CIS 842:
Specification and Verification
of Reactive Systems

Lecture Specifications:
Sequencing Properties 2

Copyright 2001-2004, Matt Dwyer, John Hatcliff, and Robby. The syllabus and all lectures for this course are copyrighted
materials and may not be used in other course settings outside of Kansas State University in their current form or modified
form without the express written permission of one of the copyright holders. During this course, students are prohibited
from selling notes to or being paid for taking notes by any person or commercial firm without the express written
permission of one of the copyright holders.

= To understand the goals and basic
approach to specifying sequencing
properties

= To understand the different classes of
sequencing properties and the algorithmic
techniques that can be used to check
them

= What is a sequencing specification?
= What kinds of sequencing specifications
are commonly used?
= Safety vs. Liveness
= In depth on safety properties
= How to specify them
= Examples
= How to check them

IS chectin

A safety property is just a violating prefix of
a program trace

Naive Algorithm:

= At every state consider the stack trace
leading to that state

« If it is a string in the language of the violation
property, stop and issue an error message

= Our stateful search matches and records
states based on the values of state
variables

=« State values do not encode the path that
reached the state only the effect of that path

= This can lead to missing an erroneous trace

Consider the property
y Is always preceded by x

Imagine a satisfying trace that
is broken into two parts

Imagine a violating trace
leading to the dividing point
in the original trace

Violation is only detected in
suffix that has alread been
searched!

= We need to distinguish
states that are logically X
equivalent but different P
relative to the path that /c<‘
reaches them and the

property being checked

= Note that the naive
algorithm works just y y \ Error
fine for state-less
search

-Safety Properties

= Think of it as a language problem

= Program generates a language of strings over
observables (each path generates a string) — L(P)

= Property generates a (regular) language — L(S)
» Test the languages against each other
« Language containment — L(P) € L(S)
= Non-empty language intersection -- L(P) N L(S) % 0

= Interchangeable due to complementation of finite-
state automata

- Safety Properties

= Two basic approaches

= Both require a deterministic finite-state
automaton for the violation of the property

= Easy to get via complementation and
standard RE->DFA algorithms

= Instrument the program with property

= Check reachability in the product of the
program and property

= Assertions instrument the program
= They are inserted at specific points
= They perform tests of program state

= They render an immediate verdict that is
determined completely locally

= The same approach can be applied for
safety properties
= Instrumentation determines a partial verdict

=« Need a mechanism for communicating between
different parts of the instrumentation

boolean forkl, fork2;
thread Philosopherl () {
loc pickupl: live {} when !forkl

do { forkl := true; } goto pickup2;
loc pickup2: live {} when !fork2
do { fork2 := true; } goto eating;

loc eating: live {} do {} goto drop2;
loc drop2: live {}

do { fork2 := false; } goto dropl;
loc dropl: live {}

do { forkl := false; } goto pickupl;

Consider the property:
a philosopher must pickup a fork before dropping it
e.g., [-Pl.pickupl]*; Pl:dropl; .*

boolean forkl, fork2;
thread Philosopherl () ({
loc pickupl: live {} when !forkl

do {
// record that a pickup of 1 happened
forkl := true;

} goto pickup2;
loc pickup2: live {} when !fork2
do { fork2 := true; } goto eating;
loc eating: live {} do {} goto drop2;
loc drop2: live {}
do { fork2 := false; } goto dropl;
loc dropl: live {}
do {
// check that a pickup of 1 happened
forkl := false;
} goto pickupl;

boolean forkl, fork2, sawpickup;
thread Philosopherl () {
loc pickupl: live {} when !forkl
do {
sawpickup := true;
forkl := true;
} goto pickup2;
loc pickup2: live {} when !fork2
do { fork2 := true; } goto eating;
loc eating: live {} do {} goto drop2;
loc drop2: live {}
do { fork2 := false; } goto dropl;
loc dropl: live {}

do {
assert (sawpickup) ;
forkl := false;

} goto pickupl;

tion Approach

No change to the checking algorithm!
= Safety checking has been compiled to assertion
checking
Adds state variables

= That record property related history to
distinguish states

= These multiply the size of the state space

IR es Ao

1 seen := {sg}
2 pushStack(sg)

o:assert(s) = false;stop
3 DFS(sq)

o : otherwise; proceed

DFS(s)

4 workSet(s) := enabled(s)

5 while workSet(s) is not emp
6 let o € workSet(s)

7 workSet(s) := workSet(s) \ {a}
8 s’ = a(s)
9 if s’ & seen then

10 seen := seen U {s'}
11 pushStack(s")

12 DFS(s)

13 popStack()

end DFS

-ation Approach

= Instrumenting programs is

= Laborious — must identify all points that are
related to the property (may be conditional on
data)

= Error prone — lack of instrumentation at a state
change (false error), lack of instrumentation at
a state check (missed error)

= Property specific — must be done for each
property

= Automate it via product construction

boolean forkl, fork2;
thread Philosopherl () {
loc pickupl: live {} when !forkl

do { forkl := true; } goto pickup2;
loc pickup2: live {} when !fork2
do { fork2 := true; } goto eating;

loc eating: live {} do {} goto drop2;
loc drop2: live {}

do { fork2 := false; } goto dropl;
loc dropl: live {}

do { forkl := false; } goto pickupl;

Consider the property:
a philosopher must pickup a fork before dropping it
e.g., [-Pl.pickupl]*; Pl:dropl; .*

Automaton

A finite state automaton (FSA) is a 5-tuple
(Q 2,8, S F) where

Qs a finite set of states

2 _is a finite set of symbols, the alphabet

« S C @ the set of start states

= F C Q@ the set of final states

=0 Q X X — (@ is the transition function

roperty

Consider the property:

a philosopher must pickup a fork before dropping it

e.g., [-Pl.pickupl]*; Pl:dropl; .*

[- P1.pickupl,P1:dropl]

P1:dropl

(OBf

P1.pickupl

B

ystem

(pl,pD)

\

(p2,p1) (pl,p2)

N /N

(e.pl) (p2.p2) (pl.e)

|

(d2,pl) (pl,d2)

| l

(dL,pl) (pl,dl)

10

ystem Automaton

(p2,p1) (pl,p2)
\

I N\
P1.pigkupl

Pl:dropl/

N
pl.e)

l

(d2,pl) (p2,p2) (pl,d2)

| l

(dL,pl) (pl,dl)

(e.pl)

Synchronous Product of Two Automata
(Q,>,5,8, F) x (Q', >, 8,58 F"
Is a new Automaton
(<Q,Q >>TUX A <S8 > <FF >)

where
< 6(s,a),s > ifae ZNag'
A(< 5,8 >0) =1 <s,8(s,a) > ifag> NaecX
< 6(s,a),8'(s';a) > ifae ZANaeX!

11

- Product Automaton

| l

plL.pL1) (pl,pl,3)

Plpl/
plal| ®2pl3) }pl,pzs) (pL.p2,1)
(e,p1,3) oy (ple3) (pleD)
/Y
(d2,pl.3) (p2.p2.3) (pl.d2.3) (pl.d2,1)

l

(dl,pl.3) (pl.dl,3) (pl.dlL,1)

- Wrong Property

[- P2.pickupl]*; P1:dropl; .*

(p2.,pl)

(pl.,pD)

/ POy 1

P1:d1

(d2,pl)

l

(dlpl)

@pl) (P2p2) (ple)

\P2.pl
(pl,p2)

!

(pl1,d2)

l

(pl.dl)

12

-roduct Automaton

Pl:dropl | —

1,p2,3
(p2,p1i1) (pLp s‘)

(e,p1,1) (pl.e,3)

@,pl,l) (pl,d2,3)

(d1,p1,1) (p1,£1,3)

(pL.pl.1) (pL.pl.3)

o2p2.) | p2p23)

\%pi&k@i

(pl,pl.2)

1,p2,2
(p2,p1@) (B p2.,2)

(p2,p2.2)
(epl.2) (ple2)

@2,p1,3) || @2p12) (p1.d2,2)

@1,p1,3)/ \@d1,p1.2) (p1,£1,2)

1 seen := {sp}
2 pushStack(sg)
3 DFS(so)

DFS(s)
4 workSet(s) := enabled(s)

5 while workSet(s) is not empty

6 let a € workSet(s)

7 workSet(s) := workSet(s) \ {a}

8 s’ = a(s)

9 if s’ & seen then

10 seen := seen U {s'}
11 pushStack(s')

12 DFS(s")

13 popStack()

end DFS

How would you
modify this algorithm
to construct the
product on the fly?

13

= Alphabet of property is always a subset of
alphabet of system

Zproperty C Zsystem

= This means we can drive transitions in the
property automaton from transitions in
the system automaton

-naton Checking

1 seen := {sp}
2 pushStack(sg)

3 DFS(sg) —— -
See if this transition is

DFS(s) a symbol in the

4 workSet(s) := enab,

5 while wor is not empty property alphabet

6 let a € workSet(s)

7 workSet(s) := workSet(s) \ {a}

8 s’ = a(s) .

9 if s & seen then If so them drive a

10 seen := seen U {s'} transition in the

1 pushStack(s') roperty automaton

12 DFS(s) property

13 popStack()

end DFS

-maton Checking

1 seen := {(s0,p0)}
2 ack((s0,10))

New property state DFS((s0.r0))

component

DFS((s,p))

4 workSet(s) := enabled(s)

5 while workSet(s) is not empty
Conditional update of 6 let a € workSet(s)
property state 7 workSet(s) := workSet(s) \ {a}

s’ = a(s)
8.1 p = (aexp) ? 8(p,a) : p

/
Test for acceptance state 8.2y assert(p’ ¢ Fp)
9 if (s',p") & seen then

of violation property

10 seen := seen U {(s,p')}
11 pushStack((s',p’))

12 DFS((s',p'))

13 popStack()

end DEFS

-ety Checking

= Bogor-lite has been extended to check
properties specified as deterministic FSAs
= i.e., single transition on any given symbol

= You specify a function that encodes the
FSA for the violation
=« Option: fsaFunctionId=<function-id>

= where locations with name “bads...”
indicate errors

15

ystem

thread MAIN() {

loc open: live {}
do { } // open
goto run;

loc run: live {}
do { } // run, call close
goto close;

loc close: live {}
do { } // close
goto open;

roperty

extension Property for edu.ksu.cis.projects.bogor.ext.lite.property.Property
{ expdef boolean transformation(string, string); }

function FSASpec() {

loc init: live {}
when Property.transformation("MAIN", "open") do { } goto opened;
when Property.transformation("MAIN", "close") do { } goto bad$State;

loc opened: live {}
when Property.transformation("MAIN", "open") do { } goto bad$State;
when Property.transformation("MAIN", "close") do { } goto init;

loc bad$State: live {} // bad state
do { } goto bad$State;

= Take your instrumentation examples from
last lecture and encode those properties
as violation automata

= Check them with the Bogor-lite support
for on-the-fly product construction

17

