intuition of the
perception of color (Shamir, 2006). Typically, the density of the fuzzy sets is
higher in the range of the lower values (smaller difference) than in the range
of the higher values (greater difference). This is because a large difference in
any of the values (H, S or V) is an indication of color difference, regardless the
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values of the other components. For instance, comparing the two HSV triples
(20,15,240) and (20,12,100) leads to the conclusion that the colors represented
by the two HSV triples are different. This is due to the large difference in the
values of the V component. If the above two triples are different, it can be
deduced that any value of the V component in the second HSV triple, such
that the difference between the two V values is greater than 140, will provide
a different color than the first triple (20,15,240). Therefore, there will be no
effective use of more fuzzy sets defined on Ay in the interval (140,240). In
the lower values, however, the effect of the dependencies between the different
dimensions of the color space is significant, and therefore a higher density of
fuzzy sets leads to higher accuracy.

The number of fuzzy sets can be modified according to the specific needs of
the model. More membership functions will typically provide better accuracy,
but with the sacrifice of computational complexity. However, experiments sug-
gest that increasing the number of membership functions does not noticeably
increase the accuracy presented in Section 4.

2.2  Fuzzy Rules

The purpose of the fuzzy rules is to define the estimated difference of two
colors based on the differences of their H, S and V components. The rules can
be defined by a set of natural language rules such as rules 1 and 2 below:

1. If the difference of the hue is small, the difference of the saturation is small
and the difference of the value is small, then the two pixels share the same
color.

2. If the difference of the hue is medium, the difference of the saturation is
medium and the difference of the value is large, then the two pixels do not
share the same color.



In order to obtain a model that follows the perception described above, the
natural language rules are compiled into fuzzy rules using the fuzzy sets de-
scribed in Figures 1, 2 and 3. For standard RGB images, this set of fuzzy rules
can be used without the requirement of a last step of fine-tuning, so that no
efforts should be sacrificed for data collection or tuning.

Since this model has 4 fuzzy sets for Ay, 4 fuzzy sets for Ag and 4 fuzzy
sets for Ay, the total number of fuzzy rules is 4x4x4=64. Since the weighted
average defuzzification (Takagi & Sugeno, 1983, 1985) is used, the consequent
parts of the rules are crisp values rather than fuzzy sets. The domain of these
values is {0,1}, such that 1 means that the colors of the two pixels are different
and 0 means that the two pixels share the same color. The fuzzy rules used in
this model are listed below:

h_tiny, s_tiny, v_small — 0
h_tiny, s_tiny, v_large — 1
h_tiny, s_small, v_small — 0
h_tiny, s_small, v_large — 1
h_tiny, s_medium, v_small —— 0
h_tiny, s_-medium, v_large — 1
h_tiny, s_large, v_small — 1
h_tiny, s_large, v_large — 1
h_small, s_tiny, v_small — 0

h_tiny, s_tiny, v_tiny — 0

h_tiny, s_tiny, v.medium — 0
h_tiny, s_small, v_tiny —— 0
h_tiny, s_small, v_.medium +— 0
h_tiny, s_-medium, v_tiny —— 0
h_tiny, s_-medium, v_medium — 1
h_tiny, s_large, v_tiny — 1
h_tiny, s_large, v.medium —— 1
h_small, s_tiny, v_tiny — 0

h_small, s_tiny, v_.medium —— 0
h_small, s_small, v_tiny — 0
h_small, s_small, v_.medium +— 0
h_small, s_-medium, v_tiny — 0
h_small, s_-medium, v_medium — 1
h_small, s_large, v_tiny — 1
h_small, s_large, v_.medium — 1
h_medium, s_tiny, v_tiny — 0
h_medium, s_tiny, v.medium — 0
h_medium, s_small, v_tiny —— 0
h_medium, s_small, v_medium — 1
h_medium, s_medium, v_tiny — 0

h_medium, s_medium, v_medium —— 1

h_medium, s_large, v_tiny — 1
h_medium, s_large, v_.medium —— 1
h_large, s_tiny, v_tiny — 1
h_large, s_tiny, v.medium — 1
h_large, s_small, v_tiny — 1
h_large, s_small, v.medium —— 1
h_large, s medium, v_tiny — 1
h_large, s medium, v_medium — 1
h_large, s_large, v_tiny — 1

h_ large, s_large, v.medium — 1

h_small, s_tiny, v_large — 1
h_small, s_small, v_small — 0
h_small, s_small, v_large — 1
h_small, s_ medium, v_small —— 0
h_small, s medium, v_large — 1
h_small, s_large, v_small — 1
h_small, s_large, v_large — 1
h_medium, s_tiny, v_small — 0
h_medium, s_tiny, v_large — 1
h_medium, s_small, v_small — 0
h_medium, s_small, v_large — 1
h_medium, s_medium, v_small — 1
h_medium, s_medium, v_large — 1
h_medium, s_large, v_small — 1
h_medium, s_large, v_large — 1
h_large, s_tiny, v_small — 1
h_large, s_tiny, v_large — 1
h_large, s_small, v_small — 1
h_large, s_small, v_large — 1
h_large, s_ medium, v_small — 1
h_large, s_-medium, v_large — 1
h_large, s_large, v_small — 1
h_large, s_large, v_large — 1



3 Finding Corresponding Pixels

The advantage of the fuzzy logic-based similarity function is that the pixel
comparison is not performed by simply using the difference between the in-
tensities of the two pixels, but by applying a human perception-based model
of color comparison that can tolerate a certain degree of noise.

The corresponding pixels are found by using a standard window-based corre-
lation (Forstner & Pertl, 1986; Hannah, 1989; Matthies et al., 1989; Wood,
1983) using the similarity function described in Section 2. By using the epipo-
lar constraint, the window is shifted along the epipolar line of the other image,
so that the search space is reduced to just one line (Ohta & Kanade, 1985).
The sum of differences is given in Equation 1.

SD = St b F(Loigegs Rutioss) (1)

i=u—h,j=v—h

Where L is the left image, R is the right image, (z,y) and (u,v) are the image
coordinates of compared pixels, A is the half width size of the window and f
is the fuzzy logic based similarity function described in Section 2.

As indicated by (Kanade & Okutomi, 1994), a fixed window size is not an
optimal policy since the window must be large enough to include enough in-
tensity variation for reliable matching, but small enough to avoid the effects
of projective distortion. Therefore, if a good match is not found using a small
window, the width size of the window is doubled and another search is initi-
ated. This continues until a good match is found, or the window is larger than
half the image.

A good match, for this matter, is defined by the proposed algorithm as a match
that its sum of differences is significantly lower than all other possible matches.
If the sum of differences of the second-best match is greater by at least 20%,
then a match is assumed. Otherwise, any match that its sum of differences
is smaller than 120% of the minimum sum of differences is examined with a
window size that is four times the size of the one used in the previous search.
This continues until a match is found, or until the window is larger than half
the image, in which case the best match in the last search is taken. This policy
uses a larger window only if a small window does not provide a sufficient signal
(color difference) to noise ratio.

Neighboring pixels might provide very close sums of differences. Therefore,
in cases where a second pass with a larger window is needed, only the pixel
that provides the best match (comparing to its neighbors) is checked, without
checking its neighbors. For this matter, two neighboring pixels are defined as
two pixels on the same scan-line that the distance between them is smaller



Fig. 4. Left image of Hancock, Michigan

than the half width size of the window. This policy significantly reduces the
number of pixels that should be checked with a larger window, which is a
computationally demanding task.

4 Experimental Results

Figures 4 and 5 are two images of Hancock, Michigan, taken from two different
locations 50 meters away from each other. Since each image was taken at a
different time of the day, even an eyeball examination of the two images can
easily lead to the conclusion that the two images are different from each other,
introducing an extremely noisy set.

The performance of the proposed algorithm was tested by selecting 20 points
of interest detected by applying a simple Kitchen-Rosenfeld corner detection
algorithm (Kitchen & Rosenfeld, 1982). These points are shown in Figure 6.

Table 1 shows the number of points that their corresponding pixels were accu-
rately detected in the right image. As can be seen from the table, the proposed
algorithm found the matching pixels for all points of interest except one (the
leftmost point in Figure 6), while other algorithms experienced difficulties in
processing these noisy test data.

Figure 7 shows a comparison of the disparity maps (Bolles et al., 1987; Oku-
tomi & Kanade, 1993; Scharstein & Szeliski, 2002) of Figure 4 using SSD,



Fig. 5. Right image of Hancock, Michigan

Fig. 6. Points of interest

Bayesian Diffusion (Scharstein & Szeliski, 1998), Graph Cuts (Kolmogorov
et al., 2001), Non-parametric Local Transform (Rank and Census) (Zabin &
Woodfill, 1994), and the proposed algorithm. In the presented pairs of images,
pixels with computed disparity greater than the maximal disparity in the two
images are considered as pixels with no disparity. Pixels for which no disparity
was found are colored in black (Scharstein & Szeliski, 2003).



Algorithm Corresponding Pixels Detected

SDD 0
Graph Cuts 7
Bayesian Diffusion 2
Rank Transform 10
Census Transform 7
Proposed Algorithm 19

Table 1
Number of corresponding pixels correctly detected for the points of interest of Fig-
ure 6

Fig. 7. Disparity maps computed using (a) SSD, (b) Bayesian Diffusion, (c) Graph
Cuts, (d) Rank transform, (e) Census transform, and (f) the proposed algorithm.

As the disparity maps show, some existing stereo matching algorithms are
not designed for extremely noisy sets of images such as the tested set, and
provided poor performance that cannot be used for practical purposes. Rank
Transform provided a better performance than the other tested algorithms,
but due to the noisy nature of the stereo pairs, relative intensity within the
local neighborhoods was not always consistent. The proposed algorithm per-

10



. L

l ; Sl

Fig. 8. Left (a) and right (b) images.

formed better than previously proposed algorithms in areas of the image which
are rich with details, but failed to find matching pixels in flatter areas such as
sky or water.

Figure 8 shows two (left and right) images taken by two different digital cam-
eras. By adjusting the right image to the scale of the left image, the two images
are of the same size. However, it is noticeable that the colors and luminosities
of the two images are somewhat different. Figure 9 shows the disparity maps
generated by using SSD, Bayesian Diffusion, Graph Cuts, Rank Transform,
Census Transform, and the proposed algorithm.

While the proposed algorithm provides better accuracy in noisy outdoor im-
ages with large homogeneous regions, its performance is not comparable to
previously proposed algorithms in image sets with many depth discontinu-
ities. This is due to the policy of using increasingly larger windows until a
corresponding pixel is found. Therefore, the proposed algorithm might not
provide an optimal solution in cases where surface discontinuities are many.
This can be demonstrated by Figure 11, showing the disparity map of Fig-
ure 10 (venus).

Figure 12 shows an attempt of using the algorithms with a first step of linear
transformation of the intensities so that the sum of intensities in the left image
is equal to the sum of intensities in the right image. This was done using the
convert and compare utilities of ImageMagick (http://www.ImageMagick.org).
The experiment shows that the transformation of the intensities did not con-
tribute to the accuracy of the algorithms, which indicates that the absolute
difference in the luminosity is not the main reason for the inaccuracy of the
stereo matching algorithms, and that the images are different not only by their
luminosity, but also by other effects due to the change in the position of the

11



Fig. 9. Disparity maps computed using (a) SSD, (b) Bayesian Diffusion, (¢) Graph
Cuts, (d) Rank transform, (e) Census transform, and (f) the proposed algorithm.
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Fig. 10. Left (a) and right (b) images.

Fig. 11. Disparity maps computed using (a) SSD, (b) Bayesian Diffusion, (c¢) Graph
Cuts, (d) Rank transform, (e) Census transform, and (f) the proposed algorithm.
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Fig. 12. Disparity maps computed using (a) SSD, (b) Bayesian Diffusion, (c¢) Graph
Cuts, (d) Rank transform, (e) Census transform, and (f) the proposed algorithm.

sun and the different sensitivities of the different cameras, which cannot be
easily characterized.

The experiments discussed in this section were all processed by the algorithm
using the same set of fuzzy sets and fuzzy rules described in Section 2, so that
no modifications or fine-tuning were needed. The downside of the proposed
algorithm is its computational complexity. A system with an Intel Pentium 4
at 3.0 GHZ and 512 MB of RAM finds one pair of corresponding pixels in the
320 x 240 images of Figures 4 and 5 in ~2 seconds. Therefore, generating a
disparity map for a 320 x 240 image might take ~42 hours. Although simple
triangular membership functions are used, the pixel similarity function is still
the bottleneck of the algorithm in terms of computational complexity. Since
the similarity function is called for every pixel in the window, this relatively
expensive comparison is the main source of the limited speed of the algorithm.
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5 Conclusions

By using a fuzzy logic similarity function, corresponding pixels in noisy sets
of stereo images can be found. This approach can be effective in situations
of different weather conditions, different position of the sun, inaccurate op-
tics, or other real-life situation in which pinhole conditions are not avail-
able. An example implementation of the proposed algorithm is available at
http://www.phy.mtu.edu/~Ishamir/downloads/correspondence/. The appli-
cation runs under MS-Windows, and requires two input images (left and right).
The application finds a corresponding pixel in the right image for each user-
selected pixel in the left image, and can also compute the approximate distance
by applying a simple triangulation based on a user-defined X parallax and the
camera field of view. The distance is computed by assuming that the optical
center is the center of the image and that the angle is linearly correlated with
the distance (in pixels) from the image center. This straightforward model
is often untrue, but since this problem is outside the scope of the paper the
simple pinhole model is assumed, and used to give a rough estimation of the
performance of the algorithm.
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