
An AADL Contract Language Supporting Integrated Model- and
Code-Level Verification

JOHN HATCLIFF, Kansas State University, Department of Computing and Information, USA
DANIELLE STEWART, Adventium Labs, USA
JASON BELT, Kansas State University, Department of Computing and Information, USA
ROBBY, Kansas State University, Department of Computing and Information, USA
AUGUST SCHWERDFEGER, Adventium Labs, USA

Model-based systems engineering approaches support the early adoption of
a model – a collection of abstractions – of the system under development.
The system model can be augmented with key properties of the system
including formal specifications of system behavior that codify portions of
system and unit-level requirements. There are obvious gaps between the
model with formally specified behavior and the deployed system. Previous
work on component contract languages has shown how behavior can be
specified in models defined using the Architecture Analysis and Design
Language (AADL) – a SAE International standard (AS5506C). That work
demonstrated the effectiveness of model-level formal methods specification
and verification but did not provide a strong and direct connection to system
implementations developed using conventional programming languages. In
particular, there was no refinement of model-level contracts to program-
ming language-level contracts nor a framework for formally verifying that
program code conforms to model-level behavioral specifications.

To address these gaps and to enable the practical application of model-
contract languages for verification of deployed high-integrity systems, this
paper describes the design of the GUMBO AADL contract language that
integrates and extends key concepts from earlier contract languages. The
GUMBO contract language (GCL) is closely aligned to a formal semantics of
the AADL run-time framework, which provides a platform- and language-
independent specification of AADL semantics. We have enhanced the HAMR
AADL code generation framework to translate model-level contracts to
programming language-level contracts in the Slang high-integrity language.
We demonstrate how the Logika verification tool can automatically verify
that Slang-based AADL component implementations conform to contracts,
both at the code-level and model-level. Slang-based implementations of
AADL systems can be executed directly or compiled to C for deployments
on Linux or the seL4 verified microkernel.

ACM Reference Format:
John Hatcliff, Danielle Stewart, Jason Belt, Robby, and August Schwerdfeger.
2022. An AADL Contract Language Supporting Integrated Model- and Code-
Level Verification. 1, 1, Article 1 (November 2022), 9 pages.
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Over the last few decades, significant advancements in Model-Based
Systems Engineering (MBSE) approaches, including modeling lan-
guages, model-level analyses, simulation, and code generation have

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
XXXX-XXXX/2022/11-ART1 $15.00
https://doi.org/XXXXXXX.XXXXXXX

improved the ability to design and deploy complex critical systems.
Within the broader modeling space, the Architecture Analysis and
Design Language (AADL) is distinguished by its relatively strong se-
mantic emphasis (compared to other modeling languages like UML
and SysML) and by its ecosystem of analysis tools that leverage
that semantics. Tools that generate code from AADL models such
as Ocarina [22], RAMSES [6], and HAMR [12] are helping fulfill the
AADL community’s MBSE visions by supporting the deployment
of critical systems derived directly from models.

Due to in part to the AADL’s strong semantics, researchers have
developed formal model-based behavior specification and verifica-
tion techniques. In particular, AADL component contract languages
such as AGREE [8] and BLESS [21] have illustrated how system re-
quirements can be refined into system and component-level formal
specifications based on propositional and first-order logic.
Despite this progress, there are still gaps in the AADL MBSE

vision related to deeply integrating behavioral specifications [15] at
the model and code level. In recent years there has been significant
progress on developing highly automated code-level verification
tools including those for high-integrity languages such Spark Ada
[16] and Frama-C [17], as well as program checking tools for gen-
eral purpose languages including Java, C, C#, Rust, etc. However,
both AGREE and BLESS analyses apply to the model-level and only
address thread behavior specifications based on rather abstract no-
tations (Lustre-based notations for AGREE, and state transition
notations for BLESS). Given that the AADL has a significant vision
related to code generation in the standard, including a code genera-
tion annex, descriptions of thread code organization (thread entry
points), and descriptions of run-time libraries that implement foun-
dational thread dispatching and communication steps, a stronger
connection between model-level contract languages and code-level
contract languages would be a significant step forward in further
developing the AADL MBSE vision.
In this paper, we address these gaps by presenting an AADL

contract language that can be utilized by AADL code generation to
produce application source code with code-level contracts derived
from model-level contracts. This required us to reorient concepts
from both AGREE and BLESS to better align with notions of AADL
thread entry points and AADL Application Programming Interfaces
(APIs) associated with AADL’s run-time services.

The contributions of this paper are as follows.

, Vol. 1, No. 1, Article 1. Publication date: November 2022.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

1:2 • Hatcliff et al.

• We defined and implemented the AADL GUMBO1 contract
language (GCL) as an AADL annex, and we implemented full
editing support for the GUMBO Contract Language (GCL) in
the AADL OSATE IDE.

• We extended HAMR’s multi-platform AADL code generator
to automatically extract contracts from AADL models and
weave them into the HAMR-generated code skeletons in the
Slang high-integrity subset of Scala [25].

• We illustrated how the Logika-powered Sireum Integrated
Verification Environment (IVE) for Slang can support contract
reasoning at the code level, and that Logika can be used by
engineers to verify that their thread implementations conform
to contracts both at the code and model-level [20].

The framework described in this paper is included in the pub-
licly available, open source High Assurance Modeling and Rapid
engineering framework (HAMR) distribution [19]. A GitHub repos-
itory [18] provides the examples discussed in this paper, along with
additional examples that illustrate the features of the contract lan-
guage at both model- and source-code levels.

2 BACKGROUND CONCEPTS
AADL: SAE International standard AS5506C [5] defines the AADL
core language for expressing the structure of embedded real-time
systems via definitions of software and hardware components, their
interfaces, and their communication. The AADL provides a precise,
tool-independent, and standardized modeling vocabulary of com-
mon embedded software and hardware elements using a component-
based approach [11]. The AADL standard also describes Run-Time
Services (RTS) – a collection of run-time libraries that provide key
aspects of threading and communication behavior. A major subset
of the Run-Time Services has been formalized and a reference im-
plementation has been developed [13], and we have designed our
contract language and associated translation to code-level contracts
with these definitions in mind.

HAMR: The HAMR framework generates code from AADL mod-
els for multiple execution platforms [12]. This includes generating
threading, port communication, and scheduling infrastructure code
that conforms to AADL run-time semantics as well as application
code skeletons that engineers fill in to complete the behavior of the
system. For the JVM platform, HAMR generates code in Slang [25], a
high-integrity subset of Scala, which can be integrated with support
code written in Scala and Java. Mixed Slang/Scala-based HAMR
systems can also be translated to JavaScript (e.g., for simulation and
prototyping) and run in a web browser or on the NodeJS platform.
HAMR generates C infrastructure and application skeletons when
targeting Linux and the seL4 micro-kernel [1]. Slang can be tran-
spiled to C, and HAMR factors its C code through a Slang-based
“reference implementation” of the AADL run-time and application
code skeletons. Using the Logika verification framework for Slang
(described below), Slang code can be verified with a high-degree of
automation. This provides a basis for developing high-assurance
AADL-based systems using Slang directly or via translation of Slang

1This material is based upon work supported by the U.S. Army Combat Capabilities
Development Command, Aviation and Missile Center, under Contract No. W911W6-
20-C-2020: Grand Unified Modeling of Behavioral Operators.

to C. C code transpiled from Slang can be compiled using standard
C compilers, as well as the CompCert Verified C compiler [23].

Logika: Logika is a highly automated program verifier for Slang [20].
Slang’s integrated contract language enables developers to formally
specify method pre/post-conditions, data type invariants, and global
invariants for global states. Verification of code conformance to con-
tracts is performed compositionally and employs multiple back-end
solvers in parallel, including Alt-Ergo [9], CVC4 [3], CVC5 [2], and
Z3 [24]. The scalability of Logika is complemented by using in-
cremental and parallel (distributable) verification algorithms. For
situations where automated solvers cannot provide full verifica-
tion, Slang includes an extensible proof language directly integrated
with the programming language that Logika checks. Verification re-
sults, developer feedback on verification status, and contract/proof
editing are supported in the Sireum Integrated Verification Envi-
ronment (IVE) – a customization of the popular IntelliJ Integrated
Development Environment (IDE).

The code-level contracts for the method include a Requires clause
(pre-conditions), an Ensures clause (post-conditions), and a Modifies
clause (frame conditions). Within the IVE, the developer can access
program state/verification conditions and solver interactions.
The Logika verification engine uses asynchronous communica-

tions between the plugin client and tool server. This enables a seam-
less, on-the-fly integration similar to static type checking analysis
usually offered by IDEs. Logika’s main usability features include
an as-you-type well-formedness analysis and verification of Slang
programs by sending the checking tasks to a background server
process, and visualizations of various helpful feedback propagated
from the server as responses of the verification requests.

Example: This section presents a small example that we use for
illustration.

Fig. 1. Temperature Control Example – AADL Graphical View

Figure 1 presents the AADL graphical view for a simple temper-
ature control system that maintains a temperature according to a
set point containing high and low bounds for the target tempera-
ture. The periodic tempSensor thread measures the temperature
and transmits the reading on its currentTemp data port. It sends
a notification on its tempChanged event port if it detects that the
temperature has changed since the last reading. When the sporadic
(event-driven) tempControl thread receives a tempChanged event,
it reads the value on its currentTemp data port and compares it with
the most recent set point. If the current temperature exceeds the
high set point or drops below the low set point, the fan is turned on
or off respectively. In turn, the fan acknowledges these commands.
Typical Workflow: Given a collection of system requirements,

AADL is used to develop a system architecture. As system require-
ments are refined to component-level requirements, the GCL is used
to formally specify behavioral properties on component interfaces
as well as system-level properties. Construction of the GCL specifi-
cations is interleaved with other AADL analyses for error modeling

, Vol. 1, No. 1, Article 1. Publication date: November 2022.

An AADL Contract Language Supporting Integrated Model- and Code-Level Verification • 1:3

(hazard analysis), timing and schedulability analysis, and informa-
tion flow analysis. Logika is used to verify compatibility of contracts
at composition points as well as system model properties. When the
architecture stabilizes, HAMR is used to generate the initial build
infrastructure, AADL run-time code, and application code skeletons
with model-level contracts translated down to code contracts. The
IVE supports development of the AADL thread components using
Slang, which also provides conventional unit and system testing.
Logika is applied to verify that thread implementation conform to
interface contracts. Verified Slang-based thread implementations
can be executed with the HAMR AADL run-time on the JVM or
translated to Javascript for simulation/visualization. As require-
ments and model-level GCL specifications change, HAMR can be
re-run to update application code skeletons and contracts while
preserving existing code. Slang implementations can be transpiled
to C and deployed on Linux or the seL4 microkernel (to support
strong spatial and temporal partitioning). The example used in this
paper was completed using this workflow and deployed on the JVM,
Javascript, Linux, and seL4. Similar HAMR workflows were used,
e.g., on the DARPA CASE program for mission control software for
military helicopters.

3 MODELING LANGUAGE ELEMENTS
There are four categories of contracts in the GCL: integration con-
straints, data invariants, entry point contracts, and state variables.
Space constraints do not permit a detailed explanation of each, but
important concepts of these categories are presented in Figure 2,
which we refer to in the subsequent sections.

Fig. 2. Categories of contracts and how they fit into infrastructure code.

Integration Constraints: Integration constraints are the most
simple conceptually and are likely the first to be used by engineers
in typical workflows. The purple blocks in the concept graphic
of Figure 2 indicate that each integration constraint pertains to a
single port and specifies properties that must hold for any value
passing through the port. They also enable engineers to specify
constraints on port values that must be satisfied when compo-
nents are integrated by connecting one port to another. The in-
tegration constraint shown below specifies a requirement on the
usage of the currentTemp input data port of the temperature con-
trol thread: for any sender component 𝑆 with output port 𝑝𝑜 that
is connected to (uses) the currentTemp port, the degrees field of
all Temperature.i values flowing into the port must lie within the

indicated range. TC-Assume-01 is a unique label within the declar-
ing component (TempControl) that is used for traceability. The
optional string "Current temperature range” provides a longer
human-readable description of the constraint that can be used in
reporting. The f32".." is the current syntax within our prototype
for specifying typed literals.2

integration
assume TC -Assume -01 "Current temperature range":

currentTemp.degrees >= f32" -70.0"
& currentTemp.degrees <= f32"180.0";

The listing below shows an integration constraint on the TempSensor
currentTemp output port. This specifies the valid operating tem-
perature range for the sensor.
integration

guarantee Sensor_Temperature_Range:
currentTemp.degrees >= f32" -50.0"
& currentTemp.degrees <= f32"150.0";

Intuitively, the integration of TempSensor to TempControl for the
respective currentTemp ports is valid (i.e., the connected output and
input ports are compatible) because any temperature value flowing
out of the TempSensor that satisfies the Sensor_Temperature_Range
constraint will satisfy the TempControl TC-Assume-01 constraints.

In the underlying verification framework, the connection of any
output port to input port gives rise to a verification obligation re-
quiring evidence that any value flowing from a connected output
port will satisfy any stated integration constraints on the input port.
From a work flow perspective, this can be understood as part of
the component integration activity. When the application logic of
components are coded and verified as part of the component develop-
ment activity, the verification framework requires evidence that all
values placed in the output port by the code satisfy the output port
integration constraints (i.e., guarantee). For input ports, the verifi-
cation activity can assume any value flowing in from a component
port will satisfy the integration constraints on the input port (since
this must be guaranteed in the component integration activity as
described above).

The concepts described above represent conventional “assume/guar-
antee” reasoning for component frameworks, and both AGREE and
BLESS have analogous concepts.We have adopted the syntactic style
of AGREE with the assume and guarantee keywords. For BLESS,
integration constraints are a restricted form of BLESS port asser-
tions. A key difference in the GCL is that integration constraints are
distinguished from entry point contracts that specify input/output
relationships – functional behavior of component implementations.
These distinct concepts are handled using the same syntactic form
in AGREE (assume/guarantee clauses) and BLESS (port assertions).
Our rationale for having them in separate syntactic categories is
explained in the discussion of entry point contracts.
Data Invariants: Requirements often specify invariants to en-

sure that data flowing through a system is well-formed — e.g., a
temperature cannot be less than absolute zero, a timestamp that
2Ideally, the expression syntax used in contracts would be aligned with the envisioned
AADL V3 expression language syntax. However, since the AADL V3 expression lan-
guage and type system has not been developed yet, for simplicity of implementation,
we have chosen to use Slang expressions and types in the contract grammar. Our
implementation pipeline is designed to easily change the front-end concrete syntax for
contracts as plans for the future of the AADL become more clear.

, Vol. 1, No. 1, Article 1. Publication date: November 2022.

1:4 • Hatcliff et al.

must be in 24-hour format. An invariant can also specify a well-
formedness condition on a composite data structure. To support
formal specification, what is needed in all these situations is the
ability to associate a constraint representing an invariant with a
datatype. The GCL supports the ability to add an invariant to any
user-defined type specified using the Data Modeling Annex, a con-
ventional notation in the AADL for defining data types.

The code snippet below shows a GCL invariant defined for the
SetPoint data type. Bounds are defined for the low and high tem-
perature values. Then a relational constraint specifies that the set
point degrees of low is always less than or equal to that of high.

data SetPoint
properties Data_Model::Data_Representation => Struct;

end SetPoint;
data implementation SetPoint.i

subcomponents
low: data TempSensor::Temperature.i;
high: data TempSensor::Temperature.i;

annex GUMBO {**
invariants

inv SetPoint_Data_Invariant:
(low.degrees >= f32"50.0") & (high.degrees <= f32"110.0")
& (low.degrees <= high.degrees);

**};
end SetPoint.i;

In the underlying verification framework, everywhere a data
value whose type has an associated invariant is passed or accessed,
the fact that the value satisfies the invariant can be accepted as a
premise. For this to be sound, at each point where a value of the
type is created or updated, there is a verification obligation to show
that the invariant holds. In relation to the other contract categories,
whereas an integration constraint applies to a specific port, a data
invariant on type 𝑇 is relevant for any port whose type uses or
includes type 𝑇 . As indicated by Figure 2, the effective constraints
on ports include both integration constraints and data invariants
associated with types on the ports. For any such input port, the
invariant can be assumed for values retrieved from the port; for any
such output port, there is a verification obligation to show that the
invariant holds before sending the data through the port.
AGREE and BLESS specification languages do not support the

notion of a data invariant on Data Model Annex specifications. How-
ever, it seems straightforward to add this useful feature both to the
specification languages and the underlying verification frameworks.
Entry Points Contracts: The AADL standard specifies that a

thread’s application code is organized into entry points as illustrated
in Figure 2. The Initialize entry point is called once during the
system’s initialization phase and the Compute entry point is called
repeatedly for the thread’s normal dispatching.3
In addition to reading from and writing to ports, the thread ap-

plication code may use local state variables whose values persist
between entry point executions to perform computations and save
previous port readings. Not every local state variable is relevant
for a component’s externally specified behavior. For those that are,
the GCL provides a declaration clause to make the variables avail-
able for reference in entry point contracts (center of Figure 2). For
example, a state variable currentFanState can be defined in the

3AADL includes other entry points for finalization, performing mode changes, etc.
These are not yet supported in HAMR code generation or our contract language.

tempControl thread to store the most recent command sent to the
fan:
state:

currentFanState: CoolingFan::FanCmd;
currentSetPoint: SetPoint.i;
latestTemp: TempSensor::Temperature.i;

A thread’s initialize entry point typically includes code to ini-
tialize thread local variables and to put initial values on output
ports. The listing below shows excerpts of a GCL contract for the
TempControl initialize entry point.
initialize

modifies currentSetPoint , currentFanState , latestTemp;
guarantee defaultSetPoint:

(currentSetPoint.low.degrees == f32"70.0") && (
currentSetPoint.high.degrees == f32"80.0");

...

A modifies clause is used to specify the variables that may be mod-
ified during entry point execution. A guarantee clause is used to
specify properties that a variable value must satisfy at the comple-
tion of the entry point (similar clauses for currentFanState and
latestTemp are omitted). In the contract for the TempSensor ini-
tialize entry point below, the value that the currentTemp output
port must have at the completion of the entry point is specified.
initialize

guarantee currentTempPortInitialVal:
currentTemp.degrees == f32"72.0";

Initialize entry point contracts cannot have assume clauses since
the purpose of the entry point is to initialize (no aspects of pre-state,
including input ports or variable values, are allowed to be read).
A periodic thread component’s compute entry point is invoked

at intervals corresponding to the thread’s declared period, whereas
a sporadic thread’s is invoked upon arrival of a message to event
or event data input ports.4 The GCL provides several contract vari-
ants for compute entry points. The most significant departure from
AGREE or BLESS is that sporadic threads may have clauses that
apply to all dispatches of the thread (i.e., they apply no matter
what event triggers a dispatch), and then additional clauses can
be added to specify behaviors that apply on the arrival of mes-
sages on specific ports. Excerpts from the TempControl compute
entry point contract illustrate two clauses that constrain the post-
state values of the thread’s latestTemp, currentSetPoint, and
currentFanState state variables regardless of whether the entry
point is triggered by the arrival of, e.g., the tempChanged event or
the setPoint message. (Note: in the listing below, the symbol ->:
is an implication.)
compute

modifies currentSetPoint , currentFanState , latestTemp;

guarantee TC_Req_01:
latestTemp.degrees < currentSetPoint.low.degrees

->: currentFanState == CoolingFan::FanCmd.Off;

guarantee TC_Req_02:
latestTemp.degrees > currentSetPoint.high.degrees

->: currentFanState == CoolingFan::FanCmd.On;
...

4An AADL model can be configured to allow exceptions to this general rule, but we
omit discussions of these special cases since they do not impact the design of our overall
approach.

, Vol. 1, No. 1, Article 1. Publication date: November 2022.

An AADL Contract Language Supporting Integrated Model- and Code-Level Verification • 1:5

Using the GCL’s handle clause, one can specify additional con-
straints that apply only when the thread is dispatched by the arrival
of an event on a particular port. The contract excerpt below specifies
that at the completion of the compute entry point when the thread
is dispatched due a tempChanged event, the latestTemp local vari-
able will be equal to the value of the currentTemp input data port
at the time of dispatch.

handle tempChanged:
modifies latestTemp;

guarantee tempChanged:
latestTemp == currentTemp;

The GCL also introduces a contract variant that supports case-
based reasoning. Consider a variant of the temperature control sys-
tem inwhich the TempControl thread is periodic with currentTemp
and setPoint input data ports and a fanCmd output data port.

compute
modifies latestFanCmd;
cases

case TC_Req_01:
assume currentTemp.degrees < setPoint.low.degrees;
guarantee (latestFanCmd == CoolingFan::FanCmd.Off)

& (fanCmd == CoolingFan::FanCmd.Off);
case TC_Req_02:

assume currentTemp.degrees > setPoint.high.degrees;
guarantee (latestFanCmd == CoolingFan::FanCmd.On)

& (fanCmd == CoolingFan::FanCmd.On);
...

The contract excerpt above uses the cases clauses to specify, e.g.,
that when the currentTemp is less than the low set point at the time
of dispatch, then at the completion of the entry point execution, the
state variable latestFanCmd and the output port fanCmd are Off.

In the underlying semantics, due to the AADL dispatch semantics
and notion of input port freezing, the compute entry point can be
understood as a function from port input values and local state vari-
ables to output port values and possibly updated local state variables.
Assume clauses place constraints on the input state, and guarantee
clauses state constraints on the output state, sometimes referencing
the input state. For example, guarantee clauses can reference the
input values of state variables using an In(<varName>) construct
as well as the values of input ports. The GCL entry point contracts
can also include invariant clauses for state variables that hold for
both initialize and compute entry points. Constructs are also avail-
able to reason about the absence or presence of events/messages on
event and event-data ports. There are several minor well-formedness
conditions that space constraints prevent us from enumerating com-
pletely. For example, assume clauses cannot appear in an Initialize
entry point contract because there is no valid pre-state to refer to
before the initialization occurs, and assume clauses cannot refer to
output ports.
The GCL entry point contract notation was designed to be simi-

lar to AGREE, however, GCL includes a number of new concepts.
AGREE was originally designed to support synchronous systems
whose foundations were expressed in Lustre, and thus it does not
have distinct initialize and compute contract forms aligned with
AADL standard’s entry point concepts. BLESS does not have dis-
tinct Initialize and Compute contracts due to its ties to behavioral
specifications written in the AADL Behavioral Annex, which does

not separate state machine behavior into separate entry points. The
convenience notation for cases is not present in AGREE or BLESS.

4 MODEL CONTRACTS TO CODE CONTRACTS

4.1 Code Generation Overview
A detailed overview of HAMR code generation and how code for
component application logic is integrated with HAMR’s AADL run-
time libraries is given in [12] (focusing on Slang code generation)
and [4] (focusing on C code generation).

For each thread component, HAMR generates code that provides
an execution context for a real-time task. This includes: (a) infrastruc-
ture code for linking application code to the platform’s underlying
scheduling framework, implementing storage associated with ports,
and realizing the semantics associated with event and event-data
ports, and (b) templates for developer-facing code including port
APIs. Representations of the GCL contracts are woven into code (b).

To support semantic consistency for code generation across mul-
tiple languages and platforms, HAMR generates code in stages. A
platform-independent implementation of the AADL Run-Time Ser-
vices (RTS) is generated. HAMR specifies the API and aspects of
RTS in Slang and then uses Slang extensions in Scala and C to imple-
ment platform-dependent aspects. As mentioned previously, there
are multiple supported back-end targets including seL4 and Linux.
For the work in this paper, we focus on Slang. The GCL con-

tracts are translated to Slang contracts, and Slang implementations
of thread component application logic are verified to conform to
the contracts. In addition to enabling verified Slang-based AADL
system implementations, HAMR can already translate formally ver-
ified Slang-based component implementations to C, yielding high-
assurance C-based deployments which can be compiled and exe-
cuted on the seL4 formally verified microkernel. We believe that
the same strategies that we use to inject representations of the GCL
contracts into Slang could be used to inject contracts into the gen-
erated C code, e.g., for verification using a tool like Frama-C [17].
This could be used to provide further assurance of the Slang-to-C
transpiler correctness. Alternatively, it can be used to support veri-
fication of HAMR systems in workflows that focused on writing C
application code directly instead of coding at the Slang level.
At the front-end of the translation pipeline, we have extended

the HAMR AADL Intermediate Representation (AIR) to include rep-
resentations of the GCL contracts. This JSON-based representation
enables us to support multiple modeling languages and environ-
ments. Currently, the GCL is implemented with full IDE support
(type-checking, error reporting, code completion, etc.) as a plug-
in for the AADL Eclipse-based Open Source AADL Tool Environ-
ment (OSATE) plug-in. Although the GCL is currently implemented
as an AADL annex, it is external to the HAMR framework itself,
and using the language-independent AIR gives us a mechanism to
support multiple modeling languages, e.g., SysMLv2.

4.2 Translated Contracts
Integration Constraints: According to the principles introduced
in Section 3, any value moving through a port must satisfy the inte-
gration constraints associated with the port. HAMR code generation
generates dedicated APIs for putting and getting values to/from each

, Vol. 1, No. 1, Article 1. Publication date: November 2022.

1:6 • Hatcliff et al.

port. Thus, a natural strategy for realizing integration constraints
at the code level is to add code contracts that: (a) require the value
to be placed in an output port satisfies the associated constraints
as pre-conditions to the put method, and (b) ensure the value to be
retrieved from an input port satisfies the associated constraints as
post-conditions.

For example, for the currentTemp input port in the TempControl
thread, HAMR auto-generates: (a) a Slang representation of the
predicate corresponding to the declared integration constraint, and
(b) a contract on the getAPI that guarantees that the value retrieved
satisfies the predicate.
// Auto -generated Slang predicate corresponding to
// currentTemp input port 's Integration Constraint
@strictpure def currentTemp_ICPred(x:TempSensor.Temperature_i): B =

-70.0f <= x.degrees & x.degrees <= 180.0f

// Auto -gen API for retrieving value from currentTemp input port
def get_currentTemp(): Option[TempSensor.Temperature_i] = {

Contract(
Ensures(currentTemp_ICPred(currentTemp),

Res == Some(currentTemp))
)
...(infrastructure code)...
return value

}

For the corresponding sender side in the TempSensor, an anal-
ogous predicate is generated for the output port integration con-
straint, and the put method uses that in a pre-condition to ensure
that all values placed on the port satisfy the constraint. Behind the
scenes, the translation introduces Logika spec variables to provide
a logical representation for the state of each port. Contract aspects
that operate on ports (including the get and putmethods above) use
special spec clauses to read and update the port state abstractions
during the flow of deductions in the verification.
// Auto -gen Slang predicate corresponding to
// currentTemp output port 's Integration Constraint
@strictpure def currentTemp_ICPred(x:TempSensor.Temperature_i): B =

x.degrees >= -50.0f & x.degrees <= 150.0f

// Auto -generated API for putting value on currentTemp output port
def put_currentTemp(value : TempSensor.Temperature_i) : Unit = {

Contract(
Requires(currentTemp_ICPred(value))

)
...(infrastructure code)...

}

A key concept in this strategy is that the API methods serve as
an abstraction for the underlying inter-component communication
(specified via the AADL run-time services [13]). Verifying that the
infrastructure code is correct is not the focus of the verification be-
ing presented here. Rather, when a HAMR back-end is developed for
a new platform, there is an obligation within the overall assurance
case to demonstrate that the platform implementation correctly
implements the AADL run-time communication services. This as-
surance effort is carried out once, and then each application built
using the platform relies on the previously developed assurance.
This allows component developers and system integrators to focus
on verifying that component implementations and their abstract
connections conform to component and system level requirements
(formalized in part, using the GCL contracts). We have other lines of
work on formalizing the semantics of the AADL run-time services,
establishing the conformance of platform implementations to those
semantics, establishing the soundness of the contract framework

verification conditions against the semantics, etc. Therefore, when
the contract verification framework is applied to a HAMR code base,
the implementations of the APIs presented above are not verified
against their contracts. Instead, the contracts are used in the check-
ing of client code (calls to the APIs) following the usual approach for
dealing with library methods in contract verification frameworks.
The verification framework applied to the client code verifies

that for calls to put methods, the argument (e.g., temp) satisfies the
precondition of put which is derived from the port’s integration
constraint.
api.put_currentTemp(temp)

Correspondingly, in the receiver client code of TempControl thread,
latestTemp = api.get_currentTemp().get // .get always succeeds
// latestTemp inherits constraint assumptions
// from currentTemp port integration constraints

the return value from the get inherits constraints on the input
currentTemp port based on the get post-condition (i.e.,
-70.0f <= tempControl.degrees and tempControl.degrees <= 180.0f).

To verify the compatibility of integration constraints of connected
ports, a Slang script is generated that uses Slang proof constructs to
establish the associated entailment. For example, for the connection
above, the following script fragment states the desired integration
property: for all values v of type Temperature_i, v satisfies integra-
tion constraint of the receiving port, under the assumption that it
satisfies the integration constraint of the sending port. These proof
scripts are verified by Logika “behind the scenes”. More compli-
cated forms of scripts are generated to reflect the composition of
component entry points within a particular scheduling regime.
// tempSensor.currentTemp --> tempControl.currentTemp
@pure def SensorCurrentTemp_TempControlCurrentTemp(

v: Temperature_i): Unit = {
Deduce(TempSensor_i_Api.currentTemp_ICPred(v) |-

TempControl_i_Api.currentTemp_ICPred(v))
}

Data Invariants: HAMR translates each model-level datatype
defined according to the AADL Data Model Annex into a Slang
datatype. GCL datatype invariants are automatically translated to
corresponding Slang datatypes using Slang’s type invariant mecha-
nism.
@datatype class SetPoint_i(val low: TempSensor.Temperature_i ,

val high: TempSensor.Temperature_i) {
// Slang datatype invariant
@spec def SetPoint_Data_Invariant = Invariant(

low.degrees >= 50.0f & high.degrees <= 110.0f &
low.degrees <= high.degrees) }

Slang @datatype structures are immutable, and compiler optimiza-
tions allow them to be used efficiently for embedded code. In the
Logika framework, each time the datatype constructor is used, there
is a verification obligation to show that the supplied fields satisfy
the invariant. Whenever the datatype is used, the verification frame-
work can safely assume that the invariant holds. This achieves the
GCL model-level semantics for datatype invariants.
Entry Point Contracts: Local state variables, state variable in-

variants, and all entry point contracts are automatically inserted into
the thread component application code. Due to space constraints,
we show only excerpts of the contract for the tempChanged handler
of the TempControl thread.

, Vol. 1, No. 1, Article 1. Publication date: November 2022.

An AADL Contract Language Supporting Integrated Model- and Code-Level Verification • 1:7

def handle_tempChanged(api: TempControl_s_Operational_Api): Unit =
{

Contract(
Modifies(

// BEGIN COMPUTE MODIFIES tempChanged
currentSetPoint , currentFanState , latestTemp ,
// END COMPUTE MODIFIES tempChanged

),
Ensures(

// BEGIN COMPUTE ENSURES tempChanged
// guarantee TC_Req_01
(latestTemp.degrees < currentSetPoint.low.degrees)

->: (currentFanState == CoolingFan.FanCmd.Off),
// guarantee TC_Req_02
(latestTemp.degrees > currentSetPoint.high.degrees)

->: (currentFanState == CoolingFan.FanCmd.On),
...

latestTemp == api.currentTemp
// END COMPUTE ENSURES tempChanged

)
)
...(user -supplied application logic)...

}

For sporadic threads, the HAMR structure for the Compute entry
point is a collection of event handlers. The listing above shows that
the GCL handler-independent TempControl compute modifies
declarations and guarantees are injected directly into the Slang
handle_method. Then the handler-specific constraint on latestTemp
is added as appropriate for this handler. This last clause constrains
the latestTemp state variable in the post-state to be equal to the
Logika spec variable api.currentTemp representing the abstract
state of the currentTemp input data port. There is an implicit con-
junction for the Ensures clauses.

Contract Weaving: As the model goes through iterations of de-
velopment, HAMR supports this by partial code-regeneration. One
may regenerate into the same directory and HAMR will only make
the changes in the code reflecting changes in the model and con-
tracts. To avoid overwriting developer code upon contract changes
at the model level, HAMR inserts comments to indicate where con-
tracts begin and end (e.g., // BEGIN INITIALIZES MODIFIES).
When code is regenerated, HAMR will parse the target code file,
locate markers indicating contract blocks, and weave in updated
contracts within the delimited regions. This supports iterative model
and code development without the cost of overwriting developer-
added application code in the thread implementations.

Code-level Verification: For our example system, Logika is able
to verify that the Slang code for the thread entry points conforms to
the contracts (including data invariants, etc.) in just a few seconds.

Figure 3 shows the code for the tempControl thread Initialize en-
try point and associated IVE verification annotations. The developer
has filled in the implementation code, and the auto-generated con-
tracts for the example are verified as evidenced by the Logika Verified
banner at the bottom right of the figure. Logika incremental check-
ing provides on-the-fly verification response as code is typed/edited.
These capabilities were demonstrated in a video presentation (e.g.,
that shows checking of systems using a served-based parallelized
checking using an 80-core server) at an industrial engagement event
in January 2022 5. In addition to the example discussed in this paper,
we have specified and verified contracts for a simple Isolette infant
incubator medical device control system as well as high-integrity-
oriented system components including voter-based sensor banks.

5Video available at https://bit.ly/tccoe22-logika

Fig. 3. Slang implementation of Initialize entry point code in Logika IVE

5 RELATED WORK
The most closely related works are the AGREE and BLESS AADL
contract frameworks. AGREE originally targeted AADL models that
emphasized dataflow with synchronous communication based on
Lustre as an underlying computational model. Thus, AGREE most
naturally handles thread components with data ports and with tim-
ing and state aspects aligned with Lustre. Component behaviors
can be specified using equations relating inputs to outputs as well
as more complex behaviors based on Lustre-inspired “node” blocks.
Model-level verification is supported by the JKind model-checking
framework, with the most common notions of verification being
compatibility of guarantee/assume clauses on port connections, con-
formance of composed contracts on networks of sub-components to
contracts on an enclosing component and verification of composed
component behavior against equation-oriented property specifi-
cations. Recently AGREE has added support for events and static
scheduling (similar to the strategy that we use, as needed to support
seL4). In addition, “fold”-operations were added to support pro-
cessing of inductively defined data types. AGREE specification and
checking is supported by an OSATE plug-in that includes detailed
reporting of verification status of claims and counter-examples.
All fixed-width data types in AGREE are currently approximated
using unbounded integers and reals. AGREE has had a strong influ-
ence within the AADL community, particularly in getting industrial
users to understand the benefits of assume/guarantee specifications
for component interfaces and the usefulness of automated formal
methods. In our language design, we try to maintain these qualities
while shifting the focus from the dataflow paradigm to the gen-
eral tasking/communication primitives of AADL and to supporting
integrated code level checking.
The BLESS contract language focuses on AADL thread compo-

nents whose implementations are defined using an extension of
AADL’s Behavior Annex (BA) state transition notation. Typical
verification activities include: (a) proving that a BLESS transition
system for a thread (perhaps annotated with assertions) conforms

, Vol. 1, No. 1, Article 1. Publication date: November 2022.

https://bit.ly/tccoe22-logika

1:8 • Hatcliff et al.

to its interface specification, and (b) proving that the composition
of thread components satisfies end-to-end system properties. The
BLESS OSATE plug-in supports editing of BLESS artifacts and co-
ordination of verification activities. BLESS emphasizes a custom-
built manual proof framework. Verification conditions are generated
from interface specifications and transition systems, and then BLESS
proof scripts apply proof rules to discharge the verification condi-
tions. Building proof scripts requires significant additional effort on
the part of developers compared with AGREE, but this approach
supports more expressive specifications, verification of stronger
properties, and detailed auditable evidence of property satisfaction.
The more expressive specifications include rich notions of timing.
Due to the ties to the AADL BA, compared to AGREE, BLESS more
naturally supports AADL notions of event-based communication
and complex event-oriented dispatch conditions. BLESS has been
used to verify properties of complex embedded systems including
pacemakers [21] and PCA infusion pumps [14]. GCL is less expres-
sive than BLESS with respect to timing. In our language design,
we have adopted many of BLESS’s general verification condition
principles and deductive structuring while emphasizing verification
automation using automated solvers (using Slang manual proof
steps only as necessary to help the automated solvers), and direct in-
tegration with source code verification and notions of AADL entry
points.

6 CONCLUSION
We have presented a contract language for the AADL that supports
integrated component contract specification and verification at both
model and code levels. The model-to-code contract translation has
been validated via an implementation within an industrial-relevant
code generation framework. The feasibility of the verification strat-
egy has been validated using Logika contract checking for the Slang
high-integrity language.
Our contract language design builds on concepts from earlier

AADL contract languages (AGREE and BLESS) and suggests di-
rections for more closely aligning with code generation concepts
called out in the AADL standard and AADL run-time service seman-
tics [13]. While we have illustrated code-level concepts using Slang
and Logika, we believe these same principles can be supported by
other code-level verification frameworks that have been used in
conjunction with AADL such as SPARK Ada [7] and Frama-C [17].

There are some limitations to our current implementation. First,
the approach for entry point composition and end-to-end reasoning
is specialized for the static scheduling approach [4] used in our
most recent industrial project that emphasized system implementa-
tions for the seL4 verified microkernel. Second, the constructs for
reasoning about AADL’s event and event data ports apply to ports
with buffer size one. While this aligns with buffer restrictions found
from HAMR and other AADL code generation frameworks [22],
moving beyond this restriction will broaden the applicability of
the contracts to richer event-based systems that build on widely-
used message-oriented middleware frameworks. We also hope to
add greater support for timing-related specifications, aligned with
AADL’s standard timing properties and associated real-time sched-
uling frameworks [10].

Acknowledgments: The authors wish to thank Todd Carpenter
for his valuable inputs on this research project and other GUMBO
teammembers from Adventium Labs for the feedback they provided
on the toolset.

REFERENCES
[1] 2015. seL4 Microkernel. sel4.systems/.
[2] Haniel Barbosa, Clark Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt,

Makai Mann, Abdalrhman Mohamed, Mudathir Mohamed, Aina Niemetz, Andres
Nötzli, et al. 2022. cvc5: a versatile and industrial-strength SMT solver. In Inter-
national Conference on Tools and Algorithms for the Construction and Analysis of
Systems. Springer, 415–442.

[3] Clark Barrett, Christopher L Conway, Morgan Deters, Liana Hadarean, Dejan
Jovanović, Tim King, Andrew Reynolds, and Cesare Tinelli. 2011. Cvc4. In Inter-
national Conference on Computer Aided Verification. Springer, 171–177.

[4] Jason Belt, John Hatcliff, Robby, John Shackleton, Jim Carciofini, Todd Carpenter,
Eric Mercer, Isaac Amundson, Junaid Babar, Darren Cofer, David Hardin, Karl
Hoech, Konrad Slind, Ihor Kuz, and Kent Mcleod. 2022. Model-Driven Develop-
ment for the seL4 Microkernel Using the HAMR Framework. Journal of Systems
Architecture (2022), (to appear).

[5] SAE AS5506 Rev. C. 2017. Architecture Analysis and Design Language (AADL).
[6] Fabien Cadoret, Etienne Borde, Sébastien Gardoll, and Laurent Pautet. 2012. De-

sign patterns for rule-based refinement of safety critical embedded systemsmodels.
In 2012 IEEE 17th International Conference on Engineering of Complex Computer
Systems. IEEE, 67–76.

[7] Bernard Carré and Jonathan Garnsworthy. 1990. SPARK—an annotated Ada subset
for safety-critical programming. In Proceedings of the conference on TRI-ADA’90.
392–402.

[8] Darren D. Cofer, Andrew Gacek, Steven P. Miller, Michael W. Whalen, Brian
LaValley, and Lui Sha. 2012. Compositional Verification of Architectural Models.
In Proceedings of the 4th NASA Formal Methods Symposium (NFM 2012) (Norfolk,
VA, USA), Alwyn E. Goodloe and Suzette Person (Eds.), Vol. 7226. Springer-Verlag,
Berlin, Heidelberg, 126–140.

[9] Sylvain Conchon, Albin Coquereau, Mohamed Iguernlala, and Alain Mebsout.
2018. Alt-Ergo 2.2. In SMT Workshop: International Workshop on Satisfiability
Modulo Theories.

[10] Rob Edman, Hazel Shackleton, John Shackleton, Tyler Smith, and Steve Vestal.
2015. A Framework for Compositional Timing Analysis of Embedded Computer
Systems. In IEEE International Conference on Embedded Software and Systems
(Newark, NJ).

[11] Peter H Feiler and David P Gluch. 2013. Model-Based Engineering with AADL: An
Introduction to the SAE Architecture Analysis & Design Language. Addison-Wesley.
xx + 468 pages.

[12] John Hatcliff, Jason Belt, Robby, and Todd Carpenter. 2021. HAMR: An AADL
Multi-platform Code Generation Toolset. In Leveraging Applications of Formal
Methods, Verification and Validation - 10th International Symposium on Leverag-
ing Applications of Formal Methods, ISoLA 2021, Rhodes, Greece, October 17-29,
2021, Proceedings (Lecture Notes in Computer Science, Vol. 13036), Tiziana Mar-
garia and Bernhard Steffen (Eds.). Springer, 274–295. https://doi.org/10.1007/
978-3-030-89159-6_18

[13] John Hatcliff, Jerome Hugues, Danielle Stewart, and Lutz Wrage. 2022. Formal-
ization of the AADL Run-Time Services. In Leveraging Applications of Formal
Methods, Verification and Validation - 11th International Symposium on Leveraging
Applications of Formal Methods, ISoLA 2022, Rhodes, Greece (To Appear).

[14] John Hatcliff, Brian R. Larson, Todd Carpenter, Paul L. Jones, Yi Zhang, and Joseph
Jorgens. 2019. The open PCA pump project: an exemplar open source medical
device as a community resource. SIGBED Rev. 16, 2 (2019), 8–13.

[15] John Hatcliff, Gary T. Leavens, K. Rustan M. Leino, Peter Müller, and Matthew J.
Parkinson. 2012. Behavioral interface specification languages. ACM Comput. Surv.
44, 3 (2012), 16:1–16:58.

[16] Duc Hoang, Yannick Moy, Angela Wallenburg, and Roderick Chapman. 2015.
SPARK 2014 and GNATprove. International Journal on Software Tools for Technol-
ogy Transfer 17, 6 (2015).

[17] Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and Boris
Yakobowski. 2015. Frama-C, A Software Analysis Perspective. Formal Aspects of
Computing 27, 3 (2015).

[18] SAnToS Laboratory. 2022. GCL case studies. https://github.com/santoslab/
hilt22-case-studies/.

[19] SAnToS Laboratory. 2022. HAMR Project Website. https://hamr.sireum.org.
[20] SAnToS Laboratory. 2022. Sireum Logika. https://logika.v3.sireum.org/index.

html.
[21] Brian Larson, Patrice Chalin, and John Hatcliff. 2013. BLESS: Formal Specification

and Verification of Behaviors for Embedded Systems with Software. In Proceedings
of the 2013 NASA Formal Methods Conference (Lecture Notes in Computer Science,

, Vol. 1, No. 1, Article 1. Publication date: November 2022.

sel4.systems/
https://doi.org/10.1007/978-3-030-89159-6_18
https://doi.org/10.1007/978-3-030-89159-6_18
https://github.com/santoslab/hilt22-case-studies/
https://github.com/santoslab/hilt22-case-studies/
https://hamr.sireum.org
https://logika.v3.sireum.org/index.html
https://logika.v3.sireum.org/index.html

An AADL Contract Language Supporting Integrated Model- and Code-Level Verification • 1:9

Vol. 7871). Springer-Verlag, Berlin Heidelberg, 276–290.
[22] Gilles Lasnier, Bechir Zalila, Laurent Pautet, and JéromeHugues. 2009. Ocarina: An

environment for AADL models analysis and automatic code generation for high
integrity applications. In International Conference on Reliable Software Technologies.
Springer, 237–250.

[23] Xavier Leroy, Sandrine Blazy, Daniel Kästner, Bernhard Schommer, Markus Pister,
and Christian Ferdinand. 2016. CompCert-a formally verified optimizing compiler.
In ERTS 2016: Embedded Real Time Software and Systems, 8th European Congress.

[24] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In
International conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 337–340.

[25] Robby and John Hatcliff. 2021. Slang: The Sireum Programming Language. In
International Symposium on Leveraging Applications of Formal Methods. Springer,
253–273.

, Vol. 1, No. 1, Article 1. Publication date: November 2022.

	Abstract
	1 Introduction
	2 Background Concepts
	3 Modeling Language Elements
	4 Model Contracts to Code Contracts
	4.1 Code Generation Overview
	4.2 Translated Contracts

	5 Related Work
	6 Conclusion
	References

