Generalized Metric Spaces in Logic Programming Semantics

Pascal Hitzler and Anthony Seda

Dagstuhl Seminar 00231, June 2000
Topology in Computer Science: Constructivity; Asymmetry and Partiality; Digitalization

Contents

• Logic Programs: Fixpoint Semantics
• Overview: Fixpoint Theorems
• Overview: Classes of Programs
• Metrics
• Generalized Ultrametrics
• Dislocated Metrics
• Dislocated Generalized Ultrametrics
• Discussion

Dept. of Mathematics, University College, Cork, Ireland
{phitzler,aks}@ucc.ie http://maths.ucc.ie/~{pascal,aks}
Logic Programs: Fixpoint Semantics

A logic program P is a finite set of clauses

$$\forall (A \leftarrow L_1 \land \cdots \land L_n)$$

from first order logic usually written as

$$A \leftarrow L_1 \land \cdots \land L_n,$$

where A an atom, L_i a literal, $n \geq 0$.

B_P: Herbrand base.

$I_P = 2^{B_P}$: set of all Herbrand interpretations.

$\text{ground}(P)$: set of all ground clauses of P.

Denotational semantics is given by models with additional properties.

We focus on the supported model semantics.

Define (nonmonotonic) operator $T_P : I_P \rightarrow I_P$ by $T_P(I)$ is set of all $A \in B_P$

for which there is a clause $A \leftarrow L_1 \land \cdots \land L_n$

in $\text{ground}(P)$ s.t. $I \models L_1 \land \cdots \land L_n$.

I is a supported model iff $T_P(I) = I$.

We seek ways of finding fixed points of T_P.
Theorems, if applicable, yield unique fixed points.

Programs which can be analysed with them will have unique supported models (i.e. are uniquely determined).

* Matthews 1985
* Priess-Crampe & Ribenboim 2000
A level mapping is a function $l : B_P \to \gamma_P$, where γ_P is a (countable) ordinal.

P is locally hierarchical (lh) if
for each $A \leftarrow L_1, \ldots, L_n$ in $\text{ground}(P)$,
$l(A) > l(L_i)$ for all i.

P is acyclic if it is lh and $\gamma_P = \omega$.

Basic Construction

P logic program.

l level mapping for P.

For $J, K \in I_P$ define

$d(J, K) = 0$ if $J = K$ and

$d(J, K) = 2^{-\alpha}$

where J, K disagree on $A \in B_P$ with $l(A) = \alpha$

and agree on all atoms of level less than α.

$(2^{-\alpha} < 2^{-\beta} \text{ iff } \beta < \alpha)$

If P acyclic:

- (I_P, d) is complete ultrametric space.
- T_P is a contraction relative to d.
- T_P has unique fixed point.
- P has unique supported model M.
- $T^n_P(K) \rightarrow M$ in the Cantor topology on I_P
 (for all $K \in I_P$).
Generalized Ultrametrics

P locally hierarchical:

- (I_P, d) generalized ultrametric (gum), i.e.
 - $d : X \times X \to \Gamma$ ($X = I_P$), Γ poset, $\min \Gamma = 0$
 - $d(x, y) = 0$ iff $x = y$ (for all x, y)
 - $d(x, y) = d(y, x)$ (for all x, y)
 - $d(x, y) \leq \gamma$ and $d(y, z) \leq \gamma \Rightarrow d(x, z) \leq \gamma$
 (for all x, y, z, γ)

- (I_P, d) spherically complete i.e.
 \[\bigcap \mathcal{C} \neq \emptyset \text{ for each chain } \mathcal{C} \text{ of (nonempty) balls } \]
 \[(B_\gamma(y) = \{ x \mid d(x, y) \leq \gamma \}). \]

- T_P strictly contracting i.e.
 \[d(T_P(x), T_P(y)) < d(x, y) \text{ for all } x \neq y. \]

- T_P has unique fixed point.

PC&R Theorem: (X, d) sph. comp. gum, f str. contr., then f has a unique fixed point.

- P has unique supported model M.
- M can be obtained as the limit of a transfinite iterative process involving T_P and the Cantor topology on I_P.

Domains as Gums

D algebraically complete cpo (e.g. I_P).
\[\gamma \text{ countable ordinal, } \Gamma_\gamma = \{2^{-\alpha} \mid \alpha < \gamma\}. \]

$r : D_C \rightarrow \gamma + 1$ rank function.

$d_r : D \times D \rightarrow \Gamma_{\gamma+1}$ defined by
\[d_r(x, y) = \inf\{2^{-\alpha} \mid (c \sqsubseteq x \text{ iff } c \sqsubseteq y) \text{ for all } c \in D_C \text{ with } r(c) < \alpha\}. \]

(D, d_r) is a spherically complete gum.

Proof uses the following observations:

- $x \in B_{2^\beta}(y) \Rightarrow \{c \in \text{approx}(x) \mid r(c) < \beta\}$
 \[= \{c \in \text{approx}(y) \mid r(c) < \beta\} \]
- $B_\beta = \sup\{c \in \text{approx}(y) \mid r(c) < \beta\}$ exists
- $B_\beta \in B_{2^\beta}(y)$
- $B_{2^\alpha}(x) \subseteq B_{2^\beta}(y) \Rightarrow B_\beta \sqsubseteq B_\alpha$

* cf. Smyth 1989/91
* generalizes earlier result Seda & Hitzler 1997
* PC&R Theorem is more general than applied
* bottom element of D not needed
Dislocated Metrics

(X, ϱ) *dislocated metric space* (d-metric)
(Matthews 1985: *metric domain*):

- ϱ satisfies all conditions of a metric *except*
 - $\varrho(x, x) = 0$ for all $x \in X$.

Remaining notions as in the metric case.

Matthews: (X, ϱ) complete d-metric space, $f : X \to X$ contraction.
Then f has a unique fixed point.

d is Φ^*-*accessible* if
- I model for P
- I supported model of P^{-} (negative part of P)
- l level mapping for P s.t.
 - for all $A \leftarrow L_1, \ldots, L_n$ in $\text{ground}(P)$ either
 - $I \models L_1 \land \cdots \land L_n$ and $l(A) > l(L_i)$ for all i or
 - exists i s.t. $I \not\models L_i$ and $l(A) > l(L_i)$.

d is Φ^{*}_{ω}-*accessible* if it is Φ^*-accessible and $\gamma_{P} = \omega$.

* cf. Apt & Pedreschi 1993: acceptable programs
Generalized Fitting Construction

Neg_P*: predicates occurring negatively in P and all predicates on which they depend. P\^-: all ground clauses with head from Neg_P*.

K \in I_P, then K\' is K restricted to predicates not in N.

Definitions: I \in I_P and level map l fixed.

- \(f(K) = 0 \) if \(K \subseteq I \).
- \(f(K) = 2^{-\alpha} \) with \(\alpha \) least s.t. exists \(A \in K \setminus I \) with \(l(A) = \alpha \).
- \(u(K) = \max\{ f(K'), d(K', I) \} \).
- \(\varrho(J, K) = \max\{ d(J, K), u(J), u(K) \} \)

P is \(\Phi^*_\omega \)-accessible:

- \((I_P, \varrho) \) complete d-metric.
- \(T_P \) contraction.
- \(T_P \) has unique fixed point.
- \(P \) has unique supported model \(M \).
- \(T^n_P(K) \to M \) in the Cantor topology on \(I_P \) (for all \(K \in I_P \)).

* cf. Fitting 1994
Dislocated GUMs

\((X, \varrho)\) *dislocated gum (d-gum)*:

- \(\varrho\) satisfies all conditions of a gum *except*
 - \(\varrho(x, x) = 0\) for all \(x \in X\).

Remaining notions as in the gum case.

\((X, \varrho)\) spherically complete d-gum,

\(f : X \to X\) strictly contracting.

Then \(f\) has a unique fixed point.

\(P\) \(\Phi^*\)-accessible:

- \((I_P, \varrho)\) spherically complete d-gum.
- \(T_P\) strictly contracting.
- \(T_P\) has unique fixed point.
- \(P\) has unique supported model \(M\).
- \(M\) can be obtained as the limit of a transfinite iterative process involving \(T_P\) and the Cantor topology on \(I_P\).
Another Application

P is Φ-accessible if I model for P and l level map s.t. each $A \in B_P$ satisfies either (i) or (ii).

(i) Exists $A \leftarrow L_1, \ldots, L_n$ in ground(P) s.t. $I \models L_1 \land \cdots \land L_n$ and $l(A) > l(L_i)$ for all i.

(ii) For each $A \leftarrow L_1, \ldots, L_n$ in ground(P) exists i with $I \not\models L_i$, $I \not\models A$, $l(A) > l(L_i)$.

\star P is Φ-accessible iff P has total model under Fitting-semantics (Fitting 1985).

Define $\delta(J, K) = \max\{d(J, I), d(K, I)\}$.

- (I_P, δ) spherically complete d-gum.
- T_P strictly contracting.
- M can be obtained as the limit of a transfinite iterative process involving T_P and the Cantor topology on I_P.
Discussion

• Understanding nonmonotonic reasoning.
 Rounds & Zhang 199x

• Exploring the “space” of all logic programs.

• Extensions to uncertain reasoning?
 van Emden 1986
 Mateis 1999

• Connections to topological dynamics.
 Seda & Hitzler 1997/8

• Relationships to artificial neural networks.
 Hölldobler et al. 199x
 Hitzler & Seda 2000
Appendix: Atomic Topology Q on I_P

B_P countable
then Q homeomorphic to Cantor set.

Equivalent characterizations:

- Product topology on 2^{B_P}
 where $2 = \{0, 1\}$ carries discrete topology.
- Subbase $\{G(L) \mid L \text{ literal}\}$,
 $G(L) = \{I \in I_P \mid I \models L\}$.
- $I_n \to I$ if
 each $A \in I$ is eventually in I_n and
 each $A \notin I$ is eventually not in I_n.

For the transfinite iterative processes above:

For limit ordinal α, set I_α to be set of all
$A \in B_P$ which are eventually in $(I_\beta)_{\beta < \alpha}$.

For successor ordinal α, set $I_\alpha = T_P(I_{\alpha - 1})$.

Transfinite sequence obtained converges in Q.

* Batarekh & Subrahmanian 1989:
 Query Topology
Appendix: General Version of MPC&R

(X, \varnothing) spherically complete d-gum.

$f : X \to X$ non-expanding

$(d(f(x), f(y)) \leq d(x, y)$ for all $x, y \in X$)

and f strictly contracting on orbits

$(d(f^2(x), f(x)) < d(f(x), x)$

for all $x \in X$ with $x \neq f(x)$).

Then f has fixed point.

f strictly contracting then fixed point is unique.

- Also generalizes theorem by Khamsi, Kreinovich & Misane 1993.
- Constructive proof for applied special case possible.

Level mappings to rank functions:

$I \in I_P$ finite set (i.e. compact element of I_P).

$r(I) = \max\{l(A) \mid A \in I\}$.
Appendix: Metrics and D-metrics

\[(X, d)\] complete ultrametric.
\[u : X \to \mathbb{R}_0^+\] continuous.

Then \[\varrho(x, y) = \max\{d(x, y), u(x), u(y)\}\]
is complete d-ultrametric.

\[(X, \varrho)\] complete d-metric.
\[d(x, y) = 0\text{ if } x = y,\]
\[d(x, y) = \varrho(x, y)\text{ otherwise.}\]

Then \(d\) complete metric.

If \(f\) contraction in \(\varrho\)
then \(f\) contraction in \(d\).

- Can prove the theorem of Matthews from Banach theorem.

- Anologous results hold for d-gums/gums.