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Abstract. The Architecture and Analysis Definition Language (AADL)
is an industry standard modeling language distinguished by its empha-
sis on strong semantics for modeling real-time embedded systems. These
features have led to AADL being used in many formal-methods-oriented
projects addressing critical systems. With regard to future directions
in programming and systems engineering in general, questions naturally
arise regarding how modeling language definitions should be documented
so that the meaning of modeled systems can be made clear to all stake-
holders. For example, the AADL standard describes Run-Time Services
(RTS) that code generation frameworks can implement to realize AADL’s
standards-based semantics for thread dispatch and port-based commu-
nication. The documentation of these semantics in the AADL standard
is semi-formal, allowing for divergent interpretations and thus contradic-
tions when implementing analysis or code generation capabilities.
In this paper, we illustrate how key semantic elements of the AADL stan-
dard may be documented via a rule-based formalization of key aspects
of the AADL RTS as well as additional services and support functions
for realistic, interoperable, and assurable implementations. This contri-
bution provides a basis for (a) a more rigorous semantic presentation
in upcoming versions of the standard, (b) a common approach to assess
compliance of AADL code generation and analysis tools, (c) a founda-
tion for further formalization and mechanization of AADL’s semantics,
and (d) a more intuitive documentation of a system’s AADL description
via simulation and automatically generated execution scenarios.

1 Introduction

Model-based development tools are increasingly being used for system-level de-
velopment of safety critical systems. The quality of model-based development
depends greatly on the modeling language and its semantics. Models developed
in languages with well-defined semantics can be a more faithful abstraction of
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deployed systems, if the analysis correctly reflects the semantics and the system
as implemented likewise reflects the semantics. Futhermore, having a rigorous
semantics reduces the risk of misinterpretation when processing a model: anal-
ysis or code generation capabilities will deliver comparable results and can be
composed with confidence.

AADL, the Architecture Analysis and Design Language [15], has histori-
cally been distinguished from other standardized modeling languages by having
a semantics that precisely describe the architecture of safety-critical embedded
systems. This definition for a focused semantics has motivated the use of AADL
on multiple large scale industrial research projects, especially those that em-
phasize formal methods [11, 21, 30, 33, 38]. In AADL, component categories and
other model elements have a comprehensive descriptions of intent and associ-
ated properties, which provides consistent definitions across models designed by
different developers and supports early cross-vendor integration.

An important aspect of AADL’s current standard definition is the inclusion
of Run-Time Services (RTS). From an implementation view, the RTS are meant
to be implemented as library functions in an AADL run-time that realize key ac-
tions of the infrastructure, including communication over ports and dispatching
of threads. RTS aim to (a) hide the details of specific RTOS and communication
substrates (e.g., middleware) and (b) provide AADL-aligned system implemen-
tations with canonical platform-independent actions that realize key steps in the
integration and coordination of component application logic. From a semantics
perspective, the RTS can be seen as basic operations in an abstract machine
realizing the AADL run-time. In the current standard, RTS are presented in a
highly descriptive narrative with suggestive notation for the type signature of
the services, e.g., how they may be represented in code [23].

There are three main challenges with regard to RTS. First, there are no
formal semantics for the services: the standard provides only an incomplete cap-
ture of run-time actions into standardized services. Second, the RTS are not
sufficiently described to allow for a portable Application Programming Inter-
face (API) to be derived. Third, AADL is highly configurable and the RTS
are meant to support multiple computational models (e.g., synchronous, asyn-
chronous, with configuration of details to support different application policies).
Thus, existing formalisms cannot be used directly to support the general intent
of the RTS. Previous work has formalized subsets of AADL [6] and other work
has transformed AADL into formal languages for specific computational mod-
els [16, 37], but to our knowledge, a formalization of the general RTS semantics
of AADL has never been defined.

We believe that appropriately documenting the semantics of the AADL RTS
is an important step to meeting the challenges above. While one typically thinks
of documentation as it applies to a specific model or program, in our setting,
documentation is needed at the meta-level, i.e., for the definition of the model-
ing language. We argue in Section 3 that, with the future of programming being
increasingly supported by modeling and meta-programming, arriving at effec-
tive solutions for documentation at different meta-levels of the programming
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framework is important for grounding the next generation of programming en-
vironments. Formally specifying the semantics of a modeling language is not a
new idea. Rather, our contribution is to tackle the challenges of documenting key
aspects of a modeling language that is being used for rigorous industry model-
driven development in a manner that can support evolution of the modeling
language standard and associated ecosystem. The main benefit of the work is to
begin to fill a gap that, once closed, can provide a much more solid foundation
for a community that is already invested in rigorous system engineering with
AADL.

The contributions of this paper are as follows.

• Formalize the primary notions of thread state and communication state
within an AADL system. These notions provide the foundation of conformity
assessment by specifying what portions of a executing system’s state must
be documented for traceability to definitions within the AADL standard and
observed for conformance testing based on execution traces.

• Develop rule-based formal documentation of the AADL standard’s run-time
services, providing a basis for soundness of AADL analysis and verifica-
tion and the ability to develop conformity assessment for AADL run-time
libraries.

• Identify additional run-time services and support functions needed to fill
gaps in the current AADL standard.

Combined together, our goal is to provide an initial proposal for a formal
documentation of services for AADL RTS for upcoming major revisions to the
AADL standard. Expansion of this formalization can serve as a specification for
establishing the correctness of AADL analyses and code generation. Our formal-
ization aims to support the general nature of the AADL RTS and to provide a
foundation for creating specialized semantic definitions for particular models of
computation or platforms. From an implementation view, this provides a means
by which implementers that optimize communication pathways or thread man-
agement can justify executions in their context to be sound refinements of the
standardized general notions.

It is important that a proposal for aspects of a standardized AADL run-time
be based on significant implementation experience with multiple code gener-
ation approaches, multiple languages, and multiple target platforms. The for-
malization presented here is informed by significant experience with the Oca-
rina and HAMR code generation frameworks. These frameworks have been used
on industry and military research projects, target multiple real-time embedded
platforms, and support multiple programming languages including C, Ada [3],
Ada/Spark2014 [9], and Slang [19]. This work is supported by a technical re-
port [18] that provides expanded treatment of semantics rules and examples.

We start with a background description of AADL in Section 2, This is fol-
lowed by a summary of potential stakeholders of our proposed documentation
and potential impact within the AADL ecosystem. Next, we summarize impor-
tant concepts of run-time services in Section 4. Section 5 provides the static
model definitions, and Sections 6, 7, 8 describe run-time services and semantics,
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and Section 9 illustrates these with examples. Section 10 presents related work,
and Section 11 concludes.

2 AADL Background

SAE International standard AS5506C [23] defines the AADL core language for
expressing the structure of embedded, real-time systems via definitions of com-
ponents, their interfaces, and their communication.

AADL provides a precise, tool-independent, and standardized modeling vo-
cabulary of common embedded software and hardware elements using a component-
based approach. Components have a category that defines a standard interpreta-
tion. Categories include software (e.g., threads, processes), hardware (e.g., pro-
cessor, bus), and system (interacting hardware and software). Each category also
has a distinct set of standardized properties that can be used to configure the
specific component’s semantics for various aspects: timing, resources, etc.

Fig. 1. Temperature Control Example (excerpts) – AADL Graphical View

Figure 1 presents a portion of the AADL standard graphical view for a simple
thermostat that maintains a temperature according to a set point structure.
The system (not shown) contains a process called tempControlProcess. This
process consists of three threads: tempSensor, tempControl, and fan, shown
in the figure from left to right. The data passed from one thread to another
is done through the use of ports. Each port can be classified as an event port
(e.g., to model interrupt signals or other notification-oriented messages without
payloads), a data port (e.g. modeling shared memory between components or
distributed memory services where an update to a distributed memory cell is
automatically propagated to other components that declare access to the cell),
or an event data port (e.g., to model asynchronous messages with payloads, such
as in publish-subscribe frameworks). Inputs to event and event data ports are
buffered. The buffer sizes and overflow policies can be configured per port using
standardizes AADL properties. Inputs to data ports are not buffered; newly
arriving data overwrites the previous value.

The periodic tempSensor thread measures the current temperature, e.g.,
from memory-mapped IO, which is not shown in the diagram, and transmits
the reading on its currentTemp data port. If it detects that the temperature
has changed since the last reading, then it sends a notification to the sporadic
(event driven) tempControl thread on its tempChanged event port. When the
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tempControl thread receives a tempChanged event, it will read the value on its
currentTemp data port and compare with the most recent set points. If the
current temperature exceeds the high set point, it sends a command to the fan

thread to turn on. Similarly, if the current temperature is low, it will send an
off fan command. In either case, fan acknowledges whether it was able to fulfill
the command by sending user-defined data types FanAck.Ok or FanAck.Error

on its fanAck event data port.
AADL provides a textual view to accompany the graphical view. The fol-

lowing listing illustrates the component type declaration for the tempControl

thread for the example above. The data transmitted over ports are of specific
types, and properties such as Dispatch Protocol and Period configure the
tasking semantics of the thread.

thread TempControl
features
currentTemp: in data port TempSensor::Temperature.i;
tempChanged: in event port;
fanAck: in event data port CoolingFan::FanAck;
setPoint: in event data port SetPoint.i;
fanCmd: out event data port CoolingFan::FanCmd;

properties
Dispatch_Protocol => Sporadic;
Period => 500 ms; -- the min sep between incoming msgs

end TempControl;

The next listing illustrates how architectural hierarchy is realized as an in-
tegration of subcomponents. The body of TempControlProcess type has no
declared features because the component does not interact with its context in
this simplified example. TempControlProcess implementation specifies subcom-
ponents and subcomponent communications over declared connections between
ports.

process TempControlProcess
-- no features; no interaction with context

end TempControlProcess;

process implementation TempControlProcess.i
subcomponents
tempSensor : thread TempSensor::TempSensor.i;
fan : thread CoolingFan::Fan.i;
tempControl: thread TempControl.i;
operatorInterface: thread OperatorInterface.i;

connections
c1:port tempSensor.currentTemp -> tempControl.currentTemp;
c2:port tempSensor.tempChanged -> tempControl.tempChanged;
c3:port tempControl.fanCmd -> fan.fanCmd;
c4:port fan.fanAck -> tempControl.fanAck;
end TempControlProcess.i;

AADL provides many standard properties, and allows definition of new prop-
erties. Examples of standard properties configure the core semantics of AADL,
e.g., thread dispatching or port-based communication. User-specified property
sets enable one to define project-specific configuration parameters.

In this paper, we limit our semantics presentation to thread components
since almost all of AADL’s run-time services are associated with threads and
port-based communication. Other categories will be treated in later work.
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3 AADL Semantic Documentation Impact

In code-centric development, when there is a semantics-related question (“what’s
the behavior of this section of code?” or “what’s the behavior of this language
construct?”), the relevant code/construct can be executed and tested against
expected results. While this approach may have its limitations (multiple com-
pilers/interpreters may implement different semantics), it is generally effective
in practice for the typical end user.

With a modeling language, the ability to understand semantics through ex-
perimentation seems less direct. Often modeling notations (at least the ones that
we are considering for AADL) cannot be directly executed. Moreover, due to the
intent to use modeling early in an incremental development process, models are
often incomplete or partially developed. There is the possibility of understanding
the semantics through generating code from the model or using a model simula-
tor. However, for AADL and related modeling languages like SysML, there are
currently no “reference implementations” of code generators or simulators. In
addition, AADL is designed to be used with multiple languages, multiple RTOS,
multiple middleware, etc. Therefore, a further challenge is to specify some por-
tions of the semantic behavior as required or canonical, while at the same time
admitting variations in behavior between platforms in a controlled way.

Accordingly, our long-term goal with this work is to provide a programming
language-independent, RTOS-independent, middleware-independent formal doc-
umentation of semantic behavior. The formal description should then be refin-
able to describe lower-level variations of behavior and optimizations for different
platforms. As refinements are developed, there must be a means to demonstrate
conformity of implementations to refined semantic descriptions and of refined
descriptions to the canonical (top-level) reference semantics. Since one of the
objectives of AADL is to enable model analysis and verification, there is a need
in the conformity assessment, tool qualification, and standardization contexts to
precisely specify (a) soundness of verification and analysis tools, (b) the extent
to which soundness of these tools is maintained in the presence of refinements
to various platforms, (c) the specific situations (particular modeling features
used, particular platform implementation strategies) in which tool soundness
cannot be guaranteed. All of this complexity suggests that a mechanization of
the semantic framework will be required to be able to appropriately manage the
concerns and provide appropriate levels of assurance.

In this paper, our goals are to lay out some of the key concerns and provide
an illustration of some of the most important aspects of the semantics. In ongo-
ing work, we are pursuing a mechanization in Coq of the rules presented here,
along with the broader coordination aspects of AADL. In some sense, a formal
semantics lies at extreme end of the spectrum of documentation. Nevertheless,
it seems crucial to enabling the next generation of model-based “programming”
and system development.

In this section, we summarize the stakeholders for the semantic documen-
tation presented in this paper, along with anticipated impact and connections
within the AADL ecosystem.
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3.1 Stakeholders

Modelers/System Engineers – the end users of the modeling language:
End users often have questions about the intended execution semantics of AADL-
based systems. For example, questions often arise about the semantics of port-
based communication (e.g., exactly when are values available to read on input
ports?, do unread values in input buffers carry over from one dispatch to an-
other?, what is the ordering of values in an input buffer in the presence of
multiple senders to the associated input port?, etc.) and threading (what should
the structure of the application code be within a thread? when and how does
thread application get executed?). These types of questions are addressed in the
standard through informal textual descriptions that are distributed throughout
different sections. Our aim is to develop more rigorous formal documentation
that can be presented at one place in the standard, then referenced and assessed
throughout. An example-based document that illustrates traces of threads, com-
munication, and system composition in terms of the semantics rules (e.g., as
presented in Section 9) may also be helpful.
Analysis/Verification Tool Providers: As mentioned above, one of the key
objectives of AADL is to enable analyzeable models. There are many differ-
ent forms of AADL analysis. Some of the most mature analysis areas include
scheduling and timing analysis, information flow analysis, assume/guarantee con-
tract specification and verification, and fault modeling and hazard analysis. To
provide sound results, analysis and verification tools need to have a clear and
unambigous specification of the aspects of the modeling language semantics.
For example, information flow analysis needs to understand precisely how in-
formation flows between components and how information is propagated from
component inputs to component outputs. For this area, even basic questions
such as “is there an implicit acknowledgement of successful communication from
a receiving component to a sending component” affects whether or not a po-
tential “backflow” of information should be reported by the analysis. Current
versions of AADL contract languages such as AGREE [12] and BLESS [26],
make different assumptions about the behavior of component inputs outputs.
Providing canonical documentation (as begun in Section 6) of the input/output
behavior of components, structure of application code and infrastructure code,
and the semantics of component composition is essential for reconciling the dif-
ferences between these current verification frameworks and for establishing their
soundness as needed for assurance in current industrial projects. Regarding haz-
ard analysis in AADL’s Error Modeling framework [22, 25], there is a need to
clearly understand the nominal behavior of modeled systems to be able to clearly
delineate and categorize faulty behavior.
Code Generation Tool Providers: Having clear, unambigous documentation
of threading and communication behavior is essential for AADL code generation
tools such as [7,17,27]. In fact, the original motivation of this work was to docu-
ment the semantics of a set of APIs for AADL RTS that could be implemented
in each of the code generation tools above. Work on verified compilers and code
generators for modeling languages has demonstrated the feasibility of proving
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the correctness of realistic code generation frameworks. To ensure that model-
driven development strategies, which represent an emerging approach for next
generation system development, can be inserted into tool chains for certified crit-
ical systems, a clear documentation of intended semantics that can also support
conformity assessment is needed. A challenging aspect for AADL is that we must
eventually support, not a single semantics, but rather a family of semantics that
can be configured by AADL model property annotations.

3.2 AADL Ecosystem Synchronization

In addition to supporting the stakeholders above, behavioral documentation is
needed to establish consistency across different aspects of the AADL standard
itself. For example, AADL includes a Behavior Annex (BA) that provides a
state-machine-based formalism for specifying thread behaviors. The semantics
of BA needs to be aligned with the semantics of AADL entry points and port-
based communication as presented in Section 6. AADL presents a variety of
timing-related properties that are utilized by latency analysis and scheduling
tools. Those timing properties need to be mapped onto documented behavioral
semantics so as to eventually be reflected directly in abstract communication
traces of the kind presented in Section 9. We have already discussed above the
need to align AADL’s Error Modeling framework with a documented semantics.
In summary, work on the AADL standard itself as well as similar work in, e.g,
the SysML community, can be made much more rigorous by exploring effective
strategies for documenting system modeling language semantics.

4 Concepts

In this section, we enhance the presentation in the current AADL standard by
describing the overall relationship between the AADL RTS, thread component
code organization, and AADL communication infrastructure. Many of AADL’s
thread execution concepts are based on long-established task patterns and prin-
ciples for achieving analyzeable real-time systems [8]. Following these principles,
at each activation of a thread, the application code of the thread will abstractly
compute a function from its input port values and local variables to output
port values while possibly updating its local variables. In the general case, an
AADL thread may explictly call the RTS to receive new inputs at any point
in its execution. Yet, this would break the atomicity of a dispatch execution.
We explictly forbid this in our formalization as this would introduce unsoundess
in many AADL analyses and contract languages [12, 26]. Furthermore, this ca-
pability is barely used in practice. In AADL terminology, dispatching a thread
refers to the thread becoming ready for execution from a OS scheduler perspec-
tive. The thread Dispatch Protocol property selects among several strategies
for determining when a thread should be dispatched. In this paper, we con-
sider only Periodic, which dispatches a thread when a certain time interval is
passed, and Sporadic, which dispatches a thread upon arrival of messages to
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Fig. 2. Thread and Port State Concepts

input ports specified as dispatch triggers. When a thread is dispatched, informa-
tion describing the reason for its dispatch is stored in the thread’s state and is
retrievable via the Dispatch Status RTS. For example, in a sporadic compo-
nent, Dispatch Status returns information indicating which port triggered the
dispatch. This may be used in either the component application or infrastructure
code to branch to a message handler method dedicated to processing messages
arriving on the particular port.

Figure 2 illustrates that a thread’s state includes the state of its ports, local
variables, and dispatch status. The state of each port is further decomposed into
the Infrastructure Port State (IPS) and the Application Port State (APS). The
IPS represents the communication infrastructure’s perspective of the port. The
APS represents the thread application code’s perspective of the port.

The distinction between IPS and APS is used to represent AADL’s notions of
port freezing and port variable as presented in more detail in [14]. Typically, when
a thread is dispatched, the component infrastructure uses the Receive Input

RTS to move one or more values from the IPS of input ports into the input
APS. Then the component application code is called and the APS values then
remain “frozen” as the code executes. This provides the application a consis-
tent view of inputs even though input IPS may be concurrently updated by
communication infrastructure behind the scenes. The application code writes
to the output APS throughout execution. Our intended design for this is that
when the application code completes, the component infrastructure will call the
Send Output RTS to move output values from the output APS to the IPS, thus
releasing the output values all at once to the communication infrastructure for
propagation to consumers. This release of output values is the key desired be-
havior. There are multiple possible implementations that achieve this behavior.
At the component’s external interface, this execution pattern follows the Read
Inputs; Compute; Write Outputs structure championed by various real-time sys-
tem methods (e.g., [8]) enabling analyzeability.
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For input event data ports, the IPS typically would be a queue into which the
middleware would insert arriving values following overflow policies specified for
the port. For input data ports, the IPS typically would be a memory block large
enough to hold a single value. For output ports, the IPS represents pending
value(s) to be propagated by the communication infrastructure to connected
consumer ports.

The AADL standard specifies a collection of RTS including Get Value, Put Value,
etc. that application code may use to access input and output APS.4 We view
these as less important semantically because they do not determine the overall
semantic model of computation but rather suggest programming language-level
idioms for accessing the APS.

The AADL standard indicates that a thread’s application code is organized
into entry points (e.g., subprograms that are invoked from the AADL run-time).
For example, the Initialize Entry Point (InitEP) is called during the system’s
initialization phase, the Compute Entry Point (ComputeEP) is called during the
system’s “normal” compute phase. Other entry points are defined for handling
faults, performing mode changes, etc. We plan to address the higher-level coor-
dination semantics for these phases in follow-on work. Multiple organizations of
entry points are allowed. Here, we address a single InitEP and ComputeEP for
each thread.

Overall, AADL emphasizes a specific canonical usage pattern of the RTS
to achieve the Read; Compute; Write pattern described above. It also allows
other usage patterns for flexibility and generality, but these may reduce the
analyzeability of the system. For example, it allows the application code to
call Receive Input and Send Output at any point and for multiple times. This
“breaks” the view of the ComputeEP as a function from inputs to outputs. Our
approach in this paper will be to define the semantics for key RTS (which hold
regardless of useage pattern), and then provide a semantics for entry points
that (a) adheres to the canonical usage pattern and (b) better supports formal
reasoning.

5 Static Semantics

Prior to defining the semantic rules of AADL RTS, we introduce some key def-
initions and notations that map AADL concepts onto mathematical notations.
The AADL standard includes informal rules that specify how model elements
are organized in terms of containment hierarchy, allowed relationships (e.g., con-
nections, bindings) with other components, and modeling patterns for system

4 The AADL standard uses the term port variable to refer to the APS concept; “vari-
able” suggests an application programming view of the port state. However, the port
variable concept is somewhat ambigiously presented in the current standard and is
intertwined with the binding to a particular programming language. For these rea-
sons, we use a more mathematically oriented presentation of the concept in this pa-
per and suggest that upcoming versions of the standard allow different programming
language bindings to specify how they realize the concept in a particular language.
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configuration and deployment. The static system model specifies components,
ports, and connections. The intent of this section is not to exhaustively cap-
ture all static model information, but rather the information that influences the
execution semantics presented in the following sections.

The root AADL system is instantiated and compiled into an abstract syntax
tree. The resulting instance model, which we callM, is the static AADL model
consisting of an organized hierarchy of components. The set of all components
of M we refer to as C. The static instance model defines the hierarchical struc-
ture and interconnection topology of an operational system. An AADL instance
model M represents the runtime architecture of an actual system that con-
sists of application software components and execution platform components.
A complete system instance that represents the containment hierarchy of the
actual system is created by starting at the root component and instantiating all
subcomponents recursively. We assume that M is completely instantiated and
bound.

Next we define the structure of a generic AADL component. This defini-
tion covers both component type and implementations and derives from the
implementation of the instance model from the OSATE AADL editor. Model
information in M includes component descriptors that hold static information
needed to determine the semantics of AADL components.

Definition 1. A component Comp ∈ C is a tuple (cid, catC ,F ,Prop,S) s.t.
cid: the unique component id,
catC : the component category,
F : the set of features,
Prop: the set of properties associated with this component, and
S: the set of subcomponents.

Given that all component identifiers are unique at each layer of the instance
model, navigation of the hierarchy is performed through top-down access of
component identifiers starting from the root component r and traversing down
the subcomponent hierarchy, e.g., r.childId .

An AADL component can have one of several categories catC , including soft-
ware (e.g., thread, process), hardware (e.g., processor), and more. In this doc-
ument, we focus on a subset of component categories: catC ∈ {thread, process, system}.
Component properties Prop specify relevant characteristics of the detailed de-
sign and implementation descriptions from an external perspective (e.g., a thread
component’s Dispatch Protocol, as illustrated in Section 2). These can be
viewed as rules of conformance between the described components and their im-
plementation. A detailed summary of relevant component properties addressed
in this document may be found in our related tech report [18].

A feature describes an interface of a component through which control and
data may be provided to or required from other components.

Definition 2. A feature f ∈ F is a tuple (fid, catF , d, type,Prop) such that:
fid: is the unique feature identifier,
catF : is the category of the feature,
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d: is the direction of the feature, where d ∈ {in, out},
type: is a component instance of the data type, and
Prop: is the set of properties associated with this feature.

The AADL standard defines several kinds of features. We focus on a subset
of categories: catF ∈ {data, event, eventdata}5. Given that we focus on ports
as a relevant subset of feature categories, we use the terms port and feature
interchangeably. The direction d of a feature corresponds to either in or out. A
feature type corresponds to a data component instance. Feature properties Prop
are configuration parameters that specify relevant characteristics of the feature
and its implementation.

We refer to the global set of unique thread component identifiers as ThreadIds.
We use the meta-variable t ∈ ThreadIds to range over component identifiers. Port
(feature) identifiers fid can also be accessed globally inM similar to component
identifiers. We use the meta-variable p ∈ PortIds to range over port identifiers.
To access the elements of the instance modelM, a number of helper methods and
predicates are defined. For more detail on these predicates, see our companion
tech report [18].

6 Threads

This section formalizes the primary elements of thread component state de-
scribed in Section 4 along with associated AADL RTS. Section 7 addresses the
aggregation of thread states into system states and RTS that are used in the
coordination of thread actions with platform scheduling and communication.

6.1 Value Domains and Port Queues

Because the operational steps associated with RTS and entry points are agnos-
tic to the values in port queues and user code variables, we assume a universal
unspecified domain of values. To simplify the formalization, we adopt a uniform
representation for IPS and APS for event, event data, and data ports: a queue
q is a bounded sequence of values, 〈v〉 denotes a queue with a single data value
v, e.g., as for a data port, and 〈·〉 denotes an empty queue. 〈q′ B v〉 represents
a queue with v being the first item to be dequeued (head) and q′ being the
rest of the queue. This representation is specialized for data ports and event
ports. For a data port, the queue size is always one and enqueueing overwrites
the previous value. For event ports, queues hold 0 or more values, and ∗ de-
notes the presence of an event in a queue (e.g., 〈∗〉 is a queue holding a single
event). The maximum size of queues for a particular event and event data port
is statically configurable via an AADL port property. To support AADL’s spe-
cialized semantics for attempts to insert values in event and event data ports

5 AADL other categories of features denote either abstract features or access to re-
sources. They do not directly participate in the semantics of a thread and are omitted
in this paper.
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when a queue is full (configured by the overflow policy on a port), the function
enqueue(q, v, overflow-policy) can be defined in a straightforward manner to re-
turn a new queue with v enqueued if the maximum size is not exceeded, else a
value (e.g., the oldest in the queue) is dropped based on the given overflow-policy
to make space for the newly enqueued value.

6.2 Thread State

Following the concepts of Figure 2, the state of each thread is formalized as a
6-element tuple

〈Iit , Ai
t, A

o
t , I

o
t , Vt, D〉.

Iit (IPS) maps each input port identifier of the component to a queue q holding
buffered messages. For data ports, q is always non-empty and has a size of one. Ai

t

(APS) maps each input port identifier of the component to a queue q representing
the application code’s view of frozen port values during its execution. AADL has
configurable policies that enable a single value or a collection of values (up to
the entire queue) to be dequeued from the IPS into APS. The representation of
Ai

t as a mapping to queues is general enough to handle all of these variations.
Ao

t (APS) maps each output port identifier for the component to a queue q of
values representing the application code’s view of output port. Typically, the
application code will put 0 or 1 values onto the port during each dispatched
execution. Iot (IPS) maps each input port identifier of the component to a queue
q holding output values has been been moved from Ao

t , typically at the end of
a entrypoint execution, to be available to the communication infrastructure for
propagation to consumers. For any of these port state structures, the notation
Ai

t[p 7→ q] denotes an updated port state structure that is like the original Ai
t

except that port p p now maps to the queue q.
Vt represents a thread’s local state, e.g., a mapping from variables to values,

that may be accessed by the application code during entrypoint execution. Since
manipulation of local variables is orthogonal to the semantics of the AADL RTS,
we omit a more detailed formalization. D holds information, accessible during
entry point execution, that provides information about the thread’s current dis-
patch.

We assume that the thread state for a thread t is consistent with the static
model specification of t (e.g., if t has an inport port p, there is an entry in the map
Iit that provides a value/queue for p) and that consistency is maintained by the
semantics rules. Such consistency properties are a straightforward formalization
[18] and are omitted due to space constraints.

6.3 Dispatch Status RTS

Previous versions of the standard introduced a Dispatch Status RTS, but left
its behavior unspecified. The most recent version (a) introduces dispatch status
as information held in the thread’s state and (b) allows the status information to
be platform independent but indicates that it should provide a basis to determine
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what triggered the thread’s most recent dispatch. To move forward with formaliz-
ing these concepts, we introduce a basic set of status values for D to support peri-
odic and sporadic dispatch protocols. D ∈ {TimeTriggered(ps),EventTriggered(p, ps), Initializing,
NotEnabled}. TimeTriggered(ps) indicates that a thread with a periodic dispatch
protocol is enabled with ports ps to be frozen before application code executes
(see the discussion in Section 4), EventTriggered(p, ps) indicates that a thread
with a sporadic dispatch protocol is enabled and that the triggering port is p
with ports ps to be frozen, Initializing indicates that the thread is enabled in
the Initializing system phase, and NotEnabled indicates that the thread is not
enabled. Following the description in the most recent version of the standard,
the Dispatch Status can be formalized as a function that, when executed by a
thread’s application or infrastructure code returns the D information from the
thread’s current state. The returned D information can be used, e.g., by spo-
radic threads to select a message handler for the event-like port that triggered
the dispatch.

6.4 Port RTS

The Receive Input and Send Output provide the interface to transfer messages
between the IPS and APS. The following quote and accompanying interface
description illustrates the level of descriptive detail for these services in the
current AADL standard [1].

A Receive Input runtime service allows the source text of a thread to explic-
itly request port input on its incoming ports to be frozen and made accessible
through the port variables. Any previous content of the port variable is over-
written, i.e., any previous queue content not processed by Next Value calls
is discarded. The Receive Input service takes a parameter that specifies for
which ports the input is frozen. Newly arriving data may be queued, but does
not affect the input that thread has access to (see Section 9.1). Receive Input

is a non-blocking service.

Note that our introduction of Iit and Ai
t and IPS-APS terminology clarifies

the distinction between the state of the infrastructure and the notion of port
variable, respectively.

The interface for Receive Input in version 2.3 of the standard is presented
as follows:

subprogram Receive_Input
features
InputPorts: in parameter <implementation-

dependent port list>;
end Receive_Input;

The rules in the top portion of Figure 3 formalize the Receive Input RTS.
The rules are stated for a single port, but extend to a list of ports (matching the
informal subprogram interface from the standard) in a straight-forward way.

The rules have the following relational structure:

〈Iit , Ai
t, A

o
t , I

o
t , Vt, D〉

RecInP(p)−→t 〈Iit
′
, Ai

t

′
, Ao

t , I
o
t , Vt, D〉
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ReceiveInputData :

M.isInPort[t](p)
M.isDataPort[t](p)

Ii
t(p) = 〈v〉 Ai

t
′
= Ai

t[p 7→ 〈v〉]

〈Ii
t , A

i
t, A

o
t , I

o
t , Vt, D〉

RecInP(p)−→t 〈Ii
t , A

i
t
′
, Ao

t , I
o
t , Vt, D〉

ReceiveInputEventLikeOneItem :

M.isInPort[t](p)
M.isEventLikePort[t](p)
M.DequeuePolicy[t](p) = OneItem

Ii
t(p) = 〈q B v〉

Ii
t
′
= Ii

t [p 7→ q]

Ai
t
′
= Ai

t[p 7→ 〈v〉]

〈Ii
t , A

i
t, A

o
t , I

o
t , Vt, D〉

RecInP(p)−→t 〈Ii
t
′
, Ai

t
′
, Ao

t , I
o
t , Vt, D〉

ReceiveInputEventLikeAllItems :

M.isInPort[t](p)
M.isEventLikePort[t](p)
M.DequeuePolicy[t](p) = AllItems

¬ isEmpty(Ii
t(p))

Ii
t
′
= Ii

t [p 7→ 〈〉]
Ai

t
′
= Ai

t[p 7→ Ii
t(p)]

〈Ii
t , A

i
t, A

o
t , I

o
t , Vt, D〉

RecInP(p)−→t 〈Ii
t
′
, Ai

t
′
, Ao

t , I
o
t , Vt, D〉

ReceiveInputEventLikeEmpty :

M.isInPort[t](p)
M.isEventLikePort[t](p)

isEmpty(Ii
t(p)) Ai

t
′
= Ai

t[p 7→ 〈〉]

〈Ii
t , A

i
t, A

o
t , I

o
t , Vt, D〉

RecInP(p)−→t 〈Ii
t , A

i
t
′
, Ao

t , I
o
t , Vt, D〉

SendOutput :

M.isOutPort[t](p)

newq = enqueue(Ao
t (p), I

o
t (p),

M.OverflowProtocol[t](p))
Ao

t
′ = Ao

t [p 7→ 〈〉]
Io
t
′ = Io

t [p 7→ newq]

〈Ii
t , A

i
t, A

o
t , I

o
t , Vt, D〉

SendOutP(p)−→t 〈Ii
t , A

i
t, A

o
t
′, Io

t
′, Vt, D〉

Fig. 3. Receive Input and Send Output RTS Rules (excerpts)
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The
RecInP(p)−→t relational symbol indicates that thread t (typically component in-

frastructure code) is invoking the Receive Input service on the port with identi-
fier p. As a side-effect of the invocation, the state 〈Iit , Ai

t, A
o
t , I

o
t , Vt, D〉 of thread

t is transformed to a new state 〈Iit
′
, Ai

t
′
, Ao

t , I
o
t , Vt, D〉. The rule conclusions indi-

cate that only the Iit and Ai
t portions of state are modified, e.g., by moving/copy-

ing values from the IPS into the APS. In source code, the call to the service would
take the form RecInP(p) (here RecInP abbreviates the full name of the service).
The other elements of the rule are implicit in the code execution context, e.g.,
t is the currently active thread with the associated thread states. Each of the
clauses above the rule vertical bar represent antecedents to the rule (stacked, to
conserve space). Clauses on the left side are typically preconditions or conditions
selecting rule cases, whereas those on the right represent relationships between
inputs and outputs. Each of the rules has an implicit side condition that its state
elements Iit , etc. are compatible with the model’s port declarations for t.

The rule for data ports (first rule) indicates that the single value held by a
data port is copied from the infrastructure port state Iit to the application port
state Ai

t. To conform with the AADL data port concept, the value is not removed
from the infrastructure (Iit is not updated in the resulting state). The rule for
event-like ports for a OneItem policy indicates that for a non-empty infrastruc-
ture port state Iit , a single item is dequeued and placed in the application port
state. For the AllItems case, the entire contents of the infrastructure queue for p
is moved to the application port state, leaving the infrastructure queue empty.
Receive Input for p may be called when the infrastructure queue for p is empty,
and this sets the application port to an empty queue.

At the bottom of Figure 3, the rule for Send Output specifies that values are
moved from the APS of the port p into the IPS, subject to developer specified
overflow policy for p. There is only a single rule because the action is the same
regardless the type of port.

6.5 Thread Entry Points

In Figure 4, there are two rules for each entry point category: the AppCode rules
reflects the execution of “user’s code”, while the Infrastructure rules captures
the code structure that AADL code generation tools would typically use for
enforcing AADL’s Read; Compute; Write emphasis. The distinct AppCode rules
allow us to parameterize the semantics with the user code (thus, the use of the
distinct ⇒ symbol), i.e., our framework semantics for AADL RTS, entry point
concepts, etc., is orthogonal to the application-specific semantics of the entry
point user code.

The InitEP application code rule for a thread t formalizes the AADL stan-
dard’s statements that (a) no input port values are to be read during the initial-
ization phase (access to Ai

t is not provided to the code), (b) a thread’s InitEP

should set initial values for all of t’s output data ports (i.e., after execution
completes, all data port queues in Ao

t
′ are required to have size of 1), and (c)

sending initial values on event-like ports is optional. The InitEP infrastructure
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InitEPAppCode :

∀p ∈ M.OutDataPorts(t) . size(Ao
t
′(p)) = 1

∀p ∈ M.OutEventLikePorts(t) . size(Ao
t
′(p)) ≤ 1

(Ao
t , Vt)⇒InitEP:app-code

t (Ao
t
′, Vt

′)

InitEPInfrastructure :

V d
t = DefaultVarValues[t]

(Ao
t , V

d
t )⇒InitEP:app-code

t (Ao
t
′, Vt

′)
ps = M.OutPorts[t]

〈Ii
t , A

i
t, A

o
t
′, Io

t , V
′
t , D〉

SendOutPL(ps)−→t 〈Ii
t , A

i
t, A

o
t
′′, Io

t
′, V ′

t , D〉
〈Ii

t , A
i
t, A

o
t , I

o
t , Vt, D〉

InitEP−→t 〈Ii
t , A

i
t, A

o
t
′′, Io

t
′, V ′

t , D〉

ComputeEPAppCode :

Ai
t, A

o
t , Vt, D ⇒ComputeEP:app-code

t Ao
t
′, V ′

t

ComputeEPInfrastructure :

Ai
t, A

o
t , Vt, D ⇒ComputeEP:app-code

t Ao
t
′, V ′

t
ps = M.OutPorts[t]

〈Ii
t , A

i
t, A

o
t
′, Io

t , V
′
t , D〉

SendOutPL(ps)−→t 〈Ii
t , A

i
t, A

o
t
′′, Io

t
′, V ′

t , D〉
〈Ii

t , A
i
t, A

o
t , I

o
t , Vt, D〉

ComputeEP−→t 〈Ii
t , A

i
t, A

o
t
′′, Io

t
′, V ′

t , D〉

Fig. 4. Thread Entry Point Semantics

rule indicates that when the scheduling framework invokes the entry point, the
infrastructure code typically provides default values for all local variables, in-
vokes the user code, then uses the Send Output to release the thread’s APS to
the communication infrastructure for propagation. As the user code executes, it
may set specific initial values for local variables (as indicated by the output Vt

′).

The ComputeEP user code rule indicates that, abstractly, the user code com-
putes a function from the input APS Ai

t, local variable state, and dispatch sta-
tus to output APS values Ao

t
′ and (updated) local variable state. Ao

t is present
among the rule inputs even though it is not an input for the application code.
The AADL standard indicates application code is prevented from reading the
values of output ports, and Ao

t is only included in the rule inputs to enable the
Director to provide initial values for output ports in the SetPortState rule of
Figure 6 according to configurable policies. The ComputeEP infrastructure rule
indicates that when the scheduling framework invokes the entry point, the infras-
tructure code will typically first invoke the user code, then use the Send Output

to move values from thread’s output APS to IPS (receiving values for input ports
is addressed in the dispatching rules of Section 7).

Overall, these rules enhance the AADL standard by clarifying the specific
portions of thread state that entry points may read or write and indicating other
semantic properties. The infrastructure rules illustrate how future versions of the
standard may present code pattern options for enforcing important semantic
properties of AADL.
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7 Director

To support model analyzability, as well as a variety of embedded execution
platforms, our formulation includes structured real-time tasks, without specify-
ing concrete scheduling and communication implementations. This supplements
the current AADL standard which underspecifies the necessary coordination
between the thread and the underlying scheduling and communications. The
standard uses hybrid automata to specify constraints and timing aspects on
the operational life-cycle of a thread (e.g., through initialization, compute, and
finalization phases, along with mode changes and error recovery). Guarded tran-
sitions in the automata correspond to checks on the thread state, interactions
with the scheduler, etc. Since the focus of the automaton is on a single thread,
broader aspects of the system state, including the scheduling dimension and com-
munication substrate, are not reflected in the standard. In practice, parts of the
automata semantics would be realized by a “director” that coordinates multiple
types of code – including RTS used in thread infrastructure code, thread applica-
tion code, and underlying platform scheduling and communication to achieve the
semantics of the modeled system. A standardized description of this system-wide
director concept would facilitate both interoperability and analyzability.

One of the contributions of our formalization is to fill gaps in the standard
with initial definitions of the notion of the system state, and provide rules that
characterize how the actions of individual threads, AADL run-time, scheduling,
and communication evolve the system state (see [18] for a fuller treatment). Due
to space constraints, we focus the presentation here on aspects related to the
goals for state and rules above and omit timing aspects.

7.1 System State

For the subset of AADL that we are addressing, the state of an AADL system
is a 4-tuple

〈Phs,Thrs,Schs,Comms〉.

The system phase Phs ∈ {Initializing,Computing} indicates the current system
phase (initialization entry points are being executed, or compute entry points
are being executed). Thrs maps each thread identifier t to the thread’s state (as
defined in Section 6). Schs maps each thread identifier t to the scheduling state
of the thread (WaitingForDispatch, Ready, or Running). Comms represents the
state of the communication infrastructure.

Fig. 5. Thread Operational Life-Cycle
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SetPortState :

Ai
t
′
= InitInAppPorts(t)

Ao
t
′ = InitOutAppPorts(t)

ps = PortsToFreeze(t,D)

〈Ii
t , A

i
t
′
, Ao

t
′, Io

t , Vt, D〉
RecInPL(ps)−→t 〈Ii

t
′
, Ai

t
′′
, Ao

t
′, Io

t , Vt, D〉

〈Ii
t , A

i
t, A

o
t , I

o
t , Vt, D〉

SetPortState(t)−→Dir 〈Ii
t
′
, Ai

t
′′
, Ao

t
′, Io

t , Vt, D〉

Dispatch Enabled :

Phs(t) = Computing
Schs(t) = WaitingForDispatch
Thrs(t) = 〈Ii

t , A
i
t, A

o
t , I

o
t , Vt, D〉

ComputeDispatchStatus(〈Ii
t , A

i
t, A

o
t , I

o
t , Vt, D〉) = D′

D′ 6= NotEnabled

〈Ii
t , A

i
t, A

o
t , I

o
t , Vt, D

′〉 SetPortState(t)−→Dir 〈Ii
t
′
, Ai

t
′
, Ao

t
′, Io

t , Vt, D
′〉

Thrs′ = Thrs[t 7→ 〈Ii
t
′
, Ai

t
′
, Ao

t
′, Io

t , Vt, D
′〉]

Schs′ = Schs[t 7→ Ready]

〈Phs,Thrs,Schs,Comms〉 DispatchEnabledThr(t)−→Dir 〈Phs,Thrs′,Schs′,Comms〉

Fig. 6. Director Services and System Actions (excerpts)

Figure 5 shows an adaption of the automata from Figure 5 (Section 5.4.2)
of the AADL standard [1] that is simplified to our setting by removing notions
related to mode switches, error recovery, and preemption. As discussed above,
we aim to clarify the intent of such figures in the standard by providing formal
definitions of the transitions, introducing new standardized services and revis-
ing the automata concepts when necessary. For example, consider the dispatch
transition from the thread Suspended Awaiting Dispatch state to the Performing
Compute Entrypoint state. The standard’s narrative indicates that the dispatch
action causes the thread’s input ports to be frozen and that the thread is re-
leased to the scheduling framework for the compute entry point to be scheduled
and executed. The execution of the dispatch action is conditioned on the notion
of enabled, which itself is based on a non-trivial set of conditions concerning
pending messages in port queues (sporadic components) and timing constraints
(periodic components).

Figure 6 proposes a formalization of a new RTS DispatchEnabledThread to
be used by the AADL Director. This rule is enabled when the system is in
the Computing phase and the thread’s scheduling state is WaitingForDispatch.
The appropriate thread state is retreived from the system threads, and a new
proposed auxiliary service Compute Dispatch Status is used to compute this
dispatch status of the thread. If the thread is enabled, its input queue contents
are transferred from the IPS to APS. The thread’s scheduling state is set to
Ready to indicate to the underlying scheduling framework that the thread is
available for scheduling.

8 Communication

The design philosophy of the AADL standard is to integrate with existing com-
munication frameworks including local communication using shared memory,
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CommOutput :

M.isOutPort[t](p)
Thrs(t) = 〈Ii

t , A
i
t, A

o
t , I

o
t , Vt, D〉

Io
t (p) = 〈q B v〉
M.ConnDests[t](p) = ps
makeMessages(p, ps, v) = M Io

t
′ = Io

t [p 7→ q]
Thrs′ = Thrs[t 7→ 〈Ii

t , A
i
t, A

o
t , I

o
t
′, Vt, D〉]

Comms′ = Comms ∪M

〈Phs,Thrs,Schs,Comms〉 CommOutCP(t,p)−→ 〈Phs,Thrs′,Schs,Comms′〉
CommInput :

(ps, v, p) ∈ Comms
Thrs(t) = 〈Ii

t , A
i
t, A

o
t , I

o
t , Vt, D〉

newq = enqueue(v, Ii
t(p),M.OverflowProtocol[t](p))

Ii
t
′
= Ii

t [p 7→ newq]

Thrs′ = Thrs[t 7→ 〈Ii
t
′
, Ai

t, A
o
t , I

o
t , Vt, D〉]

Comms′ = Comms − (ps, v, p)

〈Phs,Thrs,Schs,Comms〉 CommInCP(t,p)−→ 〈Phs,Thrs′,Schs,Comms′〉

Fig. 7. Communication Substrate Rules

middleware for distributed message passing, and scheduled communication such
as ARINC 653. The standard provides no API or semantic representation for
communication actions – it only provides properties that are used to state con-
straints/assumptions about communication frameworks. To move toward a for-
malization that supports this philosophy, we introduce a small number of very
general rules whose actions and orderings within system traces that can sub-
sequently be formally contrained to reflect different communication implemen-
tations. In particular, the rules are general enough to handle through subse-
quent refinements both distributed communication as well as local communica-
tion where queue state representations can be optimized, e.g., using the same
storage for the output IPS of sender components with the input IPS of receiving
components as has been done for AADL code generation for microkernels [17].
Space constraints do not allow a full development of this concept here. Instead
we expose only enough concepts to support illustration of the port RTS actions
in Section 9.

Figure 7 presents rules reflecting actions carried out by the communication
substrate (middleware). The first rule reflects the substrate’s transfer of messages
M from a sending thread onto the communication substrate Comms. The second
rule reflects the substrate’s delivery of a message (ps, v, p) from a sender port ps
into the input infrastructure port state of a receiver port p.

For the first rule, when the sender port p has an output infrastructure port
queue 〈q B v〉 with value v at its head, the substrate will form a collection of
messages M , one message for each destination port in M.ConnDests[t](p) =
ps as determined by static model connections. A new version of the output
instructure port state with v dequeued is formed, and the newly created messages
M are placed on the communication substrate.

With these general concepts, contraints applied to system traces that in-
clude these rule instances can accomodate concepts like immediate or delayed
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communication between input/output, order preserve delivery versus possible
reorderings, and lossy vs non-lossy communication.

9 Example Traces

The section illustrates the AADL RTS rules using a simple execution scenario
based on the example of Section 2. Steps in both the Initializing and Computing
phases are shown for the TempSensor and TempControl components. These ex-
amples focus on the manipulation of thread states. See [18] for additional exam-
ples that include a broader treatment of system-level execution and communi-
cation. To validate that our rules reflect a realistic implementation of an AADL
run-time, the HAMR AADL code generation framework [17] has been enhanced
to emit trace states and traceability information that aligns with the rules in
the previous sections. That feature generates outputs that are equivalent to the
type set trace information presented in this section.

TempSensor Initialize Entry Point: Consider first the InitEPAppCode
rule from Figure 4 capturing the execution of the application code for the Ini-
tialize Entry Point as applied to the TempSensor component. Given the val-
ues below for the initial output application port state, which includes empty
queues for both output ports and default variable values supplied from the
InitEPInfrastructure rule context (there are no thread local variables for this
component),

Ao
t = [currentTemp 7→ 〈〉, tempChanged 7→ 〈〉]

Vt = []

executing the application code for Initialize Entry Point is represented by the
following relation, reflected in the InitEPAppCode rule.

(A
o
t , Vt)⇒InitEP:app-code

t ([currentTemp 7→ 〈73.0〉, tempChanged 7→ 〈〉], [])

This reflects the fact that the application code initializes the currentTemp port
with the value 73.0 via the Put Value run-time service, but does not put an
event on the tempChanged port (this is not done until the Compute Entry Point
where temperature values are retrieved from the sensor hardware). Making the
assumption that the fan inherently knows the initial safe state is acceptable in
this nominal fault-free safe state startup scenario, but would need to be dis-
charged in other safety-critical design scenarios.

In the context of the Figure 4 InitEPInfrastructure rule, which formalizes
the component infrastructure’s invocation of the application code for the Ini-
tialize Entry Point, when the above structures are placed in the context of the
TempSensor thread state, we have the following state thread elements, repre-
senting the state of the TempSensor thread after the execution of the applica-
tion code (the tuple element values on the right side of the vertical bar reflect
the instantiation of the meta-variables on the left side that are used in the
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InitEPInfrastructure rule).

Ii
t

Ai
t

Ao
t
′

Io
t

V ′
t

D

〈[],
[],
[currentTemp 7→ 〈73.0〉, tempChanged 7→ 〈〉],
[currentTemp 7→ 〈〉, tempChanged 7→ 〈〉],
[],
Initializing〉

Then, the invocation of the SendOutput RTS moves the currentTemp value to
the output infrastructure port state to obtain the following thread state at the
completion of the execution of the infrastructure for the Initialize Entry Point.

Ii
t

Ai
t

Ao
t
′′

Io
t
′

V ′
t

D

〈[],
[],
[currentTemp 7→ 〈〉, tempChanged 7→ 〈〉],
[currentTemp 7→ 〈73.0〉, tempChanged 7→ 〈〉],
[],
Initializing〉

The presence of value 73.0 in the currentTemp port of the Iot
′ output infras-

tructure port state represents the fact that it has been made available to the
communication substrate for propagation to consumers. .

TempControl Initialize Entry Point: Following a similar sequence of
rules for the TempControl Initialize Entry Point yields the following thread state.

Ii
t

Ai
t

Ao
t
′′

Io
t
′

V ′
t

D

[currentTemp 7→ 〈〉, tempChanged 7→ 〈〉,
setPoint 7→ 〈〉, fanAck 7→ 〈〉]
[currentTemp 7→ 〈〉, tempChanged 7→ 〈〉,
setPoint 7→ 〈〉, fanAck 7→ 〈〉]
[fanCmd 7→ 〈〉]
[fanCmd 7→ 〈〉]
[ latestTemp 7→ 73.0, currentSetPoint 7→ (70.0, 75.0),
currentFanState 7→ Off

]

Initializing

The primary difference is that the TempControl thread initializes thread local
variables (e.g., set points are iniitialized to low and high values (70.0, 75.0)), but
does not put any initial values on its output ports (i.e., the queue for fanCmd is
empty).

Before the system transitions from the Initializing to the Computing phase,
the initial value placed on the TempSensor currentTemp output port is propa-
gated to connected input port of TempControl according to the rules of Figure 7.

Completed Initialization: Following these communication steps, the sys-
tem transitions to the Computing phase, with the following states for the TempSen-
sor

Ii
t

Ai
t

Ao
t

Io
t

Vt

D

〈[],
[],
[currentTemp 7→ 〈〉, tempChanged 7→ 〈〉],
[currentTemp 7→ 〈〉, tempChanged 7→ 〈〉],
[],
NotEnabled〉
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and TempControl thread components.

Ii
t

Ai
t

Ao
t

Io
t

Vt

D

[currentTemp 7→ 〈73.0〉, tempChanged 7→ 〈〉,
setPoint 7→ 〈〉, fanAck 7→ 〈〉]
[currentTemp 7→ 〈〉, tempChanged 7→ 〈〉,
setPoint 7→ 〈〉, fanAck 7→ 〈〉]
[fanCmd 7→ 〈〉]
[fanCmd 7→ 〈〉]
[ latestTemp 7→ 73.0, currentSetPoint 7→ (70.0, 75.0),
currentFanState 7→ Off

]

NotEnabled

The TempSensor currentTemp out data port has been initialized and its value
propagated to the infrastructure port state Iit for the TempControl currentTemp
input data port. The thread local variables of TempControl have been initialized.
Director rules (omitted due to space constraints) set the dispatch status of each
thread to NotEnabled.

TempSensor Compute Entry Point: The TempSensor compute entry
point is dispatched periodically as discussed in Section 2. Its entry point appli-
cation code reads the current temperature from a hardware sensor (how this is
modeled is not discussed in this paper), places the value on the currentTemp

out data port and a notification event on tempChanged out event port. Assume
the physical sensor responds with a temperature value of 78.3.

We use the TempControl component to illustrate the details of compute entry
point rules, and simply note that at the end of a similar application of the rules
for TempSensor, its thread state is the following.

Ii
t

Ai
t

Ao
t
′′

Io
t
′

V ′
t

D

〈[],
[],
[currentTemp 7→ 〈〉, tempChanged 7→ 〈〉],
[currentTemp 7→ 〈78.3〉, tempChanged 7→ 〈∗〉],
[],
NotEnabled〉

Here we see that an event is queued in the tempChanged infrastructure port and
the value 78.3 is held in the currentTemp infrastructure data port.

Communication: If we are following AADL’s “immediate” port commu-
nication property, at this point that communication infrastructure would prop-
agate values from the TempSensor output ports to the TempControl input ports.
This results in the following TempSensor thread state below in which currentTemp

and tempChanged have been communicated and no longer appear in Iot .

Ii
t

Ai
t

Ao
t

Io
t

Vt

D

〈[],
[],
[currentTemp 7→ 〈78.3〉, tempChanged 7→ 〈〉],
[currentTemp 7→ 〈〉, tempChanged 7→ 〈〉],
[],
NotEnabled〉

At the other end of the port connections, the values have been placed in the
input infrastructure ports Iit of the TempControl thread (the previous value of
73.0 in the infrastructure currentTemp data port has been overwritten by the
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value of 78.3).

Ii
t

Ai
t

Ao
t

Io
t

Vt

D

[currentTemp 7→ 〈78.3〉, tempChanged 7→ 〈∗〉,
setPoint 7→ 〈〉, fanAck 7→ 〈〉]
[currentTemp 7→ 〈〉, tempChanged 7→ 〈〉,
setPoint 7→ 〈〉, fanAck 7→ 〈〉]
[fanCmd 7→ 〈〉]
[fanCmd 7→ 〈〉]
[ latestTemp 7→ 73.0, currentSetPoint 7→ (70.0, 75.0),
currentFanState 7→ Off

]

NotEnabled

TempControl Dispatch and Compute Entry Point: TempControl is a
sporadic thread. In the current execution, its dispatch is triggered by the arrival
of an event on the tempChanged port. Dispatching is formalized by the rules in
Figure 6.

Conditions in premises of the Dispatch Enabled rule ensure that the sys-
tem is in the Computing phase and that the TempControl scheduling state is
WaitingForDispatch. Then an auxiliary function is called to determine the dis-
patch status of the thread.

ComputeDispatchStatus(〈Ii
t , A

i
t, A

o
t , I

o
t , Vt, D〉) =

EventTriggered(tempChanged, {tempChanged, currentTemp})

This indicates that thread dispatch has been triggered by the arrival of the
tempChanged event and that, following the AADL standard’s rules for port
freezing, the tempChanged is to be frozen since it is the triggering event port
and currentTemp is to be frozen because it is a data port (data ports are frozen
by default).

Since the computed dispatch status indicates that the thread is enabled,
the SetPortState rule prepares the port states for entry point execution. First,
auxiliary functions are used to initialize the input and output application port
state as follows (where t = TempControl) :

Ai
t
′

Ao
t
′

[currentTemp 7→ 〈〉, tempChanged 7→ 〈〉,
setPoint 7→ 〈〉, fanAck 7→ 〈〉]

= InitInAppPorts(t)

[fanCmd 7→ 〈〉] = InitOutAppPorts(t)

An auxiliary function is also used to extract the set of ports to freeze.

ps {tempChanged, currentTemp} =
PortsToFreeze(t, EventTriggered(tempChanged,

{tempChanged, currentTemp}))

Given the thread state at this point, which instantiates the metavariables in the
SetPortState rule as follows,

Ii
t

Ai
t
′

Ao
t
′

Io
t

Vt

D

[currentTemp 7→ 〈78.3〉, tempChanged 7→ 〈∗〉,
setPoint 7→ 〈〉, fanAck 7→ 〈〉]
[currentTemp 7→ 〈〉, tempChanged 7→ 〈〉,
setPoint 7→ 〈〉, fanAck 7→ 〈〉]
[fanCmd 7→ 〈〉]
[fanCmd 7→ 〈〉]
[ latestTemp 7→ 73.0, currentSetPoint 7→ (70.0, 75.0),
currentFanState 7→ Off

]

EventTriggered(tempChanged, {tempChanged, currentTemp})
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and given the list of ports to freeze ps as instantiated above, applying the rule for
the Receive Input RTS yields the following updated thread state (instantiating
the metavariables in the SetPortState rule)

Ii
t
′

Ai
t
′′

Ao
t
′

Io
t

Vt

D

[currentTemp 7→ 〈78.3〉, tempChanged 7→ 〈〉,
setPoint 7→ 〈〉, fanAck 7→ 〈〉]
[currentTemp 7→ 〈78.3〉, tempChanged 7→ 〈∗〉,
setPoint 7→ 〈〉, fanAck 7→ 〈〉]
[fanCmd 7→ 〈〉]
[fanCmd 7→ 〈〉]
[ latestTemp 7→ 73.0, currentSetPoint 7→ (70.0, 75.0),
currentFanState 7→ Off

]

EventTriggered(tempChanged, {tempChanged, currentTemp})

Continuing in the Dispatch Enabled rule, the scheduling state of TempControl
is set to Ready to indicate to the underlying OS scheduler that the thread is
available for scheduling.

In the TempControl compute entry point, dispatch is triggered by the tempChanged
event port, which triggers the application code to read the currentTemp data
port, store the value in the latestTemp thread local variable, and compare the
read value to the currentSetPoint values. If the current temperature is greater
than the high set point, a message will be put on the fanCmd port to turn the fan
on. If the current temperature is less than the low set point, the application code
puts a message into the fanCmd port to turn the fan off. In both cases, the ap-
plication code updates the currentFanState variable to reflect the new desired
state of the fan. Otherwise, if the current temperature is equal to or falls between
the low and high set points, no command is sent and the currentFanState is
not changed.

Picking up from the current state of the TempControl thread after dispatch
above, in the formalization of the representation of the execution of the user
code in Figure 4, the metavariables in the ComputeEPAppCode rule have the
following values representing the application’s view of the thread state at the
beginning of the application code execution

Ai
t

Ao
t

Vt

D

[currentTemp 7→ 〈78.3〉, tempChanged 7→ 〈∗〉,
setPoint 7→ 〈〉, fanAck 7→ 〈〉]
[fanCmd 7→ 〈〉]
[ latestTemp 7→ 73.0, currentSetPoint 7→ (70.0, 75.0),
currentFanState 7→ Off

]

EventTriggered(tempChanged, {tempChanged, currentTemp})

and at the end of execution

Ao
t
′

V ′
t

[fanCmd 7→ 〈On〉]
[ latestTemp 7→ 78.3, currentSetPoint 7→ (70.0, 75.0),
currentFanState 7→ On

]

In the context of the Figure 4 ComputeEPInfrastructure rule, when the above
structures are placed in the context of the complete TempControl thread state,
we have the following, representing the state of the thread after the execution
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of the application code.

Ii
t

Ai
t

Ao
t
′

Io
t

V ′
t

D

[currentTemp 7→ 〈78.3〉, tempChanged 7→ 〈〉,
setPoint 7→ 〈〉, fanAck 7→ 〈〉]
[currentTemp 7→ 〈〉, tempChanged 7→ 〈〉,
setPoint 7→ 〈〉, fanAck 7→ 〈〉]
[fanCmd 7→ 〈On〉]
[fanCmd 7→ 〈〉]
[ latestTemp 7→ 78.3, currentSetPoint 7→ (70.0, 75.0),
currentFanState 7→ On

]

EventTriggered(tempChanged, {tempChanged, currentTemp})

Then, the invocation of the SendOutput RTS moves the fanCmd message to
the output infrastructure port state to obtain the following thread state at the
completion of the execution of the infrastructure for the Compute Entry Point.

Ii
t

Ai
t

Ao
t
′′

Io
t
′

V ′
t

D

[currentTemp 7→ 〈78.3〉, tempChanged 7→ 〈〉,
setPoint 7→ 〈〉, fanAck 7→ 〈〉]
[currentTemp 7→ 〈〉, tempChanged 7→ 〈〉,
setPoint 7→ 〈〉, fanAck 7→ 〈〉]
[fanCmd 7→ 〈〉]
[fanCmd 7→ 〈On〉]
[ latestTemp 7→ 78.3, currentSetPoint 7→ (70.0, 75.0),
currentFanState 7→ On

]

EventTriggered(tempChanged, {tempChanged, currentTemp})

Following this, a director rule (omitted) resets the thread’s dispatch status to
NotEnabled. The message On is propagated to the Fan thread which is dispatched
in manner similar to that illustrated above for the TempControl component.

10 Related Work

There are numerous contributions to the formal specification, analysis, and ver-
ification of AADL models and annexes. These works, whether implicitly or ex-
plictly, propose semantics for AADL in the model of computation and commu-
nication of the verification framework considered [6]. Many contributions focus
on static semantics of models [2,34] while others consider run-time behavior and
use model translation to extract executable specifications from AADL models,
e.g., [4, 5, 10, 16, 37]. Many related works formalize a subset of AADL (e.g., for
synchronous systems only) or focus on analyzing an aspect of the system, such
as schedulability [32], behavioral [6, 35], or dependability analyses [13].

Closely related work has made strides towards the formalization of a AADL
run-time behavior. Rolland et al. [31] formalized aspects of AADL’s coordination
and timing behavior through the translation of AADL models into the Temporal
Logic of Actions (TLA+) [28]. Hugues et al. [20,29] provided a Ada/SPARK2014
definition of selected RTS as part of a broader implementation of the AADL run-
time. In addition, SPARK2014 verification was used to demonstrate absence of
run-time errors in the implementation. However, aspects of the semantics of the
given services as well various notions of thread and system state are implicit in
that they are expressed using Ada constructs (and thus rely on the underlying
semantics and state of Ada). To complement this programming language-based
approach, we aim for a language-independent specification of RTS and a more
explicit exposition of notions of port state, thread state, as well as director and
communication aspects.
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11 Conclusion

Over the last fifteen years, AADL has been an effective vehicle within the formal
methods community for developing rigorous model-based analysis and verifica-
tion techniques. However, individual tools have often only treated a slice of
AADL or have re-interpretered AADL’s informal semantics to match the com-
putional model supported by their particular tool. While it is impossible to
provide a comprehensive semantics in a single conference paper, this work (with
the accompanying technical report [18]) represents an initial step in providing
a canonical and comprehensive treatment of AADL semantics by providing a
formalization of the AADL RTS. Due to the central role played by the RTS, this
formalization clarifies the standard’s informal descriptions, provides a clearer
foundation for model-level analysis and verification, and elucidates important
aspects of the semantics for AADL code generation.

This lays the foundation for multiple lines of future work. First, AADL com-
mittee discussions suggest that future versions of the AADL will include formal-
izations that better ground the standard’s descriptions. In addition to the RTS
aspects, this will include more “coordination level” aspects that address AADL
life-cycle and interactions of process and systems, scheduling, and distributed
communication. This is important for establishing soundness arguments for anal-
yses and contract languages such as AGREE [12] and BLESS [26]. Second, under
consideration is a new approach to the AADL Code Generation annex which does
not focus on syntactic conventions for representing AADL model artifacts but
instead focuses on (a) disclosure and traceability to key aspects of a AADL RTS
formalization including representation of port and thread state, implementation
of AADL RTS, (b) testing- and formal-methods-based demonstration of confor-
mance to key aspects of the forthcoming canonical semantics. Third, regarding
refinement, our semantics was designed to support AADL’s general threading
(periodic and event-driven threads) and port communication (synchronous data
flow as well as message-passing). For future work, we imagine developing refine-
ments that specialize the semantics to particular computational paradigms (e.g.,
synchronous data flow only, or message passing only) – with the end result be
simplified special case semantics with a proof of refinement to the more general
case. Also of interest are refinements to particular scheduling regimes (our se-
mantics focuses on the RTS and leaves a placeholder for scheduling actions that
determine execution order of threads). We expect to continue refining the seman-
tics at lower levels of abstraction to capture details of mapping AADL to classes
of RTOS and standard architectures like ARINC 653 [36]. For AADL code gen-
eration that targets the formally verified seL4 micro-kernel [17,24], mechanizing
the AADL semantics and formally verifying aspects AADL run-time can con-
tinue to expand the stack of formally verified infrastructure that can be applied
to critical system development.

Finally, we are interested in considering issues of usability and utility for
“formal semantics as documentation”. In this paper, we presented formal speci-
fications in conventional rule-based notation with symbols and rule style chosen
somewhat arbitrarily. If this type of material is to be part of a industry standard
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used by people with a variety of backgrounds, we need formal descriptions to be
presented using notations that are accessible and easy to understand. Further-
more, we need approaches for machine-readable versions of the semantics that
can be leveraged by tools in multiple ways. Similar goals have existed for decades
in the programming language semantics and formal methods communities. But
now we find the need a bit more pressing, because to achieve the next innovations
in critical system development, we need to effectively capture and connect se-
mantics across multiple modeling languages and programming languages, along
with many forms of accompanying tooling.
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