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Abstract— We describe a method for automated detection of
radiographic Osteoarthritis (OA) in knee X-ray images. The
detection is based on the Kellgren-Lawrence classification grades,
which correspond to the different stages of OA severity. The
classifier was built using manually classified X-rays, representing
the first four KL grades (normal, doubtful, minimal and moderate).
Image analysis is performed by first identifying a set of image
content descriptors and image transforms that are informative
for the detection of OA in the X-rays, and assigning weights
to these image features using Fisher scores. Then, a simple
weighted nearest neighbor rule is used in order to predict the KL
grade to which a given test X-ray sample belongs. The dataset
used in the experiment contained 350 X-ray images classified
manually by their KL grades. Experimental results show that
moderate OA (KL grade 3) and minimal OA (KL grade 2) can
be differentiated from normal cases with accuracy of 91.5% and
80.4%, respectively. Doubtful OA (KL grade 1) was detected
automatically with a much lower accuracy of 57%. The source
code developed and used in this study is available for free
download at www.openmicroscopy.org.

Index Terms— Osteoarthritis, image classification, automated
detection, X-ray, Kellgren-Lawrence classification.

I. INTRODUCTION

Osteoarthritis (OA) is a highly prevalent chronic health
condition that causes substantial disability in late life [31]. It is
estimated that ∼80% of the population over the age of 65 have
radiographic evidence of Osteoarthritis [29], and given the
prolonged life expectancy in the United States and the aging
of the “baby boomer” cohort, the prevalence of osteoarthritis
is expected to increase further.

Although newer methods, such as MRI, offer an assessment
of periarticular as well as articular structures, the availability of
plain radiographs makes them the most commonly used tools
in the evaluation of OA joints [2], despite known limitations
in detecting early disease and subtle changes over time. While
several methods have been proposed [3], Kellgren-Lawrence
(KL) system [12], [13] is a validated method of classifying
individual joints into one of five grades, with 0 representing
normal and 4 being the most severe radiographic disease. This
classification is based on features of ostephytes (bony growths
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adjacent to the joint space), narrowing of part or all of the
tibial-femoral joint space, and sclerosis of the subchondral
bone. Based on these three indicators, KL classification is
considered more informative than any of the three elements
individually.

Since the parameters used for OA classification are continu-
ous, human experts may differ in their assessment of OA, and
therefore reach a different conclusion regarding the presence
and severity. This introduces a certain degree of subjectiveness
to the diagnosis [10], [32], and requires a considerable amount
of knowledge and experience for making a valid OA diagnosis.

Due to the high prevalence of OA, there is an emerging
need for clinical and scientific tools that can reliably detect the
presence and severity of OA. Boniatis et al. [5], [6] proposed
a computer-aided method of grading hip osteoarthritis based
on textural and shape descriptors of radiographic hip joint
space, and showed 95.7% accuracy in detection of hip OA
using a dataset of 64 hip X-rays (18 normal and 46 OA).
Cherukuri et al. [9] described a convex hull-based method of
detecting anterior bone spurs (osteophytes) with accuracy of
∼90% using 714 lumbar spine X-ray images. Browne et al. [7]
proposed a system that monitors for changes in finger joints
based on a set of radiographs taken at different times, which
can detect changes in the number and size of of osteophytes,
and Mengko et al. [22] developed an automated method for
measuring joint space narrowing in OA knees.

However, despite the prevalence of knee OA, computer-
based tools for OA detection based on single knee X-ray
images are not yet available for either clinical or research
purposes. Here we describe a method for automated detection
of OA by using computer-based image analysis of knee X-
ray images. While at this point we do not suggest that the
proposed method can completely replace a human reader, it
can serve as a decision-supporting tool, and can also be applied
to the classification of large numbers of X-rays for clinical
research trials. In Section II we describe the data used for
training and testing the proposed method, in Section III we
present the detection of the joint in the X-ray, in Section IV
we describe the automated classification of the knee X-rays,
and in Section V the experimental results are discussed.

II. DATA

The data used for the experiment are consecutive knee X-ray
images taken over a course of two years, as part of Baltimore
Longitudinal Study of Aging (BLSA) [30], which is a longi-
tudinal normative aging study. X-ray images were obtained
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in all participants, irrespective of symptoms or functional
limitations, thereby providing an unbiased representation of
knee X-rays in an aging sample.

The fixed-flexion knee X-rays were acquired with the beam
angle at 10 degrees, focused on the popliteal fossa using
a Siremobile Compact C-arm (Siemens Medical Solutions,
Malvern, PA). Original images were 8-bit 1000×945 grayscale
DICOM images, converted into TIFF format. Left knee images
were flipped horizontally in order to avoid an unnecessary
variance in the data.

Each knee image was independently assigned a Kellgren-
Lawrence grade (0-4) as described in the Atlas of Standard
Radiographs [13] by two different readers, with discordant
grades adjudicated by a third reader. In 79.8% of the cases the
two readers assigned the same KL grade, and the remaining
images were adjudicated by a third reader.

The X-ray readers were radiologists with at least 25 years of
reading experience, and read from 50 to 100 musculoskeletal
X-rays per day. To maximize comparability between readers,
all readers received training using a set of “gold standard”
X-rays. Each knee image was also assessed for osteophytes,
joint space narrowing and sclerosis of the medial and lateral
compartments, and tibial spine sharpening. The total number
of knee X-ray images used was 350, divided into four KL
grades as described in Table I.

TABLE I
X-RAY IMAGE DISTRIBUTION BY KL GRADE

KL KL description No. of images
grade images

0 No osteophytes, normal joint space 154
1 Doubtful narrowing, possible osteophytes 102
2 Minimal but definite osteophytes, joint space 39
3 Definite and moderate osteophytes, 55

joint space narrow, some subchondral sclerosis

In the proposed classifier each KL grade is considered a
class, so that a complete automated KL grade detection is
a four-way classifier. KL grades 4 (severe OA) and 5 (knee
replaced) remained outside the scope of this study due to the
severe symptoms of pain that accompany these grades of OA,
making a computer-based detection less effective at KL grade
4, and irrelevant at KL grade 5.

Figure 1 shows four knee X-rays of KL grades 0 (normal),
1 (doubtful), 2 (minimal) and 3 (moderate). As can be seen
in the figure, most parts of an X-ray image are background
or irrelevant parts of the bones, while only the area around
the joint contains useful information for the purpose of OA
detection. The X-rays also contain some meta-data in the
form of the letters R and L. These letters are the effect of
small letter-shaped metal plates that are placed near the knee
when the X-ray is taken, preventing any chance of confusion
between the left and right knees.

The samples of Figure 1 demonstrate how the different KL
grades may look fairly similar to the untrained eye. Even
experienced and well-trained experts can find it difficult to
assign the KL grade and assess the OA severity, and a second

(and sometimes also a third) analysis is often required to obtain
a reliable and accurate diagnosis.

Despite providing a valuable approximation of the status of
the knee, the manual KL classification cannot be considered
a gold standard for the actual OA severity. The reason for
that is that KL classification is based on a set of radiography
visual elements that have been observed to be correlated with
OA, but no claim has been made that this set of elements is
complete. Therefore, one can reasonably assume the OA can
be detected by more elements that have not yet been isolated
and well-characterized, or that their signal is too weak to be
sensed by an unaided eye. The incompleteness of the set of
KL elements can be evident by the partial correlation between
pain symptoms and the KL classification.

Another important feature of the data is that the progress
of OA is continuous, while KL grades are discrete. That
is, a knee X-ray classified as KL grade 1 can actually be
somewhere between grade 0 and 1, but since KL grades are
discrete classes, this in-between case will be classified as pure
KL grade 1. This transition from a continuous variable to a
discrete variable can be affected by the many in-between cases,
resulting in weaker ground truth for both building and testing
the image classifier.

III. JOINT DETECTION

Despite the attempts of making the X-rays as consistent as
possible, the nature of working with human patients, especially
at elderly ages, makes it practically impossible to repeat the
procedure in the exact same fashion due to the differences in
the flexibility of the patients and their ability to place their
knee in the right position, as well as their ability to sustain
these poses until the X-rays are taken. As a result, the position
of the joint within the X-ray image can vary significantly.

Since in each X-ray image the joint can appear at different
image coordinates, a joint detection algorithm is required to
find the joint and separate it from the rest of the image. This
is done by using a fixed set of 20 pre-selected images, such
that each image is a 150×150 window of a center of a joint.
For example, Figure 2 is the center of the joint of the X-ray
of panel a in Figure 1. These images are then downscaled by
a factor of 10 into 15×15 images.

Fig. 2. A window of the joint center used for finding the center of the joint
in the X-rays

Finding the joint in a given knee X-ray image is performed
by first downscaling the image by a factor 10, and then
scanning the image with a 15×15 shifted window. For each
position, the Euclidean distances between the 15×15 pixels
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of the shifted window and each of the 20 15×15 pre-defined
joint images are computed using Equation 1,

di,w =

√√√√ 15∑
y=1

15∑
x=1

(Ix,y −Wx,y)2 (1)

where Wx,y is the intensity of pixel x, y in the shifted window
W, Ix,y is the intensity of pixel x, y in the joint image I, and
di,w is the Euclidean distance between the joint image I and
the 15×15 shifted window W.

Since the proposed implementation uses 20 joint images, 20
different distances are computed for each possible position of
the shifted window, but only the shortest of the 20 distances
is recorded.

After scanning the entire (width/10− 15)× (height/10−
15) possible positions, the window that recorded the smallest
Euclidean distance is determined as the center of the joint, and
the 250× 200 pixels around this center form an image that is
used for the automated analysis. Figure 3 shows an example of
the 250×200 joint area. Since each image contains exactly one
joint, and since the rotational variance of the knees is fairly
minimal, this simple and fast method was able to successfully
found the joint center in all images in the dataset.

Fig. 3. The joint area of a knee X-ray

Using these smaller images for the automated classification
keeps them clean from the various background features, and
makes the images invariant to the position of the joint within
the original X-ray. No attempt is made to fix for the rotational
variance of the images, as this small variance is not expected
to affect the image analysis described in Section IV, and does
not justify automated correction, which can introduce some
inaccuracies resulting from the non-trivial task of estimating
the exact angle of the joint.

IV. IMAGE CLASSIFICATION

Modern radiography instruments are many times more sen-
sitive than the human eye that observes the resulting images.
Therefore, it can be reasonably assumed that OA can be

detected by more elements than those proposed by Kellgren-
Lawrence, but are not used for the classification due to
inability of the human eye to sense them. Since computers are
substantially more sensitive to these small intensity variations,
an effective use of the strength of computer-based detection
would be based on a data-driven classification, rather than an
attempt to follow each of the manually classified elements used
by Kellgren & Lawrence.

The method works by first extracting a large set of image
features, from which the most informative features are then
selected. Since image transforms can often provide additional
information that is difficult to deduce when analyzing the raw
pixels [11], image features are computed not only on the raw
pixels, but also on several transforms of the image, and also
on transforms of transforms. These image content descriptors
extracted from transforms and compound transforms have
been found highly effective in classification and similarity
measurement of biological and biometric image datasets [11],
[25], [26], [28].

For image feature extraction we use the following
algorithms, described more thoroughly in [25]:
1. Zernike features [35] are the absolute values of the
coefficients of the Zernike polynomial approximation of
the image as described in [24], providing 72 image content
descriptors.
2. Multi-scale Histograms computed using various number
of bins (3, 5, 7, and 9), as proposed by [17], providing
3+5+7+9=24 image content descriptors.
3. First Four Moments of mean, standard deviation,
skewness, and kurtosis computed on image “stripes” in four
different directions (0, 45, 90, 135 degrees). Each set of
stripes is then sampled into a 3-bin histogram, providing
4×4×3=48 image descriptors.
4. Tamura Texture features [34] of contrast, directionality
and coarseness , such that the coarseness descriptors are its
sum and its 3-bin histogram, providing 1+1+1+3=6 image
features.
5. Haralick features [18] computed on the image’s co-
occurrence matrix as described in [24], and contribute 28
image descriptor values.
6. Chebyshev Statistics [16] - A 32-bin histogram of a
1×400 vector produced by Chebyshev transform of the image
with order of N=20.

The image transforms used by the proposed method are
the commonly used Wavelet (Symlet 5, level 1) transform,
Fourier transform and Chebyshev transform. Additionally,
three compound transforms are also used, which are Cheby-
shev transform followed by Fourier transform, Wavelet trans-
form followed by Fourier transform, and Fourier transform
followed by Chebyshev transform. Since human intuition and
analysis of image features extracted from transforms and com-
pound transforms is limited, the compound transforms were
selected empirically by testing all 2-level permutations of the
three basic transforms (Wavelet, Fourier and Chebyshev), and
assessing the contribution of the resulting content descriptors
to the accuracy of the classification.

Extracting a set of 210 image content descriptors from 7
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different image transforms (including the raw pixels) results
in a feature vector of dimensionality of 1470. However, not
all image features are equally informative, and some of these
features are expected to represent noise. In order to select
the most informative image features while rejecting the noisy
features, each image content descriptor is assigned with a
Fisher score [4], described by Equation 2,

Wf = 1
N

∑N
c=1

(Tf−Tf,c)
2

σ2
f,c

(2)

where Wf is the Fisher Score of feature f, N is the total number
of classes, Tf is the mean of the values of feature f among
the images allocated for training, and Tf,c and σ2

f,c are the
mean and variance of the values of feature f among all training
images of class c. The Fisher Score can be conceptualized as
the ratio of variance of class means from the pooled mean
to the mean of within-class variances. All variances used in
the equation are computed after the values of feature f are
normalized to the interval [0, 1].

Fisher Score values rank the image features by their infor-
mativeness, and are assigned to all 1470 features computed
by extracting the 210 image content descriptors from the
7 different image transforms (including the original image).
Once each of the 1470 image features is assigned with a
Fisher score, the weakest 90% of the features (with the lowest
Fisher scores) are rejected, resulting in a feature space of 147
image content descriptors. As discussed in Section V, this
setting provided the best performance in terms of classification
accuracy. The distribution of the different types of image
features and image transforms is described in Table II.

As the table shows, the most informative image content
descriptors are the Zernike polynomials, and both Haralick
and Tamura texture features. The radial nature of Zernike
polynomials allows these features to reflect variations in the
unit disk, so that these features are expected to be sensitive
to the joint space in the X-ray images. As observed and
throughly discussed by Boniatis et al. [5], the pixel intensity
variation patterns mathematically described by the texture
features correlate with biochemical, biomechanical and struc-
tural alterations of the articular cartilage and the subchondral
bone tissues [1], [23]. These processes have been associated
with cartilage degeneration in OA [8], [27], and are therefore
expected to affect the joint tissues in a fashion that can be
sensed by the radiographic texture.

Since not all radiographic elements of OA have been
isolated and well-characterized, not all discriminative image
features are expected to correspond to a known OA element.
Therefore, a small portion of the discriminative values such
as the statistical distribution of the pixel values of a Fourier
transform followed by a Chebyshev transform is difficult to
associate with a known radiographic OA element.

Additional algorithms for extracting image features have
been tested, but were found to be less informative for the clas-
sification of the KL grades. These image content descriptors
include Radon transform features [20], which were expected to
correlate with joint space, but were outperformed by Zernike
polynomials. Gabor filters [14] captures textural information
that could also be useful for the analysis, but were found to be

less informative than the Haralick and Tamura textures. Since
the areas of interest have relatively low intensity variations,
high contrast features such as edge and object statistics as
described in [26] do not provide useful information.

After computing all feature values of a given test image, the
resulting feature vector is classified using a simple Weighted
Nearest Neighbor rule, which is one of the most effective rou-
tines for non-parametric classification [4], [36]. The weights,
in this case, are the Fisher scores computed by Equation 2. The
result of this classification can be a KL grade class determined
by the training sample with the shortest distance to the given
test sample, but can also be an interpolated value based on the
two nearest training samples that do not belong to the same
class, as described by Equation 3,

KL = (K1
d1

+ K2
d2

)/( 1
d1

+ 1
d2

) (3)

where KL is the resulting interpolated KL grade, and d1, d2

are the distances from the nearest two samples that belong to
different KL grades K1 and K2, respectively.

The main advantage of this interpolation is that it can po-
tentially provide a higher-resolution estimation by determining
the OA severity within the grade (e.g., KL grade 1.6 for a case
of OA severity between KL grade 0 and 1). This, however, is
more difficult to evaluate for accuracy since the data used as
ground truth only specify the OA severity in resolution of KL
grades.

V. EXPERIMENTAL RESULTS

The proposed method was tested using the dataset described
in Section II, where the ground truth was the manual classi-
fication of the X-rays. In the first experiment, the proposed
method was tested by automatically classifying moderate OA
(KL grade 3) and normal knees (KL grade 0). The experiment
was performed by using 55 X-ray images from each grade,
such that 20 images from each grade were used for training
and 35 for testing.

This test was repeated 20 times, where each run used a
different random split of the training and test images. Since the
dataset has more grade 0 images than grade 3, each run used a
different set of 55 grade 0 images, randomly selected from the
dataset. The classification accuracy was 91.5% (P<0.000001),
as can be learned from the confusion matrix of Table III.

TABLE III
CONFUSION MATRIX OF OF MODERATE OA AND NORMAL

Normal Moderate OA
(KL grade 0) (KL grade 3)

Normal (KL grade 0) 613 87
Moderate OA (KL grade 3) 32 668

As the confusion matrix shows, the specificity of moderate
OA detection is ∼86.5%, and the sensitivity is 95%. This
can be important for a potential practical use of the described
classifier, since it may be over-protective in some cases, but
is less likely to dismiss a positive X-ray as normal. It should
be noted that while the human readers had a consensus rate of
∼80%, the disagreements were usually between neighboring
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TABLE II
DISTRIBUTION OF THE TYPES OF FEATURES BY ALGORITHMS AND IMAGE TRANSFORMS

Transform Zernike Haralick Tamura First four Multi-scale Chebyshev Total
polynomials textures textures moments histogram statistics

Raw pixels 10 8 1 0 0 6 25
Wavelet 22 1 4 3 0 0 30
Chebyshev 26 0 2 1 2 4 35
Fourier 0 2 2 2 0 0 6
Fourier + Chebyshev 0 10 0 5 7 0 22
Fourier + Wavelet 9 0 1 0 0 4 14
Chebyshev + Fourier 0 10 0 4 1 0 15
Total 67 31 10 15 10 14 147

KL grades, and none of the cases had one reader classify
a knee as normal while the other classified it as moderate.
Therefore, experienced and knowledgeable readers should be
able to tell moderate OA from normal knees with accuracy of
practically 100%.

A similar experiment tested the classification accuracy of
KL grade 2 (minimal OA). Since this classification problem is
more difficult, five more training images were used for each
class so that the training set consisted of 25 images of grade
0 and 25 images of grade 2. The use of a larger training
set improved the classification accuracy, while increasing the
training set in the grade 3 detection did not contribute to
the performance, as will be discussed later in this section.
The classification accuracy was ∼80.4% (P<0.0001), and the
confusion matrix is given in Table IV.

TABLE IV
CONFUSION MATRIX OF OF MINIMAL OA AND NORMAL

Normal Minimal OA
(KL grade 0) (KL grade 2)

Normal (KL grade 0) 222 58
Minimal OA (KL grade 2) 52 228

As can be learned from the table, the specificity of the de-
tection is ∼79.3%, with sensitivity of ∼81.4%. These numbers
show that the detection of KL grade 2 is less effective than
the automated detection of KL grade 3. This can be explained
by the fact that the progress of OA is continuous, so that KL
grade 2 is expected to be visually more similar to 0 than KL
grades 3.

We also tried to classify KL grade 1 (doubtful OA) from
0, which provided classification accuracy of 54% when using
25 images per class for training and 14 images for testing.
Increaing the size of the training set to 70 samples per class
(and 32 samples for testing) marginally increased the perfor-
mance to 57%. This can be explained by the fact that these
two grades are visually very similar, and even experienced
human readers often have to struggle to differentiate between
the two. Also, since the KL grades are discrete while the actual
OA progress is continuous, the very many in-between cases
can significantly contribute to the confusion.

Table V shows the classification accuracy when classifying
between any pair of KL grades. In all cases, 25 images were
used for training, 14 images for testing, and the classification
accuracy was computed by averaging the accuracy of 20
random splits to sets of training and test images. Maximum
differences from the mean (among the 20 runs) are also
specified in the table.

TABLE V
2-WAY CLASSIFICATION ACCURACY (%) OF ALL PAIRS OF KL GRADES

KL grade 1 KL grade 2 KL grade 3

KL grade 0 54±19 80±8 91±4

KL grade 1 - 60±13 82±7

KL grade 2 - - 65±10

As the table shows, classification between two neighbor-
ing KL grades is less accurate than classification of non-
neighboring grades. We can also see that the two neighboring
KL grades 2 and 3 can be differentiated with accuracy of 65%,
while the classification of grades 1, 2 and grades 0, 1 provide
accuracy of 60% and 54%, respectively. This may indicate
that neighboring KL grades are visually more similar to each
other in the early stages of OA. It is also noticeable that the
classification accuracy improves as the difference between the
KL grades gets larger. E.g., the classification accuracy of KL
grades 3 and 0 is better than the classification accuracy of
KL grades 3 and 1. These results are in agreement with the
continuous nature of OA.

Testing the classification accuracy when classifying all 4
KL grades was performed by randomly selecting 25 images
from each class for training, and then selecting 14 of the
remaining images of each class for testing. This experiment
was repeated 20 times, such that in each run the training and
test sets were determined in a random manner. The overall
classification accuracy of this classifier was 47%, as described
by the confusion matrix of Table VI.

Classification accuracy of 47% may not be considered
strong, and it is significantly lower than the 79.8% of agree-
ment between the two human experts. However, the confusion
matrix shows that from all cases of KL grade 3, only ∼4%
were classified as non-OA (KL grade 0), and ∼13% as
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TABLE VI
CONFUSION MATRIX OF A 4-WAY CLASSIFIER OF ALL KL GRADES

Grade 0 Grade 1 Grade 2 Grade 3
Grade 0 144 96 21 19
Grade 1 68 60 45 31
Grade 2 10 45 118 107
Grade 3 12 36 105 127

doubtful (KL grade 1). Examining the false positives, the
confusion matrix shows that ∼7% of the X-rays classified
manually as KL grade 0 were falsely classified by the proposed
method as KL grade 3 (moderate), and also ∼11% of KL grade
1 were mistakenly classified as KL grade 3.

Since the actual OA progress is a continuous variable, there
are many in-between cases that can be classified to either of
the two closest classes of the given case. E.g., OA progress
between KL grade 1 and KL grade 2 can be classified to either
1 and 2. As described in the end of Section IV, the resulting
value of the image classification can also be an interpolation
of the two nearest KL grades, rather than a single KL grade
class. The efficacy of this interpolation can be demonstrated
by computing the Pearson correlation coefficient between the
predicted and actual KL grades (when using all 4 KL grades
as described in Table VI). When using the interpolated value
as the predicted grade, Pearson correlation is 0.73, comparing
to 0.49 when the predicted KL grade is simply the class of
the nearest training sample.

A knee is classified as OA positive if it has been classified as
KL grade 2 or higher. By merging the images of KL grades
2 and 3, we introduced a new class called OA positive that
contained 78 images (39 from each class). An experiment
was performed by building a 2-way classifier using this newly
defined class and KL grade 0, such that 60 images from each
class were used for training and 18 for testing. The purpose
of this experiment was to classify OA positive X-rays from
OA negatives. The classification accuracy of this classifier
was ∼86.1%, with sensitivity and specificity of ∼88.7% and
∼83.5%, respectively.

It is also important to mention that the X-rays were taken
from randomly selected human subjects who participate in the
BLSA study, and not necessarily from patients who reported
on pain symptoms or were diagnosed as OA positive in
one of their other joints. This policy provides a uniform
representation of the elderly population, and therefore it can
be assumed that the results presented here can be generalized
to the entire elderly population.

The classification accuracy may be affected by the size of
the training set such that it is expected to increase as the
number of training samples gets higher. Figure 4 shows the
classification accuracy of the classification of KL grades 2 and
3 from KL grade 0 as a function of the size of the training
set. As can be learned from the graph, for KL grade 3 the
classification accuracy improves as the size of the training set
gets larger, but stabilizes at ∼14 training images per class.
Classification accuracy of KL grade 2 also increases with the
number of training images, but our dataset is not large enough
to determine whether it reached the peak of accuracy.
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KL grade 3 KL grade 2

Fig. 4. Classification accuracy (%) of KL grades 2 and 3 as a function of
the size of the training set

As described in Section IV, 10% of the image features with
the highest Fisher scores were used for the classification, while
the rest of the image content descriptors were ignored. Figure 5
shows how the number of features used for the classification
affects the classification accuracy of KL grade 3. According
to the graph, the best performance is achieved when using
between 7.5% to 12.5% of the total number of image features
(1470).

Accuracy (%)
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Features used (%)

KL grade 3 KL grade 2

Fig. 5. Classification accuracy (%) of KL grades 2 and 3 as a function of
the number of image features used

In terms of computational complexity, classifying one X-
ray image takes 105 seconds, using a system with a 2GHZ
Intel processor and 1MB of RAM. While the time required
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for the joint detection described in Section III is negligible,
nearly all of the CPU time is sacrificed for transforming
the image and extracting image features. Major contributors
to this complexity are the 2-dimensional Zernike features,
which are known to be computationally expensive [19], [37].
This downside of the classifier makes it unsuitable for real-
time applications or other tasks in which speed is a primary
concern, but may be fast enough for classification of single
X-ray images, especially considering the fact that the entire
procedure of taking X-rays can take a much longer time.

An improvement in the response time of the classifier
can be achieved by parallelization of the feature extraction
algorithms. Since most of the image features are not dependent
on each other, the algorithm becomes trivial to parallelize
so that many image features can be computed concurrently
by different processors. For instance, while one processor
can compute Haralick features on the Chebyshev transform,
another processor can extract Haralick features from the
Fourier transform, or Zernike features from the Chebyshev
transform. In order to take full advantage of the parallelization,
the algorithm has been also implemented using the Open
Microscopy Environment (OME) software suite [15], [33],
which is a platform for storing and processing microscopy
images, and designed to optimize the execution and data
flow of multiple execution modules. A detailed description of
the parallelization of the image transform and image feature
extractions in OME can be found in [21].

VI. CONCLUSION

In this paper we described an automated approach for the
detection of OA using knee X-rays. In the absence of an
accurate method of OA diagnosis, the manually classified KL
grade is used here as a “gold standard”, although it is known
that this method is less than perfect. The classification is
not performed in a way that attempts to imitate the human
classification, but is based on a data-driven approach using
manually classified X-rays of different KL grades, representing
different stages of OA severity.

Experimental results suggest that more than 95% of mod-
erate OA cases were differentiated accurately from normal
cases, with a false positive rate of ∼12.5%. Classification
accuracy of differentiating minimal OA from normal cases
was ∼80%, and detection of doubtful OA cases was far
less convincing. Future attempts of improving the detection
accuracy of doubtful OA will include integrataion of relevant
clinical information such as history of knee injury, body
weight, and knee alignment angle, and will also use more
X-ray samples as they become available. However, due to
the subjective nature of the “gold standard”, it is possible
that a 100% correlation between computer-based and manual
classification may not be achieved. KL grades 4 (severe OA)
and 5 (knee replaced) remained outside the scope of this study
due to the severe symptoms that accompany these stages, and
the relatively easy detection of OA in these stages.

While the classification accuracy of KL grades 1 and 2
cannot be considered strong, it is important to note that
radiograph readers are often challenged in attempting to dis-
tinguish between these grades, and therefore the confusion of

the automated detection between these two grades cannot be
considered surprising.

We acknowledge that the equipment used to obtain the
knee images does not allow for maximal resolution of joint
structures. We speculate conventional radiographic images
would predictably allow for better delineation of OA grades,
particularly in cases with less severe disease. Certainly con-
ventional radiography is capable of delineating joint structures
more readily, but achieves this at the cost of greater radiation
exposure. The application of this imaging software to the
interpretation of X-ray images occurs without the bias inherent
in a clinical interpretation. Finally, this study was conducted
within the context of a longitudinal aging study that will enable
the comparison of imaging data to clinical OA features as
pain, but also to physiologic measures relevant to aging body
systems that might contribute to OA severity.

Future plans include testing of this automated technique in
the evaluation of longitudinal knee images obtained over time,
to check whether OA can be detected before radiographic
evidence are noticeable by a human reader. We also plan
to develop similar techniques to classify hand X-rays with
attention to the signal joints predisposed to the development
of OA.

The full source code used for the experiment is available
for free download under standard GNU public license via
CVS at www.openmicroscopy.org. Scientists and engineers are
encouraged to download, compile and use this code for their
needs.
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Fig. 1. X-ray images of four different KL grades: a. 0 (normal), b. 1 (doubtful), c. 2 (minimal), d. 3 (moderate)


