Computational Complexity

Pascal Hitzler
http://www.pascal-hitzler.de
CS 740 Lecture, Spring Quarter 2011 Wright State University, Dayton, OH, U.S.A.

Contents

1 Big-Oh-Notation 2
2 Turing Machines and Time Complexity 5
3 Complexity under Turing Machine Variations 8
4 Linear Speedup 11
5 Properties of Time Complexity 13
6 Simulation of Computer Computations 14
7 PTime 16
8 Nondeterministic Turing Machines and Time Complexity 18
9 SAT is $\mathcal{N} \mathcal{P}$-Complete 21
10 Excursus: Is $\mathcal{P}=\mathcal{N} \mathcal{P}$? 24
11 If $\mathcal{P} \neq \mathcal{N} \mathcal{P} \ldots$ 24
11.1 Problems "between" \mathcal{P} and $\mathcal{N} \mathcal{P}$ 24
11.2 The Polynomial Hierarchy 25
12 Beyond $\mathcal{N P}$ 26

1 Big-Oh-Notation

[4, Chapter 14.2]
$\mathbb{N}=\{0,1,2, \ldots\}$
$\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$
\mathbb{R} : the real numbers

1.1 Definition

$f, g: \mathbb{N} \rightarrow \mathbb{N}$
f is of order g, if there is a constant $c>0$ and $n_{0} \in \mathbb{N}$ s.t. $f(n) \leq c \cdot g(n)$ for all $n \geq n_{0}$. $O(g):=\{f \mid f$ is of order $g\}$ ("big oh of g ").
If $f \in O(g)$ we can say that g provides an asymptotic upper bound on f.
If $f \in O(g)$ and $g \in O(g)$, then they have the same rate of growth, and g is an asymptotically tight bound on f (and vice versa).

1.2 Remark

Common abuse of notation:
$f=O(g)$ instead of $f \in O(g)$.
$f(n)=n^{2}+O(n)$ instead of " $f(n)=n^{2}+g(n)$ for some $g \in O(n)$ ".

1.3 Example

$f(n)=n^{2} ; g(n)=n^{3}$
$f \in O(g)$. [For $c=1$ and $n>1, n^{2} \leq c \cdot n^{3}$.]
$g \notin O(f)$.
[Assume $n^{3} \in O\left(n^{2}\right)$. Then ex. c, n_{0} s.t. $n^{3} \leq c \cdot n^{2}$ for all $n \geq n_{0}$. Choose $n_{1}=1+\max \left\{c, n_{0}\right\}$. Then $n_{1}^{3}=n_{1} \cdot n_{1}^{2}>c \cdot n_{1}^{2}$ and $n_{1}>n_{0}$. t]

Exercise 1 (hand-in) Show that $2^{n} \in O(n!)$.
Exercise 2 (hand-in) Show that $n!\notin O\left(2^{n}\right)$.
Exercise 3 (no hand-in) Show: If $f \in O(g)$ and $g \in O(h)$, then $f \in O(h)$.

1.4 Example

$f(n)=n^{2}+2 n+5 ; g(n)=n^{2}$
$g \in O(f)$ [For $c=1$ and $n>0, n^{2} \leq c \cdot\left(n^{2}+2 n+5\right)$.]
$f \in O(g)$
[For $n>1$ we have $f(n)=n^{2}+2 n+5 \leq n^{2}+2 n^{2}+5 n^{2}=8 n^{2}=8 \cdot g(n)$. Hence, for $c=8$
and $n>1, f(n) \leq c \cdot g(n)$.]

1.5 Definition

$\Theta(g):=\{f \mid f \in O(g)$ and $g \in O(f)\}$

1.6 Example

For f, g from Example 1.4, $f \in \Theta(g)$.

1.7 Remark

A polynomial (with integer coefficients) of degree $r \in \mathbb{N}$ is a function of the form

$$
f: \mathbb{N} \rightarrow \mathbb{Z}: n \mapsto c_{r} \cdot n^{r}+c_{r-1} \cdot n^{r-1}+\cdots+c_{1} \cdot n+c_{0}
$$

with $0<r \in \mathbb{N}$, coefficients $c_{i} \in \mathbb{Z}(i=1, \ldots, r), c_{r} \neq 0$.
For $f, g: \mathbb{N} \rightarrow \mathbb{Z}$, we say $f \in O(g)$ if $|f| \in O(|g|)$, where $|f|: \mathbb{N} \rightarrow \mathbb{N}: n \mapsto|f(n)|$.

1.8 Example

$f(n)=n^{2}+2 n+5 ; g(n)=-n^{2}$
$g \in O(f)$
[We have $|g|: n \mapsto n^{2}$ and $|f| \equiv f$. Thus, from Example 1.4 we know that $|g| \in O(|f|)$.] $f \in O(g)$ [As before, from Example 1.4.]

1.9 Remark

For $f, g: \mathbb{N} \rightarrow \mathbb{R}$, we say $f \in O(g)$ if $\lfloor f\rfloor \in O(\lfloor g\rfloor)$.

1.10 Remark

$\log _{a}(n) \in O\left(\log _{b}(n)\right)$ for all $1<a, b \in \mathbb{N} .\left[\log _{a}(n)=\log _{a}(b) \cdot \log _{b}(n)\right.$ for all $n \in \mathbb{N}$.]

1.11 Theorem

The following hold.

1. If $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0$, then $f \in O(g)$ and $g \notin O(f)$.
2. If $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=c$ with $0<c<\infty$, then $f \in \Theta(g)$ and $g \in \Theta(f)$.
3. If $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\infty$, then $f \notin O(g)$ and $g \in O(f)$.

Proof: We show part 1.
Assume $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0$, i.e., for each $\varepsilon>0$ there exists $n_{\varepsilon} \in \mathbb{N}$ such that for all $n \geq n_{\varepsilon}$ we have $\frac{f(n)}{g(n)}<\varepsilon$, and hence $f(n)<\varepsilon g(n)$. Now select $c=\varepsilon=1$ and $n_{0}=n_{\varepsilon}$. Then $f(n) \leq c \cdot g(n)$ for all $n \geq n_{0}$, which shows $f \in O(g)$.
Now if we also assume $g \in O(f)$, then there must exist $d>0$ and $m_{0} \in \mathbb{N}$ s.t. $g(n) \leq d \cdot f(n)$ for all $n \geq m_{0}$, i.e., $\frac{1}{d} \leq \frac{f(n)}{g(n)}$ for all $n \geq m_{0}$. But then $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)} \geq \frac{1}{d}>0 \mathfrak{b}$.

Exercise 4 (hand-in) Show Theorem 1.11 part 2.
Exercise 5 (no hand-in) Show Theorem 1.11 part 3. [Hint: Use part 1.]

1.12 Remark

The l'Hospital's Rule often comes in handy:

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\lim _{n \rightarrow \infty} \frac{f^{\prime}(n)}{g^{\prime}(n)}
$$

1.13 Example

$n \log _{a}(n) \in O\left(n^{2}\right)$ and $n^{2} \notin O\left(n \log _{a}(n)\right)$

$$
\left[\lim _{n \rightarrow \infty} \frac{n \log _{a}(n)}{n^{2}}=\lim _{n \rightarrow \infty} \frac{\log _{a}(n)+n\left(\log _{a}(e) / n\right)}{2 n}=\lim _{n \rightarrow \infty} \frac{\log _{a}(n)}{2 n}+\lim _{n \rightarrow \infty} \frac{\log _{a}(e)}{2 n}=0+0=0\right]
$$

1.14 Theorem

Let f be a polynomial of degree r. Then
(1) $f \in \Theta\left(n^{r}\right)$
(2) $f \in O\left(n^{k}\right)$ for all $k>r$
(3) $f \notin O\left(n^{k}\right)$ for all $k<r$

Exercise 6 (no hand-in) Prove Theorem 1.14 (1).

1.15 Theorem

The following hold.
(1) $\log _{a}(n) \in O(n)$ and $n \notin O\left(\log _{a}(n)\right)$
(2) $n^{r} \in O\left(b^{n}\right)$ and $b^{n} \notin O\left(n^{r}\right)$
(3) $b^{n} \in O(n!)$ and $n!\notin O\left(b^{n}\right)$

Exercise 7 (no hand-in) Prove Theorem 1.15 (1).

1.16 Remark

The Big Oh Hierarchy.

$O(1)$	constant	"sublinear"	"subpolynomial"
$O\left(\log _{a}(n)\right)$	logarithmic	"sublinear"	"subpolynomial"
$O(n)$	linear		"subpolynomial"
$O\left(n \log _{a}(n)\right)$	$n \log n$	"subpolynomial"	
$O\left(n^{2}\right)$	quadratic	"polynomial"	
$O\left(n^{3}\right)$	cubic	"polynomial"	
$O\left(n^{r}\right)$	polynomial $(r \geq 0)$		
$O\left(b^{n}\right)$	exponential $(b>1)$	"exponential"	
$O(n!)$	factorial	"exponential"	

2 Turing Machines and Time Complexity

[4, Chapter 14.3 and recap Chapters 8.1, 8.2]

2.1 Definition

A standard (single tape, deterministic) Turing machine (TM) is a quintuple $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}\right)$ with
Q a finite set of states
Γ a finite set called tape alphabet containing a blank B
$\Sigma \subseteq \Gamma \backslash\{B\}$ the input alphabet
$\delta: Q \times \Gamma \xrightarrow{\text { partial }} Q \times \Gamma \times\{L, R\}$, the transition function
$q_{0} \in Q$ the start state

Recall:

- Tape has a left boundary and is infinite to the right.
- Tape positions numbered starting with 0 .
- Each tape position contains an element from Γ.
- Machine starts in state q_{0} and at position 0 .
- Input is written on tape beginning at 1 .
- Rest of tape is blank.
- A transition

1. changes state,
2. writes new symbol at tape position,
3. moves head left or right.

- Computation halts if no action is defined.
- Computation terminates abnormally if it moves left of position 0 .
- TMs can be represented by state diagrams.

2.2 Example

Swap all a 's to b 's and all b 's to a 's in a string of a 's and b 's.

Computation example:

$$
\begin{array}{llll}
\vdash q_{0} B a b a b B & \vdash B b a q_{1} a b B & \vdash B b a b q_{2} a B & \vdash B q_{2} b a b a B \\
\vdash B q_{1} a b a b B & \vdash B b a b q_{1} b B & \vdash B b a q_{2} b a B & \vdash q_{2} B b a b a B \\
\vdash B b q_{1} b a b B & \vdash B b a b a q_{1} B & \vdash B b q_{2} a b a B &
\end{array}
$$

Number of steps required with input string size n : $1+n+1+n=2 n+2$

2.3 Example

Copying a string: $B u B$ becomes $B u B u B$ (u is a string of a 's and b 's)

Number of steps required with input string size n : $O\left(n^{2}\right)$.
Exercise 8 (hand-in) Make a standard TM which moves an input string consisting of a 's and b 's one position to the right. What is the complexity of your TM?

Language accepting TMs additionally have a set $F \subseteq Q$ of final states. (They are sextuples.) A string is accepted if the computation halts in a final state (and does not terminate abnormally).

2.4 Example

A TM for $(a \cup b)^{*} a a(a \cup b)^{*}$.

Note that the TM assumes $\Sigma=\{a, b\}$.
Number of steps required with input string size n : n (worst case)

Figure 1: A TM for $\left\{a^{i} b^{i} c^{i} \mid i \geq 0\right\}$

2.5 Example

A TM for $\left\{a^{i} b^{i} c^{i} \mid i \geq 0\right\}$ (Figure 1).
Number of steps required with input string size $n=3 i: O(i \cdot 4 i)=O\left(i^{2}\right)=O\left(n^{2}\right)$ (worst case)

Exercise 9 (no hand-in) Make a standard TM which accepts the language $\left\{a^{2 i} b^{i} \mid i \geq 0\right\}$. What is the complexity of your TM?

2.6 Example

A TM for palindromes over a and b (Figure 2).
Number of steps required with input string size n :

$$
1+\sum_{i=1}^{n} i=1+\frac{1}{2} \cdot(n+1) \cdot n \in O\left(n^{2}\right) \quad \text { (worst case) }
$$

Figure 2: A TM for palindromes over a and b.

2.7 Definition

For any TM M, the time complexity of M is the function $t c_{M}: \mathbb{N} \rightarrow \mathbb{N}$ s.t. $t c_{M}(n)$ is the maximum number of transitions processed by a computation of M on input of length n.

2.8 Definition

A language L is accepted in deterministic time $f(n)$ if there is a single tape deterministic TM M for it with $t c_{M}(n) \in O(f(n))$.

Exercise 10 (hand-in) Design a single tape TM M for $\left\{a^{i} b^{i} \mid i \geq 0\right\}$ with $t c_{M} \in O\left(n \log _{2}(n)\right)$. [Hint: On each pass, mark half of the a 's and b 's that have not been previously marked.]

2.9 Remark

Note, that worst-case behavior can happen when a string is not accepted. [E.g., straightforward TM to accept strings containing an a.]

3 Complexity under Turing Machine Variations

[4, Chapter 14.3 cont., 14.4 and recap Chapters 8.5, 8.6]

A k-track $T M$ has one tape with k tracks. A single read-write head simultaneously reads the k symbols at the head position from all k tracks. We write the transitions as $\delta: Q \times \Gamma^{k} \rightarrow$ $Q \times \Gamma^{k} \times\{L, R\}$. The input string is on track 1 .

3.1 Theorem

If L is accepted by a k-track TM M then there is a standard TM M^{\prime} which accepts L s.t. $t c_{M^{\prime}}(n)=t c_{M}(n)$.
Proof: For $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, F\right)$, let $M^{\prime}=\left(Q, \Sigma \times\{B\}^{k-1}, \Gamma^{k}, \delta^{\prime}, q_{0}, F\right)$ with transition function $\delta^{\prime}\left(q_{i},\left(x_{1}, \ldots, x_{k}\right)\right)=\delta\left(q_{i},\left[x_{1}, \ldots, x_{k}\right]\right)$. The number of transitions needed for a computation is unchanged.

A k-tape $T M$ has k tapes and k independent tape heads, which read simultaneously. A transition (i) changes the state, (ii) writes a symbol on each tape, and (iii) independently moves all tape heads. Transitions are written $\delta:\left(q_{i}, x_{1}, \ldots, x_{k}\right) \mapsto\left[q_{j} ; y_{1}, d_{1} ; \ldots ; y_{k}, d_{k}\right]$ where $x_{l}, y_{l} \in \Gamma$ and $d_{i} \in\{L, R, S\}$ (S means head stays). Any head moving off the tape causes an abnormal termination. The input string is on tape 1.

3.2 Example

2-tape TM for $\left\{a^{i} b a^{i} \mid i \geq 0\right\}$.

Number of steps required with input string size $n: n+2$

3.3 Example

2-tape TM for $\left\{u u \mid u \in\{a, b\}^{\star}\right\}$.

Number of steps required with input string size $n: \frac{5}{2} n+4$

3.4 Example

2-tape TM accepting palindromes.

Number of steps required with input string size $n: 3(n+1)+1$

3.5 Theorem

If L is accepted by a k-tape TM M then there is a standard TM N which accepts L s.t. $t c_{N}(n)=O\left(t c_{M}(n)^{2}\right)$.

Proof: (sketch) By Theorem 3.1 it suffices to construct an equivalent $2 k+1$-track TM M^{\prime} s.t. $t c_{M^{\prime}}(n) \in O\left(t c_{M}(n)^{2}\right)$.

Simulation of the TM:

We show how to do this for $k=2$ (but the argument generalizes).
Idea: tracks 1 and 3 maintain info on tapes 1 and 2 of M; tracks 2 and 4 have a single nonblank position indicating the position of the tape heads of M.
Initially: write $\#$ in track 5 , position 1 and X in tracks 2 and 4 , position 1 .
States: 8-tuples of the form $\left[s, q_{i}, x_{1}, x_{2}, y_{1}, y_{2}, d_{1}, d_{2}\right]$, where $q_{i} \in Q, x_{i}, y_{i} \in \Sigma \cup\{U\}, d_{i} \in$ $\{L, R, S, U\} . s \in\{f 1, f 2, p 1\}$ represents the status of the simulation. U indicates an unknown item.

Let $\delta:\left(q_{i}, x_{1}, x_{2}\right) \mapsto\left[q_{j} ; y_{1}, d_{1} ; y_{2}, d_{2}\right]$ be the applicable transition of M.
M^{\prime} start state: $\left[f 1, q_{i}, U, U, U, U, U, U\right]$. The following actions simulate the transition of M :

1. $f 1$ (find first symbol): M^{\prime} moves to the right until X on track 2 .

Enter state $\left[f 1, q_{i}, x_{1}, U, U, U, U, U\right]$, where x_{1} is symbol on track 1 under x.
M^{\prime} returns to the position with \# in track 5 .
2. $f 2$ (find second symbol): Same as above for recording symbol x_{2} in track 3 under X in track 4.
Enter state $\left[f 2, q_{i}, x_{1}, x_{2}, U, U, U, U\right]$.
Tape head returns to $\#$.
3. Enter state $\left[p 1, q_{j}, x_{1}, x_{2}, y_{1}, y_{2}, d_{1}, d_{2}\right]$, with $q_{j}, y_{1}, y_{2}, d_{1}, d_{2}$ obtained from $\delta\left(q_{i}, x_{1}, x_{2}\right)$.
4. $p 1$ (print first symbol): move to X in track 2 .

Write symbol y_{1} on track 1 . Move X on track 2 in direction indicated by d_{1}. Tape head returns to \#.
5. $p 2$ (print second symbol): move to X in track 4.

Write symbol y_{2} on track 3 . Move X on track 4 in direction indicated by d_{2}.
Tape head returns to \#.

If $\delta\left(q_{i}, x_{1}, x_{2}\right)$ is undefined, then simulation halts after step 2 . $\left[f 2, q_{i}, x_{1}, y_{1}, U, U, U, U\right]$ is accepting whenever q_{i} is accepting.
For each additional tape, add two trackes, and states obtain 3 more parameters. The simulation has 2 more actions (a find and a print for the new tape).

Complexity analysis:

Assume we simulate the t-th transition of M.
Heads of M are maximally at positions t.
Finds require maximum of $k \cdot 2 t$ steps.
Prints require maximum of $k \cdot 2(t+1)$ steps.
Simulation of t-th transition requires maximum of $4 k t+2 k+2$ steps.
Thus

$$
t c_{M^{\prime}}(n) \leq 1+\sum_{t=1}^{t c_{M}(n)}(4 k t+2 k+2) \in O\left(t c_{M}(n)^{2}\right)
$$

Exercise 11 (no hand-in) Let M be the TM from Example 3.2 and let M^{\prime} (standard 1track!) be constructed as in the proof of Theorem 3.5. Determine the number of states of M^{\prime} which are 8 -tuples.

Exercise 12 (hand-in) Let a Random Access TM (RATM) be a one-tape TM where transitions are of the form $\delta\left(q_{i}, x\right)=\left(q_{j}, y, d\right)$, where $d \in \mathbb{N}$. Such a transition is performed as usual, but the tape head is then moved to position d on the tape.
Give a sketch, how a RATM can be simulated by a standard TM.
Exercise 13 (hand-in) Do you think that the following is true?
For any RATM M there is a standard TM N such that $t c_{N}(n)=O\left(t c_{M}(n)\right)$.
Justify your answer (no full formal proof needed).

4 Linear Speedup

[4, Chapter 14.5]

4.1 Theorem

Let M be a k-tape TM, $k>1$, that accepts L with $t c_{M}(n)=f(n)$. Then, for any $c>0$, there is a k-tape TM N that accepts L with $t c_{N}(n) \leq\lceil c \cdot f(n)\rceil+2 n+3$.

4.2 Corollary

Let M be a 1 -tape TM that accepts L with $t c_{M}(n)=f(n)$. Then, for any $c>0$, there is a 2 -tape TM N that accepts L with $t c_{N}(n) \leq\lceil c \cdot f(n)\rceil+2 n+3$.

Proof: The 1-tape TM can be understood as a 2 -tape TM where tape 2 is not used. Then apply Theorem 4.1.

Exercise 14 (hand-in) Assume a language L is accepted by a 2-tape TM M with $t c_{M}(n)=$ \sqrt{n}. Do you think it is possible to design a standard TM N for L with $t c_{N}(n) \in O(n)$? Justify your answer.

Proof sketch/idea for Theorem 4.1:

Exemplified using Example 3.4.
$M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, F\right)$.

Simulation of the TM:

N input alphabet: Σ.
N tape alphabet: $\Gamma \cup\{\#\} \cup \Gamma^{m}$
Initialization of N by example.

A state of N consists of:

- the state of M
- for $i=1, \ldots, k$, the m-tuple currently scanned on tape i of N and the m-tuples to the immediate right and left
- a k-tuple $\left[i_{1}, \ldots, i_{k}\right]$, where i_{j} is the position of the symbol on tape j being scanned by M in the m-tuple being scanned by N.
After initialization, enter state

$$
\left(q_{0} ; ?,[B B B], ? ; ?,[B a b], ? ;[1,1]\right)
$$

(? is a placeholder, filled in by subsequent movements).
Idea: Six transitions of N simulate m transitions of M (m depends on c).
Simulated, compressed configurations:

State:

$$
(q 3 ; ?,[B B b], ? ; ?,[b B B], ? ;[3,1])
$$

Six transitions are performed:

1. move left, record tuples in the state
2. move two to the right, record tuples in the state
3. move one to the left

State: $\left(q_{3}, \#,[B B b],[b a b] ;[b a b],[b B B],[B B B] ;[3,1]\right)$
4. and
5. rewrite tapes to match configuration of M after three transitions.

State: $\left(q_{3}, ?,[B B b], ? ;\right.$?, $\left.[b B B], ? ;[3,1]\right)$

Complexity analysis:

Initialization requires $2 n+3$ transitions.
For simulation, 6 moves of N simulate m moves of M.
With $m \geq \frac{6}{c}$ we obtain

$$
t c_{N}(n)=\left\lceil\frac{6}{m} f(n)\right\rceil+2 n+3 \leq\lceil c \cdot f(n)\rceil+2 n+3
$$

as desired.

4.3 Remark

In Theorem 4.1, the speedup is obtained by using a larger tape alphabet and by vastly increasing the number of states.

5 Properties of Time Complexity

[4, Chapter 14.6]

5.1 Theorem

Let f be a total computable function. Then there is a language L such that $t c_{M}$ is not bounded by f for any TM M that accepts L.

Proof sketch: Let u be an injective function which assigns to every TM M with $\Sigma=\{0,1\}$ a string $u(M)$ over $\{0,1\}$. [Each TM can be described by a finite string of characters; then consider a bit encoding of the characters.]
Let $u_{1}, u_{2}, u_{3}, \ldots$ be an enumeration of all strings over $\{0,1\}$. If $u(M)=u_{i}$ for some M, then set $M_{i}=M$, otherwise set M_{i} to be the one-state TM with no transitions.
This needs to be done, such that there is a TM N which, on input any u_{i}, can simulate M_{i}.

$$
L=\left\{u_{i} \mid M_{i} \text { does not accept } u_{i} \text { in } f\left(\text { length }\left(u_{i}\right)\right) \text { or fewer moves }\right\} .
$$

L is recursive. [Input some u_{i}. Determine length $\left(u_{i}\right)$. Compute $f\left(\operatorname{length}\left(u_{i}\right)\right)$. Simulate M_{i} on u_{i} until M_{i} either halts or completes $f\left(\operatorname{length}\left(u_{i}\right)\right)$ transitions, whichever comes first. u_{i} is accepted if either M_{i} halted without accepting u_{i} or M_{i} did not halt in the first $f\left(\right.$ length $\left.\left(u_{i}\right)\right)$ transitions. Otherwise, u_{i} is rejected.]

Let M be a TM accepting L. Then $M=M_{j}$ for some $j . M=M_{j}$ accepts u_{j} iff M_{j} halts on input u_{j} without accepting u_{j} in $f\left(\right.$ length $\left.\left(u_{j}\right)\right)$ or fewer steps or M_{j} does not halt in the first f (length $\left.\left(u_{j}\right)\right)$ steps.
Hence, if M accepts u_{j} then it needs more than $f\left(\right.$ length $\left.\left(u_{j}\right)\right)$ steps.
If M does not accept u_{j}, then it also cannot stop in $f\left(\right.$ length $\left.\left(u_{j}\right)\right)$ or fewer steps, since then it would in fact accept u_{j}.

5.2 Theorem

There is a language L such that, for any TM M that accepts L, there is a TM N that accepts L with $t c_{N}(n) \in O\left(\log _{2}\left(t c_{M}(n)\right)\right)$.

Proof: skipped

Exercise 15 (no hand-in) Is the following true or false? Prove your claim.
For the language L from Theorem 5.2, the following holds: If there is a TM M that accepts L with $c_{M}(n) \in O\left(2^{n}\right)$, then there is a TM N that accepts L with $t c_{N}(n) \in O(n)$.

Exercise 16 (no hand-in) Is the following true or false? Prove your claim.
Let M be a 5-track TM which accepts a language L. Then there is a 5-tape TM N that accepts L with

$$
t c_{N}(n) \leq \frac{7+7 n+t c_{M}(n)}{2}
$$

6 Simulation of Computer Computations

[4, Chapter 14.7]
Is the TM complexity model adequate?
Assume a computer with the following parameters.

- finite memory divided into word-size chunks
- fixed word length, m_{w} bits each
- each word has a fixed numeric address
- finite set of instructions
- each instruction
- fits in a single word
- has maximum t operands (addresses used in operation)
- can do one of
* move data
* perform arithmetic or Boolean calculations
* adjust the program flow
* allocate additional memory (maximum of m_{a} words each time)
- can change at most t words in the memory

Now simulate in $5+t$-tape TM. Tapes are:

- Input tape (divided into word chunks)
- Memory counter (address of next free word on tape 1)
- Program counter (location of next instruction to be exectuted)
- Input counter (location of beginning of input and location of next word to be read)
- Work tape
- t Register tapes

Simulation of k-th instruction:

1. load operand data onto the register tapes (max t words)
2. perform indicated operation (one)
3. store results as requried (stores max t words or allocates m_{a} words of memory)

Operation: finite number of instructions with at most t operands. Maximum number of transitions needed shall be t_{0} (max exists and is $<\infty$)
Load and Store:
m_{p} number of bits used to store input
m_{i} number of bits used to store instructions
m_{k} total memory allocated by $T M$ before instruction k

$$
m_{k} \leq m_{p}+m_{i}+k \cdot m_{a}
$$

Any address can be located in m_{k} transitions.
Upper bounds:
find instruction $\quad m_{k}$
load operands $t \cdot m_{k}$
return register tape heads $\quad t \cdot m_{k}$
perform operation t_{0}
store information $t \cdot m_{k+1}$
return register tape heads $\quad t \cdot m_{k+1}$
upper bound for k-th instruction:

$$
(2 t+1) m_{k}+2 t m_{k+1}+t_{0} \leq(4 t+1) m_{p}+(4 t+1) m_{i}+2 t m_{a}+t_{0}+(4 t+1) k m_{a}
$$

If computer requires $f(n)$ steps on input length $m_{p}=n$, then simulation requires:

$$
\begin{aligned}
\sum_{k=1}^{f(n)}((4 t+1) n & \left.+(4 t+1) m_{i}+2 t m_{a}+t_{0}+(4 t+1) k m_{a}\right) \\
& =f(n)\left((4 t+1) n+(4 t+1) m_{i}+2 t m_{a}+t_{0}\right)+\sum_{k=1}^{f(n)}(4 t+1) k m_{a} \\
& =f(n)\left((4 t+1) n+(4 t+1) m_{i}+2 t m_{a}+t_{0}\right)+(4 t+1) m_{a} \sum_{k=1}^{f(n)} k \\
& \in O\left(\max \left\{n f(n), f(n)^{2}\right\}\right)
\end{aligned}
$$

In particular:
If an algorithm runs in polynomial time on a computer, then it can be simulated on a TM in polynomial time. [For $f(n) \in O\left(n^{r}\right)$, we have $n f(n) \in O\left(n^{r+1}\right)$ and $f(n)^{2} \in O\left(n^{2 r}\right)$]

Exercise 17 (no hand-in) Can we conclude the following from the observations in this section?

- If an algorithm runs in exponential time on a computer, then it can be simulated on a TM in exponential time.
- If an algorithm runs in linear time on a computer, then it can be simulated on a TM in quadratic time.
Justify your answer.

7 PTime

[[4, Chapter 15.6] and some bits and pieces]

7.1 Definition

A language L is decidable in polynomial time if there is a standard TM M that accepts L with $t c_{M}(n) \in O\left(n^{r}\right)$, where $r \in \mathbb{N}$ is independent of n. \mathcal{P} (PTime) is the complexity class of all such languages. [\mathcal{P} is the set of all such languages.]

Exercise 18 (hand-in) Show that \mathcal{P} is closed under language complement.

7.2 The Polynomial Time Church-Turing Thesis

A decision problem can be solved in polynomial time by using a reasonable sequential model of computation if and only if it can be solved in polynomial time by a Turing Machine.

We have seen that \mathcal{P} is independent of the computation paradigm used:

- standard TMs
- k-track TM
- k-tape TM
- "realistic" computer

7.3 Definition

Let L, Q, be languages over alphabets Σ_{1} and Σ_{2}, respectively. L is reducible (in polynomial time) to Q if there is a polynomial-time computable function $r: \Sigma_{1}^{*} \rightarrow \Sigma_{2}^{*}$ such that $w \in L$ if and only if $r(w) \in Q$.

7.4 Example

The TM

reduces $L=\left\{x^{i} y^{i} z^{k} \mid i, k \geq 0\right\}$ to $Q=\left\{a^{i} b^{i} \mid i \geq 0\right\}$.
Time complexity: $O(n)$.
Exercise 19 (hand-in) Construct a TM which reduces

$$
\left\{a^{i} b^{i} a^{i} \mid i \geq 0\right\} \text { to }\left\{c^{i} d^{i} \mid i \geq 0\right\}
$$

7.5 Theorem

Let L be reducible to Q in polynomial time and let $Q \in \mathcal{P}$. Then $L \in \mathcal{P}$.
Proof: TM for reduction: R.
TM deciding $Q: M$.
R on input w generates $r(w)$ as input to M.
length $(r(w)) \leq \max \left\{\operatorname{length}(w), t c_{R}(\right.$ length $\left.(w))\right\}$.
If $t c_{R} \in O\left(n^{s}\right)$ and $t c_{M} \in O\left(n^{t}\right)$, then

$$
t c_{R}(n)+t c_{M}\left(\max \left\{n, t c_{R}(n)\right\}\right) \in O\left(n^{s}\right)+O\left(\max \left\{O\left(n^{t}\right), O\left(\left(n^{s}\right)^{t}\right)\right\}\right)=O\left(n^{s t}\right) .
$$

7.6 Definition

A language (problem) L is

- \mathcal{P}-hard, if every language in \mathcal{P} is reducible to L in polynomial time.
- \mathcal{P}-complete, if L is \mathcal{P}-hard and $L \in \mathcal{P}$.

7.7 Remark

Definition 7.6 (hardness and completeness) are used likewise for other complexity classes. Thereby, reducibility is always considered to be polynomial time.

7.8 Remark

In principle, you could use any decision problem for defining a complexity class. E.g., if the POPI-problem is to find out, if n potachls fit into a pistochl of size n, then a problem/language L is

- in POPI if L is reducible to the POPI-problem (in polynomial time),
- POPI-hard if the POPI-problem is reducible to L (in polynomial time),
- POPI-complete if it is both in POPI and POPI-hard.

Obvious questions:

- Which complexity classes are interesting or useful?
- How do they relate to each other?

In this class, we mainly talk about two complexity classes: \mathcal{P}, and $\mathcal{N P}$ (soon).
Exercise 20 (no hand-in) By Theorem 5.1, there are problems which are not in \mathcal{P}. Go to
http://qwiki.stanford.edu/wiki/Complexity_Zoo
and do the following.

1. Find the names of 4 complexity classes which contain \mathcal{P}.
2. Find a \mathcal{P}-hard problem and describe it briefly in general, but understandable, terms. (You may have to use other sources for background understanding.)

8 Nondeterministic Turing Machines and Time Complexity

[4, Chapters 15.1, 15.2 cont., some of Chapter 7.1, and recap Chapter 8.7]

- A nondeterministic (ND) TM may specify any finite number of transitions for a given configuration.
- Transitions are defined by a function from $Q \times \Gamma$ to the set of finite subsets of $Q \times \Gamma \times$ $\{L, R\}$.
- A computation arbitrarily chooses one of the possible transitions. Input is accepted if there is at least one computation terminating in an accepting state.

8.1 Definition

Time complexity $t c_{M}: \mathbb{N} \rightarrow \mathbb{N}$ of an ND TM M is defined s.t. $t c_{M}(n)$ is the maximum number of transitions processed by input of length n.

8.2 Example

Accept strings with a c preceeded or followed by $a b$.

Complexity: $O(n)$

8.3 Example

2 -tape ND palindrome finder.

Complexity: $n+2$ if n is odd, $n+3$ if n is even.
Exercise 21 (hand-in) Give a nondeterministic two-tape TM for $\left\{u u \mid u \in\{a, b\}^{*}\right\}$ which is quicker than the TM from Example 3.3.

8.4 Definition

A language L is accepted in nondeterministic polynomial time if there is an ND TM M that accepts L with $t c_{M} \in O\left(n^{r}\right)$, where $r \in \mathbb{N}$ is independent of n. $\mathcal{N P}$ is the complexity class of all such languages.

8.5 Remark

$\mathcal{P} \subseteq \mathcal{N} \mathcal{P}$. It is currently not known if $\mathcal{P}=\mathcal{N} \mathcal{P}$.

8.6 Theorem

Let L be accepted by a one-tape ND TM M. Then L is accepted by a deterministic TM M^{\prime} with $t c_{M^{\prime}}(n) \in O\left(t c_{M}(n) c^{t c_{M}(n)}\right)$, where c is the maximum number of transitions for any state, symbol pair of M.

Proof sketch: Simulation idea: Use 3-tape TM M^{\prime}. Tape 1 holds input. Tape 2 is used for simulating the tape of M. Tape 3 holds sequences (m_{1}, \ldots, m_{k}) $\left(1 \leq m_{i} \leq c\right)$, which encode computations of $M: m_{i}$ indicates that, from the (maximally) c choices M has in performing the i-th transition, the m_{i}-th choice is selected.
M is simulated as follows:

1. generate a $\left(m_{1}, \ldots, m_{k}\right)$
2. simulate M according to $\left(m_{1}, \ldots, m_{k}\right)$
3. if input is not accepted, continue with step 1 .

Worst case: $c^{t^{c} M^{(n)}}$ sequences need to be examined. Simulation of a single computation needs maximally $O\left(t c_{M}(n)\right)$ transitions. Thus, $t c_{M^{\prime}}(n) \in O\left(t c_{M}(n) c^{t c_{M}(n)}\right)$.

Exercise 22 (no hand-in) Make a (deterministic) pseudo-code algorithm for an exhaustive search on a tree (i.e., if the sought element is not found, the whole tree should be traversed).

Exercise 23 (no hand-in) Make a non-deterministic pseudo-code algorithm for an exhaustive search on a tree.

8.7 Definition

$\operatorname{co-} \mathcal{N} \mathcal{P}=\{\bar{L} \mid L \in \mathcal{N} \mathcal{P}\}$ and co- $\mathcal{P}=\{\bar{L} \mid L \in \mathcal{P}\}$, where \bar{L} denotes the complement of L. It is currently not known if $\mathcal{N P}=\operatorname{co}-\mathcal{N} \mathcal{P}$.

8.8 Theorem

If $\mathcal{N P} \neq$ co- $\mathcal{N} \mathcal{P}$, then $\mathcal{P} \neq \mathcal{N} \mathcal{P}$.
Proof: Proof by contraposition:
If $\mathcal{P}=\mathcal{N} \mathcal{P}$, then by Exercise 18 we have

$$
\mathcal{N P}=\mathcal{P}=\mathrm{co}-\mathcal{P}=\operatorname{co}-\mathcal{N} \mathcal{P} .
$$

8.9 Theorem

If there is an $\mathcal{N} \mathcal{P}$-complete language L with $\bar{L} \in \mathcal{N} \mathcal{P}$, then $\mathcal{N} \mathcal{P}=\operatorname{co}-\mathcal{N} \mathcal{P}$.
Proof: Assume L is a language as stated.
Let $Q \in \mathcal{N} \mathcal{P}$. Then Q is reducible to L in polynomial time. This reduction is also a reduction of \bar{Q} to \bar{L}.
Combining the TM which performs the reduction with the TM which accepts \bar{L} results in an ND TM that accepts \bar{Q} in polynomial time. Thus $Q \in \operatorname{co}-\mathcal{N} \mathcal{P}$.
This shows $\mathcal{N P} \subseteq$ co- $\mathcal{N} \mathcal{P}$. The inclusion co- $\mathcal{N} \mathcal{P} \subseteq \mathcal{N} \mathcal{P}$ follows by symmetry.

8.10 Theorem

Let Q be an $\mathcal{N} \mathcal{P}$-complete language. If Q is reducible to L in polynomial time, then L is $\mathcal{N} \mathcal{P}$-hard.

Proof: If $R \in \mathcal{N} \mathcal{P}$, then R is reducible in polynomial time to Q, which in turn is reducible in polynomial time to L. By composition, R is reducible in polynomial time to L.

8.11 Remark

When moving from languages to decision problems, the representation of numbers may make a difference: Conversion from binary to unary representation is in $O\left(2^{n}\right)$.
Thus, if a problem can be solved in polynomial time with unary input representation, it may not be solvable in polynomial time with binary input representation.
Most reasonable representations of a problem differ only polynomially in length, but not so unary number encoding.
Thus, in complexity analysis, numbers are always assumed to be represented in binary.

8.12 Definition

A decision problem with a polynomial solution using unary number representation, but no polynomial solution using binary representation, is called pseudo-polynomial.

Exercise 24 (hand-in) Let L be the language of all strings over $\{a, b\}$ that can be divided into two strings (not necessarily the same length) such that (1) both strings have the same number of b 's and (2) both strings start and end with a. E.g., abbaababaa is in L because it can be divided into $a b b a$ and $a b a b a a$, both of which have $2 b$'s and both of which start and end in a. The string bbabba is not in L.
Give a 2-tape, single track ND TM that accepts L. Explain your TM in words.

$9 \quad$ SAT is $\mathcal{N} \mathcal{P}$-Complete

[4, Chapter 15.8]

Let V be a set of Boolean variables.

9.1 Definition

An atomic formula is a Boolean Variable.
(Well-formed) formulas are defined as follows.

1. All atomic formulas are formulas.
2. For every formula $F, \neg F$ is a formula, called the negation of F.
3. For all formulas F and G, also $(F \vee G)$ and $(F \wedge G)$ are formulas, called the disjunction and the conjunction of F and G, respectively.
4. Nothing else is a formula.

9.2 Definition

$\mathbb{T}=\{0,1\}$ - the set of truth values: false, and true, respectively.
An assignment is a function $\mathcal{A}: \mathbf{D} \rightarrow \mathbb{T}$, where \mathbf{D} is a set of atomic formulas.
Assignments extend to formulas, via the following truth tables.

$\mathcal{A}(F)$	$\mathcal{A}(G)$	$\mathcal{A}(F \wedge G)$
0	0	0
0	1	0
1	0	0
1	1	1

$\mathcal{A}(F)$	$\mathcal{A}(G)$	$\mathcal{A}(F \vee G)$
0	0	0
0	1	1
1	0	1
1	1	1

$\mathcal{A}(F)$	$\mathcal{A}(\neg F)$
0	1
1	0

A formula F is called satisfiable if there exists an assignment \mathcal{A} with $\mathcal{A}(F)=1$. \mathcal{A} is called a model of F in this case, and we write $\mathcal{A} \models F$.

9.3 Example

Determining the truth values of formulas using truth tables:

$\mathcal{A}(B)$	$\mathcal{A}(F)$	$\mathcal{A}(I)$	$\mathcal{A}(B \wedge F)$	$\mathcal{A}(\neg(B \wedge F))$	$\mathcal{A}(\neg I)$	$\mathcal{A}(\neg(B \wedge F) \vee \neg I)$
0	0	0	0	1	1	1
0	0	1	0	1	0	1
0	1	0	0	1	1	1
0	1	1	0	1	0	1
1	0	0	0	1	1	1
1	0	1	0	1	0	1
1	1	0	1	0	1	1
1	1	1	1	0	0	0

Exercise 25 (no hand-in) Make the truth table for the formula $\neg(I \vee \neg B) \vee \neg F$.
Exercise 26 (no hand-in) Give a formula F, containing only the Boolean variables A, B, and C, such that F has the following truth table.

$\mathcal{A}(A)$	$\mathcal{A}(B)$	$\mathcal{A}(C)$	$\mathcal{A}(F)$
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

9.4 Definition

Formulas F and G are (semantically) equivalent (written $F \equiv G$) if for every assignment \mathcal{A}, $\mathcal{A}(F)=\mathcal{A}(G)$.

9.5 Theorem

The following hold for all formulas F, G, and H.

$$
\begin{array}{rlrl}
F \wedge G & \equiv G \wedge F & & \\
(F \wedge G) & & \text { Commutativity } \\
F \wedge(G \vee H) & \equiv F \wedge(F \wedge G) & & \equiv \\
F \wedge G \vee G \vee H & \equiv F \vee(G \vee H) & & \text { Associativity } \\
\neg \neg F & \equiv F & & \\
\neg(F \wedge G) & \equiv \neg F \vee \neg G & & \\
\neg(F \vee(F \wedge H) & \equiv(F \vee G) \wedge(F \vee H) & & \text { Distributivity } \\
\text { Double Negation } \\
& F \vee G) \equiv \neg F \wedge \neg G & & \text { de Morgan's Laws }
\end{array}
$$

Proof: Straightforward using truth tables.

9.6 Definition

A literal is an atomic formula (a positive literal) or the negation of an atomic formula (a negative literal). A clause is a disjunction of literals.

A formula F is in conjunctive normal form (CNF) if it is a conjunction of clauses, i.e., if

$$
F=\left(\bigwedge_{i=1}^{n}\left(\bigvee_{j=1}^{m_{i}} L_{i, j}\right)\right)
$$

where the $L_{i, j}$ are literals.

9.7 Theorem

For every formula F there is a formula $F_{1} \equiv F$ in CNF.
Proof: skipped

Exercise 27 (hand-in) Transform $\neg((A \vee B) \wedge(C \vee D) \wedge(E \vee F))$ into CNF.
Exercise 28 (no hand-in) Give an informal, but plausible, argument, why a naive algorithm for converting formulas into CNFs is not in \mathcal{P}. [Don't use TMs.]

9.8 Definition

The Satisfiability Problem (SAT) is the problem of deciding if a formula in CNF is satisfiable.

9.9 Theorem (Cook's Theorem)

SAT is $\mathcal{N} \mathcal{P}$-complete.
Proof: later

9.10 Remark

SAT is sometimes stated without the requirement that the formula is in CNF - this is equivalent.

9.11 Proposition

For any formula F, there is an equivalent formula which contains only \wedge, \vee, and literals. (Called a negation normal form ($N N F$) of F.)

Proof: Apply de Morgan's laws exhaustively.

Exercise 29 (no hand-in) Give an informal, but plausible, argument that conversion of a formula into NNF is in \mathcal{P}.

9.12 Definition

Two formulas F and G are equisatisfiable if the following holds: F has a model if and only if G has a model.

9.13 Proposition

For all formulas $F_{i}(i=1,2,3), F_{1} \vee\left(F_{2} \wedge F_{3}\right)$ and $\left(F_{1} \vee E\right) \wedge\left(\neg E \vee\left(F_{2} \wedge F_{3}\right)\right)$ are equisatisfiable (where E is a propositional variable not occurring in F_{1}, F_{2}, F_{3}).

Proof: skipped

Exercise 30 (hand-in) Use the idea from Proposition 9.13 to sketch a polynomial-time algorithm which converts any formula F into an equisatisfiable formula in CNF. [Hint: First convert into NNF.]

Exercise 31 (hand-in) Give an informal, but plausible, argument, that the problem "Decide if a formula is satisfiable" is $\mathcal{N} \mathcal{P}$-complete. [Use Cook's Theorem and Exercise 30.]
[Slideset 2: Proof of Cook's Theorem]

10 Excursus: Is $\mathcal{P}=\mathcal{N} \mathcal{P}$?

[mainly from memory]
[blackboard]

Exercise 32 (no hand-in) Show $|\mathbb{R}|=|\{(1, x): x \in \mathbb{R}\} \cup\{(2, x): x \in \mathbb{R}\}|$.
Exercise 33 (no hand-in) Show, using a diagonalization argument, that the power set of \mathbb{N} is of higher cardinality than \mathbb{N}. [Hint: Consider only infinite subsets of \mathbb{N}.]

11 If $\mathcal{P} \neq \mathcal{N} \mathcal{P} \ldots$

[A mix, mainly from [1, Chapter 7], with some from [4, Chapter 17] and other sources.]

11.1 Problems "between" \mathcal{P} and $\mathcal{N} \mathcal{P}$

$\mathcal{N P C}$ consists of all $\mathcal{N} \mathcal{P}$-complete languages.
If $\mathcal{P} \subsetneq \mathcal{N} \mathcal{P}$, is $\mathcal{N P \mathcal { I }}=\mathcal{N} \mathcal{P} \backslash(\mathcal{P} \cup \mathcal{N P \mathcal { C }}) \neq \emptyset$?

11.1 Theorem

Let B be a recursive language such that $B \notin \mathcal{P}$. Then there exists $D \in P$ s.t. $A=D \cap B \notin \mathcal{P}$, A is (polytime) reducible to B but B is not (polytime) reducible to A.

Exercise 34 (hand-in) Assumed $\mathcal{P} \neq \mathcal{N} \mathcal{P}$, why does Theorem 11.1 show that $\mathcal{N} \mathcal{P} \mathcal{I} \neq \emptyset$?
Iteratively reapplying the argument from Exercise 34 yields an infinite collection of distinct complexity classes "between" \mathcal{P} and $\mathcal{N} \mathcal{P}$.
Are there any "natural" candidates for problems in $\mathcal{N} \mathcal{P} \mathcal{I}$? Perhaps the following.

- Graph isomorphism: Given two graphs $G=(V, E)$ and $G^{\prime}=\left(V, E^{\prime}\right)$, is there a bijection $f: V \rightarrow V$ such that $(u, v) \in E$ iff $(f(u), f(v)) \in E^{\prime}$?

The following was for a long time believed to be a candidate for a probloem in $\mathcal{N P} \mathcal{I}$, but in 2004 it was shown that it is in \mathcal{P}.

- Composite numbers (the primality problem): Given $k \in \mathbb{N}$, are there $1<n, m \in$ \mathbb{N} s.t. $k=m \cdot n$?

11.2 The Polynomial Hierarchy

11.2 Definition

An oracle TM (OTM) is a standard TM with an additional oracle tape with read-write oracle head. It has two additional distinguished states: the oracle consultation state and the resume-computation state. Also, an oracle function $g: \Sigma^{*} \rightarrow \Sigma^{*}$ is given.
Computation is as for a 2 -tape TM, except in the oracle state: If y is on the oracle tape (right of the first blank), then it is rewritten to $g(y)$ (with rest blank) in one step, and the state is changed to the resume state.

Let C and D be two complexity classes (sets of languages). Denote by C^{D} the class of all languages which are accepted by an OTM of complexity C, where computation of the oracle function has complexity D.

11.3 Remark

$\mathcal{P}^{\mathcal{P}}=\mathcal{P}$ [The one-step oracle consultation can be performed using a TM which runs in polynomial time. Note that there can be at most polynomially many such consultations.]

Exercise 35 (hand-in) Show: $\mathcal{P}^{\mathcal{N} \mathcal{P}}$ contains all languages which are (polynomial-time) reducible to a language in $\mathcal{N P}$.

11.4 Definition

The polynomial hierarchy:

$$
\Sigma_{0}^{p}=\Pi_{0}^{p}=\Delta_{0}^{p}=\mathcal{P}
$$

and for all $k \geq 0$

$$
\begin{aligned}
\Delta_{k+1}^{p} & =\mathcal{P}_{k}^{\Sigma_{k}^{p}} \\
\Sigma_{k+1}^{p} & =\mathcal{N} \mathcal{P}^{\Sigma_{k}^{p}} \\
\Pi_{k+1}^{p} & =\operatorname{co}-\Sigma_{k+1}^{p}
\end{aligned}
$$

PH is the union of all classes in the polynomial hierarchy.
Exercise 36 (hand-in) Show $\Sigma_{1}^{p}=\mathcal{N} \mathcal{P}$.

11.5 Remark

$\Pi_{1}^{p}=\operatorname{co}-\mathcal{N} \mathcal{P}^{\mathcal{P}}=\operatorname{co}-\mathcal{N} \mathcal{P}$
$\Delta_{2}^{p}=\mathcal{P}^{\Sigma_{1}^{p}}=\mathcal{P}^{\mathcal{N} \mathcal{P}}$

11.6 Remark

$\Sigma_{i}^{p} \subseteq \Delta_{i+1}^{p} \subseteq \Sigma_{i+1}^{p}$
$\Pi_{i}^{p} \subseteq \Delta_{i+1}^{p} \subseteq \Pi_{i+1}^{p}$
$\Sigma_{i}^{p}=\mathrm{co}-\Pi_{i}^{p}$
It is not known if the inclusions are proper. If any Σ_{k}^{p} equals Σ_{k+1}^{p} or Π_{k}^{p}, then the hierarchy collapses above k. In particular, if $\mathcal{P}=\mathcal{N} \mathcal{P}$, then $\mathcal{P}=\mathrm{PH}$.

The following problem may be in $\Sigma_{2}^{p}=\mathcal{N} \mathcal{P}^{\mathcal{N} \mathcal{P}}$:
Maximum equivalent expression: Given a formula F and $k \in \mathbb{N}$, is there $F_{1} \equiv F$ with k or fewer occurrences of literals?
$[\mathcal{N} \mathcal{P}$-hardness: because SAT reduces to it.
In Σ_{2}^{p} : Use SAT (non-CNF version) as oracle. The OTM first guesses F_{1}, then consults the oracle.]

Exercise 37 (no hand-in) Spell out in more detail, how SAT reduces to maximum equivalent expression.

12 Beyond $\mathcal{N P}$

[Mainly from [4, Chapter 17], plus some from [1, Chapter 7] and other sources.]
Space complexity: use modified k-tape TM (off-line TM) with additional read-only input tape, and additional write-only output tape. The latter is not needed for language recognition tasks.

12.1 Definition

The space complexity of a $\mathrm{TM} M$ is the function $s c_{M}: \mathbb{N} \rightarrow \mathbb{N}$ s.t. $s c_{M}(n)$ is the maximum number of tape squares read on any work tape by a computation of M when initiated with an input string of length n. (For an ND TM, take the maximum over every possible computation as usual.)

12.2 Example

3-tape palindrome recognizer M with $s c_{M}(n)=O\left(\log _{2}(n)\right)$.
Idea: Use work tapes to hold numbers (binary encoding). They are used as counters for identifying and comparing the i-th element from the left with the i-th element from the right, until a mismatch is found (or the palindrome is accepted).

12.3 Remark

Palindrome recognition is in the complexity class LOGSPACE.

12.4 Theorem

For any $\mathrm{TM} M, s c_{M}(n) \leq t c_{M}(n)+1$.

12.5 Definition

An off-line TM is said to be $s(n)$ space-bounded if the maximum number of tape squares used on a work tape with input of length n is at $\operatorname{most} \max \{1, s(n)\}$. (This can also be used with non-terminating TMs.)

12.6 Theorem (Savitch's Theorem)

M a 2-tape ND TM with space bound $s(n) \geq \log _{2}(n)$ which accepts L. Then L is accepted by a deterministic TM with space bound $O\left(s(n)^{2}\right)$.

12.7 Corollary

\mathcal{P}-Space $=\mathcal{N} \mathcal{P}$-Space
Proof: Obviously, \mathcal{P}-Space $\subseteq \mathcal{N} \mathcal{P}$-Space.
If $L \in \mathcal{N} \mathcal{P}$-Space, then it is accepted by an ND TM with polynomial space bound $p(n)$. Then by Savitch's Theorem, L is accpeted by a deterministic TM with space bound $O\left(p(n)^{2}\right)$.

12.8 Definition

EXPTIME is the complexity class of problems solvable by a (deterministic) TM in $O\left(2^{g(n)}\right)$ time, where g is a polynomial. NEXPTIME is the corresponding ND class. 2-EXPTIME/N2EXPTIME are defined similarly with time bound $O\left(2^{2^{g(n)}}\right)$. (Similarly n-EXPTIME - the exponential hierarchy.) (EXPSPACE is the corresponding space complexity class.)

Exercise 38 (no hand-in) Show, that EXPSPACE=NEXPSPACE.

12.9 Remark

It is known that LOGSPACE \subseteq NLOGSPACE $\subseteq \mathcal{P} \subseteq \mathcal{N} \mathcal{P} \subseteq \mathrm{PH} \subseteq \mathcal{P}$-Space $=\mathcal{N} \mathcal{P}$-Space \subseteq EXPTIME \subseteq NEXPTIME \subseteq EXPSPACE \subseteq 2-EXPTIME.
Also known:

- LOGSPACE $\subsetneq \mathcal{P}$-Space
- $\mathcal{P} \subsetneq$ EXPTIME
- $\mathcal{N} \mathcal{P} \subsetneq$ NEXPTIME
- \mathcal{P}-Space \subsetneq EXPSPACE
- If $\mathcal{P}=\mathcal{N} \mathcal{P}$, then EXPTIME $=$ NEXPTIME
- If $\mathcal{P}=\mathcal{N} \mathcal{P}$, then $\mathcal{P}=\mathrm{PH}$

12.10 Remark

The Web Ontology Language OWL-DL (see [2]) is N2-EXPTIME-complete. The description logic $\mathcal{A L C}$ (see [3]) is EXPTIME-complete.

Exercise 39 (no hand-in) Show: If $\mathcal{N} \mathcal{P} \mathcal{I}=\emptyset$, then $\mathcal{N} \mathcal{P} \neq$ EXPTIME.

12.11 Example

\mathcal{P}-Space-complete problems:

- Regular expression non-universality: Given a regular expression α over a finite alphabet Σ, is the set represented by α different from Σ^{*} ?
- Linear space acceptance: Given a linear space-bounded TM M and a finite string x over its input alphabet, does M accept x ?

References

[1] M. R. Garey and D. S. Johnson. Computers and Intractability. Freeman, 1979.
[2] P. Hitzler, M. Krötzsch, B. Parsia, P. F. Patel-Schneider, and S. Rudolph, editors. OWL 2 Web Ontology Language: Primer. W3C Recommendation 27 October 2009, 2009. Available from http://www.w3.org/TR/owl2-primer/.
[3] P. Hitzler, M. Krötzsch, and S. Rudolph. Foundations of Semantic Web Technologies. Chapman \& Hall/CRC, 2009.
[4] T. A. Sudkamp. Languages and Machines. Addison Wesley, 3rd edition, 2006.

