Georg Cantor’s Cardinality Results

Size of a set

- Size of a finite set can be determined by counting.
- A robust way of comparing the sizes of two large sets is by pairing elements in them.
- For comparing the sizes of two infinite sets, we need to resort to pairing elements in them.

Cardinality (size) of a set

- Two sets are defined to have the same size (or cardinality) if and only if they can be placed in one-to-one correspondence with each other.
- A set is countable if it can be put in one-toone correspondence with the set of natural numbers N .

Example

- Set of even numbers is countable.
- $0,1,2,3,4, \ldots$
- $0,2,4,6,8, \ldots$
- Formally, define $\mathrm{f}: \mathrm{N}->\mathrm{E}$ as $\mathrm{f}(\mathrm{n})=2 * \mathrm{n}$ pairs each natural number with a unique even number such that it is one-to-one and onto.

Examples of countable sets

- Set of integers.
- Set of strings over English alphabet.
- Set of pairs of natural numbers Nx N .
- Set of rational numbers.
- Note that rationals are dense, that is, between any pair of distinct rationals, there is a rational.

$\underline{\mathrm{N}}$ and NxN have the same cardinality

$\begin{array}{ll}4 & \\ 3 & 6 \\ 2 & 3 \\ 1 & 1 \\ 0 & 0\end{array}$
0
1
2
3

> The point (x, y) represents the ordered pair (x, y)

The point at x, y represents x / y

Examples of Uncountable Sets

- Set of reals between 0 and 1
- Set of characteristic functions

$$
N \text {-> }\{0,1\}
$$

- Set of subsets of $\mathrm{N}=\operatorname{Poweset}(\mathrm{N})$.
- Set of reals.
- Set of functions N -> N.

Fundamental Issues in Computability

- Given that the set of functions over N is uncountable and the set of algorithms (strings of ASCII characters) are countable, which functions over N are computable, that is, can be mechanized?
- How do we characterize the set of computable functions?
- TURING MACHINES
- How do we show that it is impossible to compute a certain function?

From CS466:
 Formal Specification of Languages

- Generator
- Regular Expressions
- Recognizer
- Finite State Automata
- Compiler Connection: FSA is a notation for describing a family of language recognition algorithms that can be specified using regular expressions.

Finite State Automata

Even Parity Recognizer

Problem: Recognize the language of bit strings that contain an even number of 1 s .

Strategy: Read the string from left to right remembering whether even or odd number of 1 s were scanned so far (no need to count the number of ones).

- State
- Indicates the status of the machine after consuming some portion of the input.
- Summarizes the history of the computation that is relevant to the future course of action.
- Initial / Start State
- Final / Accepting state
- State Transition

Even Parity

Deterministic Finite State Automaton (DFA)

$$
M=\left(Q, \Sigma, \delta, q_{0}, F\right)
$$

Q: Finite set of states
Σ : Finite Alphabet δ : Transition function total function from $Q x \Sigma$ to Q
q_{0} : Initial/Start State
F : Set of final/accepting state

Operation of the machine

- Read the current letter of input under the tape head.
- Transit to a new state depending on the current input and the current state, as dictated by the transition function.
- Halt after consuming the entire input.

Associating Language with the DFA

- Machine configuration:

$$
[q, \omega] \text { where } q \in Q, \omega \in \Sigma^{*}
$$

- Yields relation:

$$
[q, a \omega] \mapsto_{M}^{*}[\delta(q, a), \omega]
$$

- Language:

$$
\{\omega \in \Sigma^{*} \mid \underbrace{\left[q_{0}, \omega\right] \mapsto_{\mathrm{M}}^{*}[q, \lambda]} \wedge q \in F\}
$$

Examples

- Set of strings over $\{a, b\}$ that contain $b b$

$$
(a \cup b)^{*} b b(a \cup b)^{*}
$$

- Design states by parititioning Σ^{*}.
- Strings containing $b b$
- Strings not containing $b b$
- Strings that end in b
- Strings that do not end in b
- Initial state:
- Final state:
q2

State Diagram and Table

Strings over $\{a, b\}$ containing even number of

 a 's and odd number of b 's.

