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Abstract. Sibylla Priess-Crampe and Paulo Ribenboim recently estab-
lished a general fixed-point theorem for multivalued mappings defined
on generalized ultrametric spaces, and introduced it to the area of logic
programming semantics. We discuss, in this context, the applications
which have been made so far of this theorem and of its corollaries. In
particular, we will relate these results to Scott-Ershov domains, familiar
in programming language semantics, and to the generalized metrics of
Khamsi, Kreinovich and Misane which have been applied, by these lat-
ter authors, to logic programming. Amongst other things, we will also
show that a unified treatment of the fixed-point theory of wide classes
of programs can be given by means of the theorems of Priess-Crampe
and Ribenboim.

1 Introduction

In simple terms, logic programming is concerned with the use of logic as a
programming language. What this means in practice is making deductions from sets
of clauses, or rules, by means of an interpreter or automated theorem prover. The
reference [3] is an excellent account of the growth of logic programming and of its
current status as a major tool in various parts of computer science, such as database
systems, artificial intelligence, natural language processing, machine learning and
building expert systems etc. For most of its first twenty five years of existence, much
of the emphasis in logic programming, or more particularly on its implementation
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via Prolog, has been on its capabilities as a stand-alone programming language,
and on comparing its advantages and disadvantages over conventional imperative
and object-oriented programming languages such as C', Ct+ and Java. Today, logic
programming is entering an exciting phase of growth, maturing into the broader
subject of computational logic. This latter term is often interpreted to mean the
use of logic generally within computer science, but also refers to the growing trend
in large systems and industrial applications of using logic programming languages
in partnership with languages such as Java, with different tasks being undertaken
in different languages and interfaces provided between them, see [3] for illustrations
of these developments.

A logic programming system comprises four main facets: (i) the syntax or
expressiveness of the system and its computational adequacy (the ability, or oth-
erwise, to compute all partial recursive functions); (ii) the procedural semantics of
the system or, in other words, what is output by the interpreter; (iii) the declarative
semantics or logical meaning of the output; (iv) the fixed-point semantics. These
four issues are, of course, highly interconnected and, in particular, it is important
that the three semantics mentioned coincide in some sense. In fact, what is meant
by the “declarative semantics” is usually some natural model canonically associated
with each program permitted by the syntax, and realized as the (least, minimal,
unique etc.) fixed point of an operator determined by the program. Unfortunately,
most systems with enhanced syntax permit many canonical models, and it is by no
means clear in general which of them best captures the intended meaning of the
programmer. Indeed, the study of these standard models, such as the well-founded
model [10], the stable model [11] or the perfect model [24], and of the correspond-
ing operators, accounts for a high proportion of the research undertaken on the
foundations of the subject.

In conventional programming language semantics, such as the denotational
semantics of imperative programs, fixed points of operators (and of functors) play
an important role, and indeed are fundamental wherever recursion and self-reference
are encountered. However, in that context the operators which arise are usually
monotonic, indeed continuous. Therefore, apart from some applications of the
Banach contraction mapping theorem in concurrency, and attempts to unite the
order-theoretic and metric approaches (see [26, 31]), the main fixed-point theorem
in general use in classical semantics is the well-known Knaster-Tarski theorem which
we state in the following form: if T' is defined and monotonic on a complete partial
order X, then T has a least fixed point which is also the least pre-fixed point of T. In
fact, if T' is continuous, then the least fixed point of T is the supremum of the set of
iterates T™(L), where L denotes the bottom element of X, see [32]. Furthermore,
the same representation of the least fixed point of T can even be obtained for
arbitrary monotonic T if one works transfinitely with ordinal powers, see [19]. On
the other hand, the situation in the semantics of logic programs is very different.
Once one introduces negation, which is certainly implied by the term “enhanced
syntax” used earlier, then certain of the important operators are not monotonic
(and therefore not continuous), and in consequence the Knaster-Tarski theorem is
no longer applicable to them. Various ways have been proposed to overcome this
problem. One such is to introduce syntactic conditions on programs, see [1, 24]
for example, and to disallow those programs not meeting these conditions, in an
attempt to recover continuity in the order-theoretic sense. Another is to consider
different operators, and we discuss this later. The third main solution is to introduce
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techniques from topology and analysis to augment arguments based on order, and
it is this theme which will mainly concern us in this paper, see [5] for a discussion
of the role of “continuous” mathematics in this context. Thus, one finds methods
based on topology and dynamical systems ([4, 13, 14, 16, 27, 29, 30]), methods based
on metrics ([9, 12, 17]), methods based on quasi-metrics ([15, 28]) and finally, one
finds methods based on ultrametric spaces.

In fact, metric and ultrametric methods were introduced to logic programming
by Fitting in [9], although all the metrics he considered are actually ultrametrics
as is usually the case in computing, see [31]. Nevertheless, they take their values
in the real numbers, and thus the fixed-point theorem that is applied in [9] is the
Banach contraction mapping theorem!. This is rather restrictive in so much as it is
often useful to make transfinite constructions and definitions, although these may
well be shown later to close off at w as this is important for computability purposes.
A much more general approach is provided in [6] and in the papers [20, 21, 22] of
Priess-Crampe and Ribenboim. These papers are concerned with ultrametric spaces
whose distance functions take their values in an arbitrary partially ordered set,
not just in the real numbers, together with natural generalizations of the Banach
theorem for both single-valued and multivalued mappings. This setting offers a
highly flexible framework in which to study the fixed-point theory necessary for
logic programming semantics, and it is the purpose of the present paper to discuss
this point of view in relationship to conventional methods. In particular, we will
focus mainly on two of the standard models mentioned earlier, the perfect model
and the stable model, and show how one can utilize the fixed-point theorems of
Priess-Crampe and Ribenboim [20, 21] to establish their existence and certain of
their basic properties in a rather simple and natural way. Potential applications also
exist to the various other standard models and to systems involving uncertainty,
but these remain to be fully investigated and will not be discussed here in detail.
Nevertheless, it should become clear that the fixed-point theorems of [20, 21] are,
in many cases, a viable and important alternative to the Knaster-Tarski theorem in
situations where this latter result is not available. Indeed, we give a strong hint in
Section 4 that these theorems are likely to have applications in the wider context of
theoretical computer science. Moreover, even where the Knaster-Tarski theorem is
applicable, it does not provide conditions under which the fixed point can be seen
to be unique. This extra information, which may be important, can sometimes be
settled by the fixed-point theorems of Priess-Crampe and Ribenboim, and we give
an illustration of this in Section 4.

In the main, this paper is expository with references given to original sources,
although some new results are presented. Thus, the overall plan of the paper is
as follows. In Section 2, we present the minimum amount of logic programming
theory that is needed to make the work relatively self-contained and intelligible
to the non-specialist, and at the same time establish the notation we use. In
Section 3, we will record the basic facts concerning generalized ultrametric spaces
and the fixed-point theorems of Priess-Crampe and Ribenboim which we wish to

LOne of the main applications Fitting makes in [9] is to the acceptable programs of Apt and
Pedreschi, see [2], which arise in the context of termination proofs. In fact, there is an error in [9]
to the extent that the (ultra)metric d3 defined there is not in fact a metric since it fails to satisfy
the axiom d(z,z) = 0, although it satisfies the other usual axioms; it is therefore an example of
the weak metrics defined in [16]. Indeed, the problem just mentioned was overcome in [16] by
establishing a version of the Banach theorem applicable to weak metrics.



4 Pascal Hitzler and Anthony Karel Seda

apply. Sections 4 and 5 contain two applications of these theorems in the area of
logic programming semantics. The first is based on a general method of casting a
Scott-Ershov domain into a generalized ultrametric space. This will enable us to
show, by applying the fixed-point theorems, that every locally stratified program
has a supported model, and that every locally hierarchical program has a unique
supported model (its perfect model). The second application we make is to the
stable model semantics of disjunctive programs and databases. In fact, we show
finally in Section 5 by means of the multivalued fixed-point theorem of [21] that
every locally stratified extended disjunctive logic program (or database) admits a
stable model. Thus, in this manner, we obtain a unified approach to the fixed-point
theory of the (very general) class of locally stratified programs and databases. It
is possible that the same methods will unify the fixed-point theory of other classes
of programs, and this is a question which is under investigation.
Acknowledgement We thank Professors Sibylla Priess-Crampe and Paulo Riben-
boim for keeping us informed of their work on ultrametric spaces, and for encour-
aging us to write this account of its applications to logic programming. We also
thank an anonymous referee for making helpful comments which improved the pre-
sentation of this work in several places.

2 Normal Logic Programs

2.1 Syntax of Normal Logic Programs. Given a first-order language L, a
normal logic program P with underlying language L is a finite set of clauses of the
form

V(A <~ BiN---ANB, A _|Bn+1 A _|Bm),
usually written as
A+ Bl,...,Bn,_an+1,...,_|Bm,

or more simply as A < body, where A and all the B; are atoms in £, < denotes
implication and the universal quantifier is understood. The atom A is called the
head of the clause and By, ..., B,,Bpt1, ..., By, is called the body of the clause.
By an abuse of notation, we allow m to be zero or, in other words, we allow the
body to be empty, in which case we are dealing with the unit clause, or fact, A <.
A program P is called positive or definite if no clause contains a negated atom.
Our standard reference to concepts in logic programming is [19], and we give next
an interesting example of a normal logic program.

Example 2.1 The following program (taken from [2]) computes the transitive
closure of a graph.

r(X,Y,E,V) < m(X,Y,E)
r(X,Z,E, V) +« m(X,Y],E), m(Y,V),r(Y,Z, E,Y|V])
m(X,[X|T]) «
m(X,[Y|T]) « m((X,T)
e(a) <« forallae N

Here, N denotes a finite set containing the nodes appearing in the graph as elements.
In the program, uppercase letters denote variable symbols, lowercase letters constant
symbols, and lists are written using square brackets as usual under Prolog. One
evaluates a goal (the negation of the object one wishes to compute) such as
r(z,y,e,|[z]), where x and y are nodes and e is a graph specified by a list of pairs
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denoting its edges. The goal is supposed to succeed (i.e. the interpreter outputs
“yes”) when x and y can be connected by a path in the graph. The predicate m
implements membership of a list. The last argument of the predicate r acts as an
accumulator which collects the list of nodes which have already been visited in an
attempt to reach y from x.

The standard way of implementing interpreters for such programs is via a form
of resolution known as SLD-resolution. In this paradigm, one uses first-order pred-
icate logic as a knowledge representation language to specify the problem, and thus
a program is a first-order theory. Computation is then viewed as deduction from
the program statements (the axioms). It is a standard fact (the computational
adequacy theorem) that any partial recursive function (computable function) can
be computed by a program (even a definite program) of the type we are discussing
relative to SLD-resolution, and hence logic programming systems have the same
power as any of the conventional imperative programming languages. In a good
implementation, they also have comparable speed in processing and execution, and
much shorter code which is closer to the specification of the problem than is the
case with procedural languages. However, such issues fall under the heading of
“procedural semantics”, whereas our main concern here is with the “declarative”,
or logical semantics, and with the fixed-point semantics of logic programs.

2.2 Semantics of Normal Logic Programs. The usual approach to the
declarative semantics of logic programs P is via Tarski’s notions of interpretation
and model, which are standard apparatus in mathematical logic. However, since we
are at all times dealing with sets of clauses, Herbrand interpretations will suffice.
Thus, given a logic program P with underlying language £, we form the Herbrand
base Bp of all ground (variable-free) atoms in £. Then an interpretation or valu-
ation for P is simply a mapping from Bp to the classical, or two-valued, truth set
{true, false}. Such an interpretation gives a truth value to each ground atom in £
and extends, in the usual way, to give truth value to any closed well-formed formula,
including clauses. Moreover, each interpretation can be identified with the subset
of Bp on which it takes the value true. Thus, the set Ip of all interpretations will
be naturally identified with the power set of Bp; it therefore carries the structure
of a complete lattice (and hence a complete partial order) under the order of set
inclusion. In particular, a model for P is an interpretation I for P such that all
clauses in P evaluate to true in I. Of course, models are of particular importance
in studying the semantics of P. Since clauses are universally quantified, checking
their truth amounts to checking the truth of all their ground instances. We denote
the set of all ground instances of clauses in P by ground(P), and it is often this set
that one works with, rather than with P, when discussing questions of a theoretical
nature.

A partial interpretation or three-valued interpretation I is a mapping from Bp
to the truth set {true(t), false (f), undefined (u)} and can be identified with a pair
(I'™,I7) of disjoint subsets of Bp. Given a partial interpretation I = (I, I7),
atoms in IT carry the truth value true in I and atoms in I~ the value false in
I. Atoms which are neither in I* nor in I~ carry the truth value undefined.
Partial interpretations are interpreted in one of the standard three-valued logics
such as Kleene’s strong three-valued logic which tells one how the undefined value,
u, relates to the other truth values under conjunction, disjunction and negation,
see [8, 13, 14]. Once this is done, a truth value can be given to any ground formula



6 Pascal Hitzler and Anthony Karel Seda

in £. A partial interpretation (I7,I7) is called total if I* UI~ = Bp, and such
an interpretation can be naturally identified with an element of Ip. The set Ip3 of
all partial interpretations is a complete partial order, indeed complete semi-lattice,
under the ordering: (I;,I7) < (I, I;) iff IV C I and I; C I, where we take
the bottom element to be L = (@,0). Total interpretations are in fact maximal
elements in the given ordering.

2.3 Operators Associated with Programs. There are various important
operators associated with a logic program P which map interpretations to interpre-
tations. We discuss two of them now and others later on. The first, and perhaps
the most important, is the single-step operator Tp : Ip — Ip due to Kowalski and
van Emden and defined by letting T'»(I) denote the set of all A € Bp such that
there exists a clause A < body in ground(P) with body being true in I (in classical
two-valued logic).

The operator Tp has many important properties, and we summarize some of
these next. First, if P is definite, then Tp is continuous on the complete lattice Ip.
Therefore, it has a least fixed point Ifp(Tp) given by the Knaster-Tarski theorem.
Moreover, one has the following theorem due to Apt, Kowalski and van Emden
which, amongst other things, gives a form of the Godel completeness theorem re-
lating soundness and completeness for definite logic programming systems.

Theorem 2.2 For any definite logic program P, we have lfp(Tp) =Tp T w =
{AeBp|P+-A}={A€Bp | Pk A} = Mp.

Thus, provability (F) from P of a ground atom relative to SLD-resolution
coincides with it being a logical consequence (=) of P, and both coincide with
truth relative to the least Herbrand model Mp, which is the intersection of all
Herbrand models of P. Moreover, because of continuity, the iterates Tp of Tp
close off at w, which gives us the means, in principle, of finding Mp. For these
reasons, Mp is, for definite programs P, usually taken to be the standard model
of P or, in other words, the programmer’s intended meaning of P as mentioned in
the Introduction.

Next, for any normal logic program, whether definite or not, Tp has the pleasing
property that an interpretation I is a (two-valued) model of P iff Tp(I) C I or, in
other words, iff I is a prefixed point of Tp. The fixed points of Tp are of particular
importance since they are the models of the Clark completion of P which we will
not discuss here, but see [19] for details. Moreover, the fixed points of Tp are also
called the supported models of P. It is strongly argued in [1] that they are the
appropriate models to consider, since an atom A belongs to such a model M iff
there is a clause A < body in ground(P) with body true in M, and hence the
program itself supports the belief that A is true in M. In particular, this should
apply to any model viewed as a candidate for “the” standard model of P, that is,
the one best able to capture the intended meaning of P.

Thus, the fixed points of Tp are fundamental in studying the semantics of logic
programming systems. Yet a major problem arises: if P is not definite, then Tp
is not monotonic as can easily be seen by considering the program with the two
clauses p(0) « and p(s(z)) < —p(x) which computes the even natural numbers.
Therefore, the Knaster-Tarski theorem is not in general applicable as a means of
finding fixed points.
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The second operator we consider, but only briefly, is due to Fitting [8] and
is the three-valued operator ®p defined as a mapping on partial interpretations
K = (Kt,K™) as follows. We set ®p(K) = (I,17), where I'" is the set of all
A € Bp with the property that there exists a clause A < body in ground(P) such
that body is true in K, and I~ is the set of all A € Bp such that for all clauses
A < body in ground(P) we have that body is false in K; truth and falsehood being
taken here relative to a three-valued logic as mentioned earlier.

We note that ®p is always monotonic but not necessarily continuous. Thus,
the Knaster-Tarski theorem applies and shows the existence of a least fixed point
of ®p, although we may really have to iterate into the transfinite to reach it in the
absence of continuity. It was shown in [8], and in [2, 13, 14] for acceptable programs,
how fixed points of ®p relate to those of Tp. We see later in Section 4 that the
fixed-point theorems of [20, 21] can sometimes be applied to show uniqueness of
the fixed points of ®p.

3 The Fixed-Point Theorems of Priess-Crampe and Ribenboim

It will be convenient to begin this section by giving some basic definitions,
introducing some notation and stating the theorems of Priess-Crampe and Riben-
boim in the precise form we want for the later applications; all of this is to be found
in [20, 21].

Definition 3.1 Let X be a set and let T’ be a partially ordered set with least
element 0. The pair (X,d) is called a generalized ultrametric space or simply an
ultrametric space if d : X x X — T is a function satisfying the following conditions
forall x,y,z€ X andy €T
(1) d(z,y) =0 if and only if x = y;

(2) d(a,y) = d(y,);
(8) if d(z,y) <~ and d(y,2) <, then d(z,z) < 7.

For0#~ €T and x € X, the set By(z) = {y € X | d(z,y) < v} is called a
~v-ball or just a ball in X with centre x and radius 7.

A substitute is needed in the present context for the usual notion of com-
pleteness in (ultra)metric spaces, and this is provided by the notion of “spherical
completeness” as follows. An ultrametric space X is called spherically complete if
N C # 0 for any chain® C of balls in X.

We will be concerned at certain places with fixed points of multivalued map-
pings, that is, with mappings f : X — 2%, where 2% denotes the power set of a
set X. A fized point of such a mapping f is a point € X such that z € f(z). A
multivalued mapping f is called non-empty if, for all z € X, f(z) # 0.

Whilst the standard notion of contraction involving a numerical constant k& < 1
is not available in this context, appropriate and useful contractivity notions for
mappings defined on ultrametric spaces can be given as follows.

Definition 3.2 A multivalued mapping f : X — 2% on an ultrametric space
X is called
(i) contracting if for all x,y € X and for every a € f(x) there exists an element
b e f(y) such that d(a,b) < d(z,y).
(i) strictly contracting if for all x,y € X with x # y and for every a € f(x) there
exists b € f(y) such that d(a,b) < d(z,y).

2By a “chain of balls” we mean, of course, a set of balls which is totally ordered by inclusion.
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(#ii) strictly contracting on orbits if for all x € X and for every a € f(x) with
a # x there exists b € f(a) such that d(b,a) < d(a,x).

For a multivalued mapping f : X — 2%, let II, = {d(z,y) | y € f(2)}, and for
a subset A C I' denote by min A the set of all minimal elements of A.
The central theorem we need is as follows.

Theorem 3.3 (Priess-Crampe and Ribenboim) [21, (3.1)] Let (X,d) be a
spherically complete ultrametric space. Let f : X — 2% be a non-empty contraction
which is strictly contracting on orbits, and assume that for every x € X the set
min [T, is finite and that every element of I, has a lower bound in minIl,. Then
f has a fized point.

This result has several corollaries, both for multivalued mappings and for single-
valued mappings, and we state next those that we need in the sequel.

Theorem 3.4 (Priess-Crampe and Ribenboim) [21, (3.4)] Let (X,d) be
spherically complete and let T' be narrow, that is, such that every trivially ordered
subset of T is finite. Let f : X — 2% be non-empty, strictly contracting on orbits
and such that f(x) is spherically complete for every x € X. Then [ has a fized
point.

Theorem 3.5 (Priess-Crampe and Ribenboim) [6, 21] Let (X,d) be an
ultrametric space which is spherically complete, and let f : X — X be contracting.
Then either f has a fized point or there exists a ball Br(z) such that d(y, f(y)) ==
for all y € Br(2). If, in addition, [ is strictly contracting on orbits, then f has a
fized point. Finally, this fived point is unique if f is strictly contracting on X.

We are now in a position to discuss the role of these theorems in the context
of logic programming semantics and we proceed to do this next.

4 Locally Stratified Programs

Let P be a normal logic program. A level mapping [ for P is simply a mapping
l : Bp — 7, where v denotes an arbitrary countable ordinal. In fact, v will be
regarded as the set of all ordinals n such that n € v, that is, the set of ordinals
n such that n < 7. Level mappings have been used in logic programming in
a variety of contexts including problems concerned with termination, and with
completeness, and also to define (generalized) metrics, see [2, 9, 28, 31]. We will
shortly see how they can be used to define ultrametrics in the sense of Definition 3.1.
However, one of their main uses is in providing syntactic conditions on programs
involving negation under which a satisfactory standard model can be obtained. This
is often done by using the level mapping as a syntactic device to prevent “negation
through recursion”, that is, to prevent an atom occurring in the head of a clause
and simultaneously occurring negated in its body. This idea is illustrated by the
following important definition.

Definition 4.1 Let P be a normal logic program, let [ : Bp — 7 be a level map-
ping and let A < Ay,...,Ay,,—B1,... ,—B;, denote a typical clause in ground(P).
Then P is called:

(1) locally stratified (with respect to [) if the inequalities 1(A) > 1(A;) and I(A) >
[(B;) hold for all i and j in each clause in ground(P).

(2) locally hierarchical (with respect to l) if the inequalities [(A) > 1(A;),1(B;) hold
for all i and j in each clause in ground(P).
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The locally stratified programs form one of the most important classes in logic
programming and were introduced by Przymusinski in [24]; these programs are in
fact a generalization of the stratified programs defined by Apt, Blair and Walker in
[1]. Przymusinski gave a non-constructive, and fairly involved, argument to show
that each locally stratified program has a unique natural, supported model, known
as the perfect model, preferable to any other model in a precise sense defined
in [24]; constructive proofs of its existence and properties were given in [7, 29].
Of course, the locally hierarchical programs form a strict subclass of the locally
stratified programs. Furthermore, it is known that many programs used in practice
fall into the former class (of locally hierarchical programs), that each program in
it has a unique supported model (7, 29]) and that this class is computationally
adequate provided that the safe use of cuts is allowed ([30]). We will show next
how the fixed-point theory of these classes of programs can be treated by means of
the theorems in Section 3. In fact, this was carried out in [29] under a restriction
which we are now able to remove. Therefore, we will suppress details of proof and
refer to [29] except where the results of [29] are being generalized.

4.1 Domains as Ultrametric Spaces. It is our intention here to cast Ip
and Ip 3 into ultrametric spaces. As we show next, this construction can be carried
out in the very general context of a domain and applied to the case of spaces of
interpretations. Domains were introduced independently by D.S. Scott and Y.L. Er-
shov as a means of providing structures for modelling computation, and to provide
spaces to support the denotational semantics approach to understanding program-
ming languages, see [32]. Usually, domains are endowed with the Scott topology,
which is one of the Ty (but not T7) topologies of interest in theoretical computer
science. However, as we will see, domains can be endowed with the structure of a
spherically complete ultrametric space. This is not something normally considered
in domain theory. However, given that there are many ultrametrics which are use-
ful in theoretical computer science, see [31] for some examples, it suggests that a
study of the properties of generalized ultrametric spaces, as carried out in [18, 25]
and in the papers of Priess-Crampe and Ribenboim, from this viewpoint is worthy
of consideration.

Definition 4.2 A partially ordered set (D,C) is called a Scott-Ershov domain
with set D¢ of compact elements (see [32]), if the following conditions hold:
(i) (D,C) is a complete partial order (cpo), that is, D has a bottom element L, and
the supremum sup A exists for all directed subsets A of D.
(ii) The elements a € D¢ are characterized as follows: whenever A is directed and
a Csup A, then a C x for some x € A.
(iii) For each x € D, the set approx(z) = {a € D¢c;a C z} is directed and x =
sup approx(z) (this property is called algebraicity of D).
(i) If the subset A of D is consistent (there exists x € D such that a C x for all
a € A), then sup A exists in D (this property is called consistent completeness of
D).

Several important facts emerge from these conditions, including the existence
(indeed construction) of fixed points of continuous functions, and the existence
of function spaces (the category of domains is cartesian closed). Moreover, the
compact elements provide an abstract notion of computability.
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Example 4.3 (i) The set of all partial functions from N™ into N ordered by
graph inclusion is a domain (the proto-typical example) whose compact elements
are the finite functions.

(i) (Ip, C) is a domain whose compact elements are the finite subsets of Bp.
(iii) (Ip3, C) is a domain whose compact elements are the pairs (C1,C2) of disjoint
finite subsets of Bp.

We now cast an arbitrary domain into an ultrametric space. For this purpose,
let v denote an arbitrary countable ordinal, and let ', denote the set {27%;a < v}
of symbols 2~ ordered by 2% < 277 if and only if § < a.

Definition 4.4 Let r : Do — v be a function, called a rank function, form
['y41 and denote 277 by 0. Define d, : D x D — I'y4q by dp(x,y) = inf{27%c C
x if and only if ¢ C y for every ¢ € D¢ with r(c) < a}.

Then (D, d,) is an ultrametric space said to be induced by r. The definition of
d, is a variation of a construction made by M.B. Smyth in [31, Example 5], and
applied to level mappings in logic programming in [28]. Indeed, the intuition behind
d, is that two elements x and y of the domain D are “close” if they dominate the
same compact elements up to a certain rank (and hence agree in this sense up to this
rank); the higher the rank giving agreement, the closer are z and y. Furthermore,
(D,d,) is spherically complete. The proof of this claim does not make use of the
existence of a bottom element of D, so this requirement can be omitted. The main
idea of the proof is captured in the following lemma, which shows that chains of
balls give rise to chains of elements in the domain. We will give the proof in detail
since it is a generalization of the original result given in [29] under a directedness
condition on the rank function which we now remove. The proof depends on the
following elementary facts, see [20].

Fact 4.5 (1) If v <6 and x € B;s(y), then B,(x) C Bs(y). Hence every point
of a ball is also its centre.
(2) If By(x) C Bs(y), then § £ v (thus v < 0, if T is totally ordered).

It will simplify notation in the following proof to denote the ball By—«(z) by
B*(x).

Lemma 4.6 Let B®(y) and B(x) be arbitrary balls in (D,d,). Then the
following statements hold.
(1) For any z € B®(y), we have {c € approx(z);r(c) < B} = {c € approx(y); r(c) <
5).
(2) Bg = sup{c € approx(y);r(c) < B} and B, = sup{c € approx(z);r(c) < a}
both exist.
(3) Bs € B?(y) and B, € B®(z).
(4) Whenever B®(z) C B®(y), we have Bg C B,.

Proof (1) Since d,.(z,y) < 277, the first statement follows immediately from
the definition of d,.
(2) Since the set {c € approx(z);r(c) < 8} is bounded by z, for any z and 3, the
second statement follows immediately from the consistent completeness of D.
(3) By definition, we obtain Bg C y. Since Bg and y agree on all ¢ € D¢ with
r(c) < (8, the first statement in (3) holds, and the second similarly.
(4) First note that 2 € B®(y), so that B?(y) = B®(x) and the hypothesis can be
written as B*(z) C B?(x). We consider two cases.
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(i) If B < a, then using (1) and noting again that = € B%(y) we get B = sup{c €
approx(y); r(c) < 8} = sup{c € approx(z);r(c) < 8} E sup{c € approx(z);r(c) <
a} = B, as required.

(ii) If & < 3, then we cannot have B*(z) C B®(z) and we therefore obtain B%(z) =
B?(z) and consequently B*(Bg) = B?(Bs) = B?(B,) using (3). With the argu-
ment of (i) and noting this time that y € B¥(x), it follows that B, C Bg. We want
to show that B, = Bg. Assume in fact that B, T Bg. Since any point of a ball is its
centre, we can take z = Bg in (1), twice, to obtain Bz = sup{c € approx(Bg);r(c) <
B} and B, = sup{c € approx(Bg);r(c) < a}. Thus, the supposition B, C Bg
means that sup{c € approx(Bg3);r(c) < a} C sup{c € approx(Bg);r(c) < 8}. Since
{c¢ € approx(Bg);r(c) < a} C {c € approx(Bg);r(c) < [}, there must be some
d € {c € approx(Bg);r(c) < f} with d [Z sup{c € approx(Bg);r(c) < a} = B,.
Thus, there is an element d € D¢ with r(d) < 3 satisfying d Z B, and d C Bg.
This contradicts the fact that d,.(B.,Bs) < 27°. Hence, B, [ Bgs, and since
B, C Bg, it follows that B, = Bg and therefore that Bg C B, as required. O

Given a (decreasing) chain of balls, one now obtains an (increasing) chain of
elements in the domain, which has a supremum. This supremum turns out to be
contained in the intersection of the chain of balls. Details of the proof can be found
in [29]. Thus we obtain the following result.

Theorem 4.7 The ultrametric space (D,d,) is spherically complete.

4.2 Application to Locally Stratified Programs. Suppose P is a normal
logic program. Then, as already noted, Ip can be thought of as a domain whose
compact elements are the interpretations corresponding to the finite subsets of Bp.
Now suppose that P is locally stratified relative to the level mapping | : Bp — 7.
We define the rank function r; induced by I by setting r;(I) = max{l(A); A € I}
for every finite I # 0 and take r;(§) = 0. Denote the ultrametric resulting from r;
by dl.

We are now in a position to establish the following result.

Theorem 4.8 Let P be a normal logic program which is locally stratified with
respect to a level mapping l. Then P has a supported model. If, further, P is locally
hierarchical with respect to [, then P has a unique supported model.

Proof According to Theorem 4.7, (Ip,d;) is spherically complete (this was
shown directly for the case of Ip in [21], but follows from our more general result
as just stated). Moreover, it was shown in [6] that Tp is contracting since P is
locally stratified, and that there cannot exist a ball Br(J) in (Ip,d;) such that
d(I,Tp(I)) =« for all I € B,(J). Therefore, it follows from Theorem 3.5 that Tp
has a fixed point and hence that P has a supported model.

Next, if P is locally hierarchical, it was shown in [29] that Tp is strictly con-
tracting. Therefore, by Theorem 3.5 again, it follows that Tp has a unique fixed
point and so P has a unique supported model, as required. O

In the same sort of way, the domain Ip3 can be turned into an ultrametric
space and we obtain a result corresponding to Theorem 4.8. In particular, we see
that for locally hierarchical programs P, both ®p and the related operator ®p-,
defined in [14], have a unique fixed point. Programs for which ®p. possesses a
unique fixed point are interesting and important insomuch as many of the standard
models coincide for them, and therefore, for such programs, the various ways of
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viewing non-monotonic reasoning coincide. The locally hierarchical programs have
this property and so, too, do the acceptable programs of [2]. Classes of programs
with this property have elsewhere been called unique supported model classes by
the authors, and characterized in [13, 14, 16] in terms of the fixed points of ® p-
in various three-valued logics. Theorem 4.8 shows that ultrametric methods and
Theorem 3.5 are powerful tools in carrying out investigations of this type.

5 The Stable Model Semantics

When studying non-monotonic reasoning and deductive databases, it is often
convenient to consider extended disjunctive logic programs and to allow two dif-
ferent kinds of negation. One of these is interpreted as classical negation and the
other is interpreted procedurally as negation as failure, see [19] for this notion. We
introduce the following terminology following [11, 17] closely.

Let £ denote a first-order language. By a literal L in £ we mean either an
atom A or its negation, = A, where A is an atom in £; a literal is called ground if it
contains no variable symbols. We denote the set of all ground literals in £ by Lit.
A rule r in £ is a universally quantifed expression of the following type

LyV---VLy¢+ Lyii AN+ ALy AnotLp,pq A+ AnotLy,

where each L; € Lit. Given such a rule r, we define Head(r) = {Li,...,Ly,},
Pos(r) = {Lpt1,...,Lm} and Neg(r) = {Lpm+1,-..,Lr}. The keyword not may
be interpreted as negation as failure. An (extended disjunctive) program II is a
set of (disjunctive) rules. The term “extended” refers to the fact that two kinds
of negation are employed, and the term “disjunctive” refers to the appearance of
more than a single literal in the heads of rules and to the disjunction between them.
A normal logic program can therefore be understood as a special type of extended
disjunctive program.

We note that a program is usually defined as a finite set of rules as above, but
the literals L; are allowed to be non-ground. However, we can always replace a
program by the set of all ground instances of its rules. This will yield an infinite
set if function symbols are present, and a finite set otherwise (in which case II is
called an extended disjunctive database). Either way, in the sequel we assume that
all the rules in an extended program are ground. Finally, a rule r, as above, will
usually be written in the form

Ly,...,Lp 4+ Lpy1,...,Ly,notLyyq,...,notLy.

5.1 Stable Model Semantics. Given a set II of ground rules as just defined,
it is possible to define a multivalued version T of the single-step operator, to
define supported models of IT, and to show that these coincide with the fixed points
of Tt, see [12]. Thus, fixed points of multivalued mappings and, consequently,
corresponding fixed-point theorems, enter very generally into the discussion. We
shall not, however, pursue this line here in complete generality. Instead, we briefly
consider another multivalued operator which encapsulates a view of non-monotonic
reasoning due to Gelfond and Lifschitz. This leads to the well-known concept of
stable model, and we show how its existence can be derived from Theorem 3.3.

In order to describe the stable model semantics or answer set semantics for
programs, we first consider programs without negation, not. Thus, let IT denote a
disjunctive program in which Neg(r) is empty for each rule r € II. A subset X of
Lit, i.e. X € 24t is said to be closed by rules in II if, for every rule r € II such



The Fixed-Point Theorems of Priess-Crampe and Ribenboim in Logic Programming 13

that Pos(r) C X, we have that Head(r) N X # (). The set X € 2M* is called an
answer set for II if it is closed by rules in II and satisfies:

1. If X contains complementary literals, then X = Lit.

2. X is minimal, that is, if A C X and A is closed by rules of II, then A = X.
We denote the set of answer sets of II by a(II).
Now suppose that II is a disjunctive program that may contain not. For a set
X € 2%, consider the program IIX defined by

1. If r € 11 is such that Neg(r) N X is not empty, then we remove r i.e. r ¢ ITI¥X.

2. If r € 11 is such that Neg(r) N X is empty, then the rule r’ belongs to IIX,

where 7’ is defined by Head(r') = Head(r), Pos(r’) = Pos(r) and Neg(r') = 0.

It is clear that the program ITX does not contain not and therefore a(I) is
defined. Following Gelfond and Lifschitz [11], we define the operator GL : 2% —
22" by GL(X) = a(I1¥). Finally, we say that X is an answer set or a stable model
of IT if X € a(IIY), that is, if X € GL(X). In other words, X is an answer set of
IT if it is a fized point of the multivalued mapping GL. Again, we use the notation
a(IT) for the set of answer sets of II in the general case.

The following example will help to illustrate these ideas.

Example 5.1 Take IT as follows:

p(0) v q(0)
p(a) V q(0) = q(0) A =p(0).
If X is any set of literals not containing p(0), then TIX is the program
p(0) v ¢(0) «
p(a) v q(0) + ¢(0),
and the answer sets of I are {p(0)} and {q(0)}. Thus, a(IIX) = {{p(0)},{q(0)}}.
Since X = {q(0)} is a suitable choice of X in that it does not contain p(0), we see
that X € a(II*) and hence that {q(0)} is an answer set for II.

On the other hand, suppose that X is any set of literals which does contain
p(0). In this case, the program 11X is as follows:

p(0) v q(0) .

Again, the only answer sets of I are {p(0)} and {q(0)}. Since X = {p(0)} is a
sugtable choice of X in that it does contain p(0) this time, we see that {p(0)} is
an answer set for II, and indeed is the only one other than {q(0)}. Thus, a(Il) =
{p(0)}, {a(0)}}.

In this example, GL(X) contains the two elements {p(0)} and {q(0)} for any
set X of literals, and hence is multivalued. Moreover, both {p(0)} and {q(0)} are
fized points of GL.

5.2 The Generalized Metric of Khamsi, Kreinovich and Misane.

Definition 5.2 An extended disjunctive program II is called locally stratified
if there exists a mapping (a level mapping) | : Lit — v, where v is a count-
able ordinal, such that for every (ground) rule r of I, where r has the form
Ly,...,Ly < Lpy1,...,Lip,n0otLy11,...,n0tLy, the following inequalities hold:
I(L) > U(L') and I(L) > U(L"), where L,L" and L" denote, respectively, elements
of Head(r),Pos(r) and Neg(r).
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This definition clearly generalizes Definition 4.1.

In [17], a notion of generalized metric was introduced in order to study the
stable model semantics of locally stratified programs. As it turns out, the notion
of generalized metric defined in [17] is closely related to the notion of ultrametric
introduced in Section 3, and we discuss this connection below.

A semigroup is a set V together with an associative binary operation + :
V xV — V. If + is also commutative, then the semigroup is called commutative or
Abelian. A semigroup is called a semigroup with 0 if there exists an element 0 € V
such that 0+ u =wu for all u € V.

By an ordered semigroup with 0, we mean a semigroup with 0 on which there
is defined an ordering < satisfying: 0 < v for all v € V', and if v; < vo and v] < v,
then vy + v < vy + v}.

Definition 5.3 Let V be an ordered Abelian semigroup with 0 and let M be
an arbitrary set. A generalized metric on M is a mapping d: M x M — V which
satisfies the following conditions for all x,y,z € M.

(i) d(z,y) =0 iff v = y.

(i1) d(z,y) = d(y, ).

(i) d(x,z) < d(z,y) + d(y, z).

A pair (M,d) consisting of a set M and a generalized metric d on M is called a
generalized metric space.

Definition 5.4 Let V' denote the set of all expressions of the type 0 or 279,
where o is a countable ordinal. As before, an order is defined on V by: 0 < v for
every v €V, and 27 < 278 iff B < a. As a semigroup operation u + v, we will
use the mazimum max(u,v). It will be convenient to write %2_0‘ =2 (at1)

Definition 5.5 Assume that « is either a countable ordinal or wy, the first
uncountable ordinal, and that v = (vg)s<q 1S a decreasing family of elements of V.
Let M be a generalized metric space, and let (3)s<q be a family of elements of M.
(i) (zp) is said to v-cluster to x € M if, for all 5, we have d(zs,z) < vz whenever
B < a.

(ii) (x3) is said to be v-Cauchy if, for all  and vy, we have d(xg, x.,) < vz whenever
B<y<a.

(iii) M is said to be complete if for every v, every v-Cauchy family v-clusters to
some element of M.

(iv) A set A C M will be called complete if for every v, whenever a v-Cauchy
family consists of elements of A, it v-clusters to some element of A.

A mapping T : M — 2M is called a (%)—contmction if, for every x € M, for

every y € M and for every a € T(x), there exists b € T'(y) such that d(a,b) <

3d(z,y).
The following theorem was proved in [17].

Theorem 5.6 Let M be a complete generalized metric space, let T be a mul-
tivalued (% )-contraction on M such that T(z) is not empty for some x € M (thus,
T is not identically empty), and suppose that for every v € M the set T(x) is
complete. Then T has a fixed point.

We present next some new results relating the results just given to the notion
of spherical completeness we discussed earlier.
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Let (X, d) be a generalized metric space with respect to V' as given in Definition
5.4. Then it is easy to see that d is in fact an ultrametric in the sense of Section 3.

Proposition 5.7 Let X be a complete generalized ultrametric space with re-
spect to V.. Then X is spherically complete in the sense of Section 3.

Proof Let B = (B, (x3))s be a decreasing chain of balls in X', and without loss
of generality assume that it is strictly decreasing. We have to show that (B # 0.
Let v = (vg4+1)s. Since B is a chain, it is easy to see that (x3) is v-Cauchy and
therefore, by completeness of X, (z3) v-clusters to some 2 € X. By definition, this
means that d(zs,z) < vgy1 < vg and therefore that x € By, (zs) for all 5. Thus,
z €B. O

Proposition 5.8 Let (X,d,V) be a spherically complete ultrametric space in
the sense of Section 3. Then X is complete in the sense of the present section.

Proof Let v= (v3) be a decreasing family of elements of V' which is, with-
out loss of generality, strictly decreasing, and let (z3) be v-Cauchy. Then B =
(Bygy, (z3)) is a decreasing chain of balls in X. By spherical completeness, it has
non-empty intersection. Choose z € [|B. Then, for all § we obtain d(zs,z) <
vg41 < vg, so that (zz) v-clusters to = as required. O

This means, by virtue of Theorem 3.3, that we can reformulate the assumptions
in Theorem 5.6 and thereby obtain the following theorem. In fact, our conclusion
relative to the second statement in this theorem is a special case of Theorem 3.4.

Theorem 5.9 Let X be a spherically complete ultrametric space (with respect
to V) and let f be multivalued, non-empty and strictly contracting on X. Then
either of the following conditions ensures the existence of a fixed point of f.

(i) The set {d(z,y) |y € f(x)} has a minimum in X for oll x € X.
(ii) The set f(x) is spherically complete for each x € X.

We close by showing that the existence of a stable model for a locally strat-
ified extended disjunctive logic program II follows from Proposition 5.7 and The-
orem 5.9, and hence, ultimately, from Theorem 3.3. Thus, Theorem 3.3 gives a
unified treatment of the fixed-point theory of locally stratified programs and ex-
tended disjunctive programs.

Proceeding somewhat along the lines of Definition 4.4, first let Lit, denote the
set {L € Lit;l(L) = a}, where [ is the level mapping with respect to which IT is
locally stratified. We now define a generalized metric d on 2M* as follows: if A = B,
then d(A,B) = 0; if A # B, then d(A, B) = 27%, where « is the smallest ordinal
for which A NLit, # B NLit,. The resulting generalized metric space turns out
to be complete, as shown in [17]. It is straightforward to see that the GL operator
satisfies the assumptions of Theorem 5.9. Therefore, GL has a fixed point which is
a stable model of II.
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