## CS 410/610, MTH 410/610 Theoretical Foundations of Computing

## Fall Quarter 2010

## Slides 3

Pascal Hitzler<br>Kno.e.sis Center

Wright State University, Dayton, OH


## TOC: Turing Computable Functions

Chapter 9 of [Sudkamp 2006].

1. Computation of Functions
2. Numeric Computation
3. Sequential Operation of TMs
4. Composition of Functions
5. Uncomputable Functions

## Functions

A function $f: X \rightarrow Y$ is an assignment, to each $x \in X$, of at most one value in $Y$. (Mathematicians call these: partial functions.)
$X$... domain of $f$
Y ... range of f

We write $f(x) \uparrow(\operatorname{or} f(x)=\uparrow)$ if no value is assigned to $f(x)$, and say $f(x)$ is undefined.

We write $f(x) \downarrow$ if $f(x)$ is defined (we're not giving the value in this case).

If $f(x) \downarrow$ for all $x \in X$, we say that $f$ is a total function.

TMs for computing functions have

- Two distinguished states
- The initial state $q_{0}$
- The final state $q_{f}$
- Input is positioned as usual
- Computation always begins with transition from $\mathrm{q}_{0}$ that positions the tape head at the beginning of the input string.
- The initial state is never reentered (there is no transition into $\mathbf{q}_{\mathbf{0}}$ ).
- All computations with output terminate in $q_{f}$ and with tape head in initial position
- There is no transition of the form $\delta\left(\mathbf{q}_{\mathrm{f}}, \mathbf{B}\right)$
- Output is given in the same position as the input
- The computation does not terminate on input $u$ with $f(u) \uparrow$
- The computation yields output $v$ if and only if $f(u)=v$.


## Turing computability

A function $\mathrm{f}: \Sigma^{*} \rightarrow \Sigma^{*}$ is Turing computable if there is a TM that computes it.

## We may depict such a TM schematically as



## Example 2.1

TM computing $\mathrm{f}:\{\mathrm{a}, \mathrm{b}\}^{*} \rightarrow\{a, b\}^{*}$ defined as
$f(u)=\lambda$, if $u$ contains an a
$\mathrm{f}(\mathrm{u})=\uparrow$, otherwise


Note: on undefined input (say, BbBbBaB) we may still get some "output" (e.g., BbBbqfB).

## Exercise 22 [hand-in]

Make a TM which computes the function

$$
\begin{array}{ll}
f(n)=n / 2 & (n \text { divided by } 2) \text { if } n \text { is a multiple of } 2 \\
f(n)=\uparrow & \text { if } n \text { is not a multiple of } 2
\end{array}
$$

where the input and output strings are non-negative integers in binary representation.

Describe, in words, the strategy of your TM.

## Multiple parameters

The input for functions with more than one argument is given by blank-separated strings, in the sequence of the arguments.
E.g., input (aba,bbb,bab) is given as


Input (aa, $\lambda, \mathbf{b b}$ ) is given as


## Example 2.2: String concatenation



## Characteristic functions

The characteristic function of a language $L$ is the function $c_{L}: \sum^{*} \rightarrow\{0,1\}$ defined by

$$
\begin{aligned}
& c_{L}(u)=1 \text { if } u \in L \\
& c_{L}(u)=0 \text { if } u \notin L
\end{aligned}
$$

Note: A TM that computes the partial characteristic function

$$
\begin{array}{ll}
c_{L}(u)=1 & \text { if } u \in L \\
c_{L}(u)=0 \text { or } \uparrow & \text { if } u \notin L
\end{array}
$$

shows that $L$ is recursively enumerable.

## Exercise 23 [hand-in]

Show for every language $L$ : if there is a TM that computes the partial characteristic function of $L$, then $L$ is recursively enumerable.
[exercise is due in the first session after the mid-term]

## Exercise 24 [hand-in]

Show that, for each recursively enumerable language $L$, there exists a TM which computes the partial characteristic function of $L$.
[exercise is due in the first session after the mid-term]

## Exercise 25 [hand-in]

Show that a language $L$ is recursive if and only if its (total) characteristic function is Turing computable.
[exercise is due in the first session after the mid-term]

## TOC: Turing Computable Functions

Chapter 9 of [Sudkamp 2006].

1. Computation of Functions
2. Numeric Computation
3. Sequential Operation of TMs
4. Composition of Functions
5. Uncomputable Functions

## Number-theoretic functions

A number-theoretic function is a function of the form F: $\mathbf{N} \times \mathbf{N} \ldots \times \mathbf{N} \rightarrow \mathbf{N}$, where $\mathbf{N}$ is the set of non-negative integers.

For computing number-theoretic functions by TMs, we assume that non-negative integers are represented by strings of " 1 " symbols. More precisely, the number n is represented by a string with $(\mathrm{n}+1)$ consecutive " 1 "s. We call this the unary representation of numbers.
E.g., " 5 " is represented as " 111111 ". " 0 " is represented as " 1 ".

For a number a, we write its unary representation as ā.

## Characteristic functions

A k-variable total number-theoretic function
$r: N \times N \ldots \times N \rightarrow\{0,1\}$
defines a k-ary relation R on the domain of the function:
$\left(n_{1}, \ldots, n_{k}\right) \in R \quad$ if $r\left(n_{1}, \ldots, n_{k}\right)=1$
$\left(n_{1}, \ldots, n_{k}\right) \notin R \quad$ if $r\left(n_{1}, \ldots, n_{k}\right)=0$
$r$ is the characteristic function of $R$.

We define: A relation is Turing computable if its characteristic function is Turing computable.

## Some TMs for number-theoret. fctns

- Successor function $\mathbf{s ( n )}=\mathbf{n + 1}$

S:


- Zero function $\mathbf{z ( n ) = 0}$

Z:


Alternatively:


## Some TMs for number-theoret. fctns

- Empty function $\mathrm{e}(\mathrm{n})=\uparrow$

- Projection $p_{i}{ }^{(k)}$ defined as $p_{i}{ }^{(k)}\left(n_{1}, \ldots, n_{k}\right)=n_{i}$

We give the TM for $p_{1}{ }^{(k)}$ :


## Some TMs for number-theoret. fctns

- Binary addition:

- Predecessor function: $\operatorname{pred}(0)=0 ; \operatorname{pred}(\mathrm{n}+1)=\mathrm{n}$

D:


## TOC: Turing Computable Functions

Chapter 9 of [Sudkamp 2006].

1. Computation of Functions
2. Numeric Computation
3. Sequential Operation of TMs
4. Composition of Functions
5. Uncomputable Functions

## Sequential composition

- E.g., first run "zero" TM, then run "successor" TM Result: Put value "one" on tape.
- Schematically:



## Sequential composition

- "one" TM in more detail:

We subscript the states with the name of the TM they come from.


## Macros

- We call a machine constructed to perform a single simple task a macro.
- Conditions on TMs for computing functions are slightly relaxed
- Computation does not necessarily start with tape head at position zero.
- First tape symbol read must be a blank.
- Input to be found to the immediate left or right of the starting position.
- There may be several halting states in which a computation may terminate.
- There are no transitions away from any halting state.


## Macros - Examples

- Move head right through several consecutive natural numbers .



## Macros - Examples

- Macros can also be described by their effect on the tape. Tape head location: underscore
$\mathrm{ML}_{k}$ (move left):

$$
\begin{array}{cc}
B \bar{n}_{1} B \bar{n}_{2} B \ldots B \bar{n}_{k} \underline{B} & k \geq 0 \\
\mathfrak{I} & \mathfrak{q} \\
\underline{B} \bar{n}_{1} B \bar{n}_{2} B \ldots B \bar{n}_{k} B &
\end{array}
$$

FR (find right):

$$
\begin{array}{cc}
\underline{B} B^{i} \bar{n} B & i \geq 0 \\
\mathcal{I} \quad & \\
B^{i} \underline{B} \bar{n} B &
\end{array}
$$

## Macros - Examples

FL (find left):

$$
\begin{array}{cc}
B \bar{n} B^{i} \underline{B} & i \geq 0 \\
\underline{I} & \underline{I} \\
\underline{B} \bar{n} B^{i} B & \\
\end{array}
$$

$\mathrm{E}_{k}$ (erase):

$$
\begin{array}{cccc}
\underline{B} \bar{n}_{1} B \bar{n}_{2} B \ldots & \bar{n}_{k} B & k \geq 1 \\
\mathfrak{I} & & \mathfrak{L} & \\
\underline{B} B & \ldots & B B &
\end{array}
$$

## Macros - Examples

$\mathrm{CPY}_{k}$ (copy):

$$
\begin{array}{cccc}
\underline{B} \bar{n}_{1} B \bar{n}_{2} B \ldots B \bar{n}_{k} B B B & \ldots & B B & k \geq 1 \\
\uparrow & \downarrow & & \downarrow \\
\\
\underline{B} \bar{n}_{1} B \bar{n}_{2} B \ldots B \bar{n}_{k} B \bar{n}_{1} B \bar{n}_{2} B \ldots B \bar{n}_{k} B &
\end{array}
$$

CPY $_{k, i}$ (copy through $i$ numbers):

\[

\]

## Macros - Examples

T (translate):

$$
\begin{array}{lll}
\underline{B} B^{i} \bar{n} B & i \geq 0 \\
\mathcal{I} \quad & \\
\underline{B} \bar{n} B^{i} B &
\end{array}
$$

BRN (branch on zero):


## Exercise 26 [no hand-in]

## Give a TM for the BRN macro.

## Macro composition

## INT:



Interchanges the order of two numbers:

$$
\begin{aligned}
& \underline{B} \bar{n} B \bar{m} B B^{n+1} B \\
& \uparrow \\
& \underline{B} \bar{m} B \bar{n} B B^{n+1} B
\end{aligned}
$$

## Examples 2.3 and 2.4

- Projection function $p_{i}{ }^{(k)}$

- $f(n)=3 n$



## Examples 2.5 and 2.6

- One-variable zero function $\mathrm{z}(\mathrm{n})=0$

- MULT (multiplication of natural numbers):

We need to mix macros with standard TM transitions for this. Schematically, e.g. identify macro start state with $q_{i}$ :



## TOC: Turing Computable Functions

Chapter 9 of [Sudkamp 2006].

1. Computation of Functions
2. Numeric Computation
3. Sequential Operation of TMs
4. Composition of Functions
5. Uncomputable Functions

## Composition of unary functions

Let $\mathrm{g}, \mathrm{h}$ be unary number-theoretic functions.

The composition of $g$ with $h$, written hog, is the unary function
f: $\mathbf{N} \rightarrow \mathbf{N}$ defined by

$$
f(x)= \begin{cases}\uparrow & \text { if } g(x) \uparrow \\ \uparrow & \text { if } g(x)=y \text { and } h(y) \uparrow \\ h(y) & \text { if } g(x)=y \text { and } h(y) \downarrow\end{cases}
$$

Note $h \circ g(x)=h(g(x))-$ which is defined whenever $g(x)$ is defined and $h(y)$ is defined for $y=g(x)$.

## Composition of n-ary functions

Let $g_{1}, \ldots, g_{n}$ be k-ary number-theoretic functions.
Let $h$ be an $n$-ary number-theoretic function.

The k-ary function f defined by

$$
F\left(x_{1}, \ldots, x_{k}\right)=h\left(g_{1}\left(x_{1}, \ldots, x_{k}\right), \ldots, g_{n}\left(x_{1}, \ldots, x_{k}\right)\right)
$$

is called the composition of $h$ with $g_{1}, \ldots, g_{n}$, written $\mathrm{f}=\mathrm{h} \circ\left(\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{n}}\right)$.

## Example 2.7

Let the following functions be defined as indicated:

$$
\begin{aligned}
& g_{1}(x, y)=x+y \\
& g_{2}(x, y)=x y \\
& g_{3}(x, y)=x^{y} \\
& h(x, y, z)=x(y+z)
\end{aligned}
$$

Then $f(x, y)=h \circ\left(g_{1}, g_{2}, g_{3}\right)=(x+y)\left(x y+x^{y}\right)$.

## Composition by TMs

Assume we have
$\mathrm{g}_{1}$, a ternary function computed by the TM $\mathrm{G}_{1}$ $g_{2}$, a ternary function computed by the TM $\mathbf{G}_{2}$ $h$, a binary function computed by the TM H
$h \circ\left(g_{1}, g_{2}\right)$ is computed by a TM as follows - we give a trace on input $n_{1}, n_{2}, n_{3}$.

## Trace - composition example

|  | $\underline{B} \bar{n}_{1} B \bar{n}_{2} B \bar{n}_{3} B$ |
| :--- | :--- |
| $\mathrm{CPY}_{3}$ | $\underline{B} \bar{n}_{1} B \bar{n}_{2} B \bar{n}_{3} B \bar{n}_{1} B \bar{n}_{2} B \bar{n}_{3} B$ |
| $\mathrm{MR}_{3}$ | $B \bar{n}_{1} B \bar{n}_{2} B \bar{n}_{3} B \bar{n}_{1} B \bar{n}_{2} B \bar{n}_{3} B$ |
| $\mathrm{G}_{1}$ | $B \bar{n}_{1} B \bar{n}_{2} B \bar{n}_{3} \underline{B} \overline{g_{1}\left(n_{1}, n_{2}, n_{3}\right)} B$ |
| $\mathrm{ML}_{3}$ | $\underline{B} \bar{n}_{1} B \bar{n}_{2} B \bar{n}_{3} B \overline{g_{1}\left(n_{1}, n_{2}, n_{3}\right)} B$ |
| $\mathrm{CPY}_{3,1}$ | $\underline{B} \bar{n}_{1} B \bar{n}_{2} B \bar{n}_{3} B \overline{g_{1}\left(n_{1}, n_{2}, n_{3}\right)} B \bar{n}_{1} B \bar{n}_{2} B \bar{n}_{3} B$ |
| $\mathrm{MR}_{4}$ | $B \bar{n}_{1} B \bar{n}_{2} B \bar{n}_{3} B \overline{g_{1}\left(n_{1}, n_{2}, n_{3}\right)} \underline{B} \bar{n}_{1} B \bar{n}_{2} B \bar{n}_{3} B$ |
| $\mathrm{G}_{2}$ | $B \bar{n}_{1} B \bar{n}_{2} B \bar{n}_{3} B \overline{g_{1}\left(n_{1}, n_{2}, n_{3}\right)} \underline{B} g_{2}\left(n_{1}, n_{2}, n_{3}\right)$ |
| $\mathrm{ML}_{1}$ | $B \bar{n}_{1} B \bar{n}_{2} B \bar{n}_{3} \underline{B} \overline{g_{1}\left(n_{1}, n_{2}, n_{3}\right)} B \overline{g_{2}\left(n_{1}, n_{2}, n_{3}\right)} B$ |
| H | $B \bar{n}_{1} B \bar{n}_{2} B \bar{n}_{3} \underline{B} \overline{h\left(g_{1}\left(n_{1}, n_{2}, n_{3}\right), g_{2}\left(n_{1}, n_{2}, n_{3}\right)\right)} B$ |
| $\mathrm{ML}_{3}$ | $\underline{B} \bar{n}_{1} B \bar{n}_{2} B \bar{n}_{3} B \overline{h\left(g_{1}\left(n_{1}, n_{2}, n_{3}\right), g_{2}\left(n_{1}, n_{2}, n_{3}\right)\right)} B$ |
| $\mathrm{E}_{3}$ | $\underline{B} B \quad \ldots \quad B \overline{B\left(g_{1}\left(n_{1}, n_{2}, n_{3}\right), g_{2}\left(n_{1}, n_{2}, n_{3}\right)\right)} B$ |
| T | $\underline{B} \overline{h\left(g_{1}\left(n_{1}, n_{2}, n_{3}\right), g_{2}\left(n_{1}, n_{2}, n_{3}\right)\right)} B$ |

## Composition of functions by TMs

Theorem 2.8

The Turing computable functions are closed under the operation of composition.

Proof: skipped.

## Example 2.9

The binary function (sum-of-squares)

$$
\operatorname{smsq}(n, m)=n^{2}+m^{2}
$$

is Turing computable.

Proof: It can be written as
$s m s q=a d d \circ\left(s q \circ p_{1}{ }^{(2)}, s q \circ p_{2}{ }^{(2)}\right)$,
where $s q$ is defined by $s q(n)=n^{2}$. The function add has been shown to be Turing computable earlier. The function sq is computed by the following TM:


## Exercise 27 [hand-in]

Show that the relation $\{(n, m) \mid n>m\}$ on non-negative integers is Turing-computable.

## Exercise 28 [hand-in]

Let $F$ be a TM that computes the total unary number-theoretic function f .

Design a TM that computes the function

$$
\mathbf{g}(\mathbf{n})=\sum_{\mathrm{i}=0}{ }^{\mathrm{n}} \mathrm{f}(\mathrm{i}) .
$$

## TOC: Turing Computable Functions

Chapter 9 of [Sudkamp 2006].

1. Computation of Functions
2. Numeric Computation
3. Sequential Operation of TMs
4. Composition of Functions
5. Uncomputable Functions

## Uncomputable functions

## Theorem 2.10

The set of all Turing computable number-theoretic functions is countable.

## Proof idea?

Note: If a set $A$ is countable, then any subset of $A$ is also countable. [Enumerate by skipping the elements which are not in the subset.]

We already know that the set A of all Turing Machines is countable. Hence, the subset B of A of all Turing Machines which compute number-theoretic functions is countable, say as $M_{1}, M_{2}, \ldots$. The function computed by $M_{i}$ is denoted $f\left(M_{i}\right)$.

By definition, for every computable function there is a TM in B computing it.
Define a subset C of $B$ as follows: $M_{i}$ is in C if and only if there is no $M_{j}$ with $j>1$ such that $M_{i}$ and $M_{j}$ compute the same function.
$C$ can be enumerated as $N_{1}, N_{2}, \ldots$
Hence, all computable functions can be enumerated as $f\left(N_{1}\right), f\left(N_{2}\right), \ldots$

## Uncomputable functions

Theorem 2.11

There is a total unary number-theoretic function that is not Turing computable.

## Proof idea?

We show that the set of all a total unary number-theoretic functions is uncountable.

Assume it is countable: $f_{1}, f_{2}, \ldots$
Now define a function by setting $f(n)=f_{n}(n)+1$.

Then $f$ is a unary number-theoretic function which does not appear in the list. This contradicts the assumption, which, hence, must be wrong.

Thus, the set of all total unary number-theoretic functions is uncountable.

## Book chapter 9.6 (omitted)

Chapter 9.6 gives further arguments why high-level programming languages have the same computational power as Turing Machines.

It should be evident from the material which we already covered, so we omit details.

## What's up next

- We briefly talk about the Chruch-Turing Thesis. [Chap 11]
- We talk about undecidability. In particular we give a number of undecidable problems - including the famous Halting Problem. [Chap 12]
- We find a mathematical characterization of the functions which are Turing computable. [Chap 13]

