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GALAXY MORPHOLOGY CATALOGS

 

With >10  galaxies, Vera Rubin Observatory galaxy data will need to be annotated automatically. An example of a
catalog of galaxies annotated by using deep learning is a catalog of ~1.7*10  galaxies classified by their broad
morphology (Goddard & Shamir, 2020). The catalog provide 95% accuracy compared to SDSS galaxies classified
by manually by Galaxy Zoo, and considered unbiased "superclean" by Galaxy Zoo criteria.

 

The neural network is a simple LeNet-5 architecture with ReLU activation functions. The neural network
was trained with ~2*10  galaxies annotated manually by Galaxy Zoo as "superclean", and happens to also be
imaged by SDSS. The training images are also mirrored to reduce human perception bias, but some bias might
still exist due to the manual annotation of the training data (Goddard & Shamir, 2020).
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The catalog is available for download at: https://figshare.com/articles/PanSTARRS 
DR1 Broad Morphology Catalog/12081144  (Goddard & Shamir, 2020)



DETECTION OF RING GALAXIES

When the galaxy has known morphology, it is possible to develop specific model-driven or data-driven (machine
learning) algorithms that can identify that specific morphological type.

 

 

The algorithm applies dynamic thresholding, separates the foreground from the background, and then analyzes the
shape at different background thershold to identify a ring. Two ring galaxy catalogs were prepared using the
method, one from Pan-STARRS (Timmis & Shamir, 2017), and onr from SDSS; Shamir, 2020).

 

It is interesting that these catalogs were smaller than catalogs prepared manually by crowdsourcing (Butas, 2017).
But the crowdsourcing took several years and thousands of people, while the preparation of the automatic ring
catalogs were far less labor-intensive, normally one person working a few hours per week. It is clear that with the
scales of data generated by Vera Rubin Observatory human analysis will not be practicle for full utilization of the
data.

 



Additionally, most galaxies in automtically-generated catalog were not included in the Butas (2017) catalog or
other manually prepared catalogs. While the crowdsourcing has a much higher detection rate, the automatic
catalog can "cover" a far larger initial set of galaxies.

 

Examples of ring galaxies detected by the algorithm

 

Collisional rings

 

Rings with no nuclei

 



 

Rings with off-center neuclei

 

 



 

It is obvious that manual detection of all these galaxies would only be possible by using a very large number of
people. When the scales of the Vera Rubin Observatory data, manual analysis will become impractical.

 

Catalogs:

A catalog of ring galaxies in SDSS - (Shamir, 2020).

A catalog of ring galaxies in Pan-STARRS (Timmis & Shamir, 2017).



OUTLIER GALAXY DETECTION
 

 



Some rare galaxies, such as ring galaxies, have known morphology. But with a database of the size of the Vera
Rubin Observatory, it can be assumed that very many galaxies of unknown morphology will be imaged. Even rare
one-in-a-million type of galaxy will be present in the Vera Rubin Database ~10*  times. Identifying these galaxies
is a difficult task because the morphology of the galaxy is unknown.
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Solution to that problem can be based on unsupervised machine learning. One approach is the use of deep learning
autoencoders. An example is (Margapuri, Thapa & Shamir, 2021). The reconstruction loss of the autoencoder can
be used to identufy a galaxy image that is not common in the dataset, and therefore can be considered an outlier.

 

Other solutions can be based on "shallow learning" algorithms (Shamir, 2012). The key for practical outlier
detection is low false-positive rate. Due to the size of the data, even a small rate of false-positives will lead to
unmanageable output. For instance, 1% false positives applied to a dataset of 10 objects will provide output of
10  objects that need to be scanned manually.

 

Deep learning autoencoders have a relatively high false-positive rate, Shallow learning algorithms allow to
conteol the sensetivity and specificity and can therefore allow to contro the size of the output (Shamir, 2012).

 

The examples below show peculiar galaxies identified automatically by applying a shallow learning algorithm to
~3*10  Hubble Space Telescope galaxies.(Shamir, 2021a).

 

The current version of the algorithm is not perfect, and produces a large number of false positives (Shamir,
2021a). But it allows to reduce the data by ~3 orders of magnitude. Manual examination of the data becomes
much more practical with the reduced dataset. The reduced dataset has far higher frequency of peculiar objects,
and therefore scanning it manually becomes much more fruitful compared to scanning the original data without
any filtering. Still, in its present version it might not provide an optimal solution to the data coming from Vera
Rubin Observatory. 
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Gravitational lens:



 

 



 

 



The following galaxies mergers are examples of peculiar galaxy pairs detected automatically in SDSS (Shamir &
Wallin, 2014).

 

 



 

 



GALAXY QUERY-BY-EXAMPLE
 

 

To study a certain type of rare galaxies, sometimes a population of galaxies of the same type is needed. That is
because it is difficult to make general conclusions when N=1. The galaxy quety-by-example algorithm recieves a
galaxy image as input, and returns a collection of galaxies that are the most similar to the query galaxy (Shamir,
2017b). For that purpose, both photometry data and image data are combined (Shamir, 2017b).

 

For instance, if the researcher finds a peculiar galaxy of interest and wishes to study it, she can query that image to
recieve a list of galaxies similar to that specific type. 

 

Below is examples of the query galaxy, and the ten most similar galaxies identified automatically in a dataset of
~10  SDSS galaxies. The algorithm is not perfect, but it is clear that the images fetched by the algorithm are more
similar to the query galaxy than random.
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The figure below shows an experiment of combining 10 elliptical galaxies with 100 spiral galaxies (left), and 10
spiral galaxies with 100 elliptical galaxies (right). The detection rate of the "peculiar" galaxies is not perfect, but
far higher than random based on the query galaxy (Shamir, 2017b).

 

Until now the algorithm was only used in controlled experiments. No catalog or other data products were
produced with that algorithm so far.

 



"CHANGING" GALAXIES
     DR7 (before)                     DR8 (after)                         

   

Extended extra-galactic objects that can be visible from Earth are large, and therefore the shape of extra-galactic
objects is not expected to change between different data releases. However, such assumptions still need to be
tested. With the amounts of data that will be acquired by the Vera Rubin Observatory, algorithms that compare
objects in different data releases can identify possible rare cases in which an extra-galactic object imaged in one
data release is different from the same object imaged a few years later. While substantial attention has been given
to transient detection, this form of "extra-galactic transients" can potentially expand on the existing knowledge.

 

The example above shows an extra-galactic object that "changes" between data releases in SDSS. The reason is
not clear. Obviously, galaxies cannot change in a manner that is noticeable within a few years. If the reason for the
"change" is astronomical, a possible explanation would be that a foreground nova somehow eclipses the galaxy.



LARGE-SCALE DISTRIBUTION OF GALAXY SPIN
DIRECTIONS
The ability to analyze a large number of galaxies allows to study questions that were very difficult to solve
without using digital sky survey and automatic analysis. One of these question is the large-scale distribution of
spin direction of spiral galaxies. Below is the spin direction distribution from four different sky surveys: SDSS
DR14, Pan-STARRS DR1, DESI Legacy Survey, and HST COSMOS:

Probability of a dipole axis in galaxy spin direction distribution in SDSS DR14 (Shamir, 2020b). The dataset
includes 6.4*10  galaxies separated automatically by their spin direction (clockwise or counterclockwise).

 

Analysis of ~8.7*10  galaxies imaged by HST. The galaxies were annotated manually, and half of the galaxies
were mirrored to ensure no human bias (Shamir, 2020a).
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The likelihood of a dipole axis in all possible (RA,Dec) combinations in 3.8*10  Pan-STARRS galaxies (Shamir,
2020b).

 

The likelihood of a dipole axis in all possible (RA,Dec) combinations in 8*10  galaxis from DESI Legacy Survey.
The most likely dipole axis has statistical strength of 4.7sigma. Interesitngly, it peaks very close to the CMB cold
spot.
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The likelihood of a dipole axis in all possible (RA,Dec) combinations in 3.3*10  SDSS galaxies that have the
same redshift distribution as the Pan-STARRS galaxies above (Shamir, 2020b).

 

 

Multiple experiments showed that the location of the most likely dipole axis depends on the redshift of the
galaxies (Shamir, 2020a; Shamir, 2020b). When the redshift distribution is normalized, different sky surveys show
very similar locations of the most likely dipole axis.

 

All of these sky surveys also show a higher number of galaxies spinning clockwise in one hemisphere, and a
higher number of galaxies spinning counterclockwise in the opposite hemisphere. For instance, the following table
shows the distribution of the galaxies in the DESI Legacy Survey.

 

 

The distribution shows that in the hemisphere (0 -150  V 330 -360 ) there is a statistically significant higher
number of clockwise galaxies, and in the opposite hemisphere (150 -330 ) there is a statistically significant higher
number of counterclockwise galaxies.

The DESI Legacy Survey is by far larger than all previous studies, with ~8*10  galaxies classified by their spin
direction. It also provides data mainly from the Southern hemisphere. 

 

Possible causes of error

 

The algorithm used to annotate the galaxies is mathematically symmetric. It is based on clear rules, and does not
rely on machine learning ot complex data-driven rules that are determined automatically during the training
process, and therefore there is no guarantee these rules are symmetric.
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Repeating the experiments after mirroring all galaxy images led to the exact same results, but inversed. The
following figure shows an analysis such that the galaxies were assigned with random spin direction. That response
is consistent with all algorithms.

 

 

 

 

The annotation of all galaxies was done with a model-driven deterministic algorithm (Shamir, 2011) that is not
based on machine learning or any other form of complex non-intuitive data-driven rules. The algorithm is
mathematically symmetric (Shamir, 2011). All galaxies were annotated using the same code and the same
computer to ensure no differences in the libraries can have an effect.

Analysis of possible errors can be found in (Shamir, 2021b). Because the annotation algorithm is symmetric, an
error in the classification is expected to be distributed equally between clockwise and counterclockwise
annotations. In any case, an error is expected to be consistent througout the sky, and definitley no expected to
"flip" in opposite hemispheres. That has been studied theoretically, but also empirically by adding intentional error
to some of the annotations. All galaxies and all hemispheres were analyzed by the same code and the exact same
computer to avoid any unexpected differences. A complete analysis is described in (Shamir, 2021b).

 

 

The distribution can also fit in quadrupole alignment. The following figures show the quadrupole alignment of
SDSS and Pan-STARRS galaxies. The profile of the asymmetry distriubtion is in very close agreement in both
telescopes.



 

 



AUTHOR INFORMATION
Lior Shamir, Kansas State University



ABSTRACT
Vera Rubin Observatory will generate visual data of extra-galactic objects at unprecedented scales. Since manual analysis of
these data using manual analysis is highly impractical, turning these data into knowledge requires efficient algorithms that
can practically handle real-world data. Here I show several different tasks related to automatic visual analysis of extended
extra-galactic objects, and demonstrate the real-world efficacy of these methods using data from existing instruments such as
SDSS, Pan-STARRS, HST, and DESI Legacy Survey. Tasks include basic classification of galaxy morphologies to produce
large catalogs, automatic identification of outlier galaxies, automatic visual query-by-example of galaxies, and analysis of
large-scale distribution of the spin directions of spiral galaxies. The application of these methods to data from existing digital
sky surveys led to data products and the identification of objects that are virtually impossible to identify and collect without
using automation.
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