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= To understand the goals and basic
approach to specifying sequencing
properties

= To understand the different classes of
sequencing properties and the algorithmic
techniques that can be used to check
them




= What is a sequencing specification?
= What kinds of sequencing specifications
are commonly used?
= Safety vs. Liveness
= In depth on safety properties
= How to specify them
= Examples
= How to check them

IS chectin

A safety property is just a violating prefix of
a program trace

Naive Algorithm:

= At every state consider the stack trace
leading to that state

« If it is a string in the language of the violation
property, stop and issue an error message




= Our stateful search matches and records
states based on the values of state
variables

=« State values do not encode the path that
reached the state only the effect of that path

= This can lead to missing an erroneous trace

Consider the property
y Is always preceded by x

Imagine a satisfying trace that
is broken into two parts

Imagine a violating trace
leading to the dividing point
in the original trace

Violation is only detected in
suffix that has alread been
searched!




= We need to distinguish
states that are logically X
equivalent but different P
relative to the path that /c<‘
reaches them and the

property being checked

= Note that the naive
algorithm works just y y \ Error
fine for state-less
search

-Safety Properties

= Think of it as a language problem

= Program generates a language of strings over
observables (each path generates a string) — L(P)

= Property generates a (regular) language — L(S)
» Test the languages against each other
« Language containment — L(P) € L(S)
= Non-empty language intersection -- L(P) N L(S) % 0

= Interchangeable due to complementation of finite-
state automata




- Safety Properties

= Two basic approaches

= Both require a deterministic finite-state
automaton for the violation of the property

= Easy to get via complementation and
standard RE->DFA algorithms

= Instrument the program with property

= Check reachability in the product of the
program and property

= Assertions instrument the program
= They are inserted at specific points
= They perform tests of program state

= They render an immediate verdict that is
determined completely locally

= The same approach can be applied for
safety properties
= Instrumentation determines a partial verdict

=« Need a mechanism for communicating between
different parts of the instrumentation




boolean forkl, fork2;
thread Philosopherl () {
loc pickupl: live {} when !forkl

do { forkl := true; } goto pickup2;
loc pickup2: live {} when !fork2
do { fork2 := true; } goto eating;

loc eating: live {} do {} goto drop2;
loc drop2: live {}

do { fork2 := false; } goto dropl;
loc dropl: live {}

do { forkl := false; } goto pickupl;

Consider the property:
a philosopher must pickup a fork before dropping it
e.g., [-Pl.pickupl]*; Pl:dropl; .*

boolean forkl, fork2;
thread Philosopherl () ({
loc pickupl: live {} when !forkl

do {
// record that a pickup of 1 happened
forkl := true;

} goto pickup2;
loc pickup2: live {} when !fork2
do { fork2 := true; } goto eating;
loc eating: live {} do {} goto drop2;
loc drop2: live {}
do { fork2 := false; } goto dropl;
loc dropl: live {}
do {
// check that a pickup of 1 happened
forkl := false;
} goto pickupl;




boolean forkl, fork2, sawpickup;
thread Philosopherl () {
loc pickupl: live {} when !forkl
do {
sawpickup := true;
forkl := true;
} goto pickup2;
loc pickup2: live {} when !fork2
do { fork2 := true; } goto eating;
loc eating: live {} do {} goto drop2;
loc drop2: live {}
do { fork2 := false; } goto dropl;
loc dropl: live {}

do {
assert (sawpickup) ;
forkl := false;

} goto pickupl;

tion Approach

No change to the checking algorithm!
= Safety checking has been compiled to assertion
checking
Adds state variables

= That record property related history to
distinguish states

= These multiply the size of the state space




IR es Ao

1 seen := {sg}
2 pushStack(sg)

o:assert(s) = false;stop
3 DFS(sq)

o : otherwise; proceed

DFS(s)

4 workSet(s) := enabled(s)

5 while workSet(s) is not emp
6 let o € workSet(s)

7 workSet(s) := workSet(s) \ {a}
8 s’ = a(s)
9 if s’ & seen then

10 seen := seen U {s'}
11 pushStack(s")

12 DFS(s)

13 popStack()

end DFS

-ation Approach

= Instrumenting programs is

= Laborious — must identify all points that are
related to the property (may be conditional on
data)

= Error prone — lack of instrumentation at a state
change (false error), lack of instrumentation at
a state check (missed error)

= Property specific — must be done for each
property

= Automate it via product construction




boolean forkl, fork2;
thread Philosopherl () {
loc pickupl: live {} when !forkl

do { forkl := true; } goto pickup2;
loc pickup2: live {} when !fork2
do { fork2 := true; } goto eating;

loc eating: live {} do {} goto drop2;
loc drop2: live {}

do { fork2 := false; } goto dropl;
loc dropl: live {}

do { forkl := false; } goto pickupl;

Consider the property:
a philosopher must pickup a fork before dropping it
e.g., [-Pl.pickupl]*; Pl:dropl; .*

Automaton

A finite state automaton (FSA) is a 5-tuple
(Q 2,8, S F) where

Qs a finite set of states

2 _is a finite set of symbols, the alphabet

« S C @ the set of start states

= F C Q@ the set of final states

=0 Q X X — (@ is the transition function




roperty

Consider the property:

a philosopher must pickup a fork before dropping it

e.g., [-Pl.pickupl]*; Pl:dropl; .*

[- P1.pickupl,P1:dropl]

P1:dropl

(OBf

P1.pickupl

B

ystem

(pl,pD)

\

(p2,p1) (pl,p2)

N /N

(e.pl) (p2.p2) (pl.e)

|

(d2,pl) (pl,d2)

| l

(dL,pl) (pl,dl)
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ystem Automaton

(p2,p1) (pl,p2)
\

I N\
P1.pigkupl

Pl:dropl/

N
pl.e)

l

(d2,pl) (p2,p2) (pl,d2)

| l

(dL,pl) (pl,dl)

(e.pl)

Synchronous Product of Two Automata
(Q,>,5,8, F) x (Q', >, 8,58 F"
Is a new Automaton
(<Q,Q >>TUX A <S8 > <FF >)

where
< 6(s,a),s > ifae ZNag'
A(< 5,8 >0) =1 <s,8(s,a) > ifag> NaecX
< 6(s,a),8'(s';a) > ifae ZANaeX!
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- Product Automaton

| l

plL.pL1) (pl,pl,3)

Plpl/
plal| ®2pl3) }pl,pzs) (pL.p2,1)
(e,p1,3) oy (ple3) (pleD)
/Y
(d2,pl.3) (p2.p2.3)  (pl.d2.3) (pl.d2,1)

l

(dl,pl.3) (pl.dl,3) (pl.dlL,1)

- Wrong Property

[- P2.pickupl]*; P1:dropl; .*

(p2.,pl)

(pl.,pD)

/ POy 1

P1:d1

(d2,pl)

l

(dlpl)

@pl)  (P2p2)  (ple)

\P2.pl
(pl,p2)

!

(pl1,d2)

l

(pl.dl)
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-roduct Automaton

Pl:dropl | —

1,p2,3
(p2,p1i1) (pLp s‘)

(e,p1,1) (pl.e,3)

@,pl,l)  (pl,d2,3)

(d1,p1,1) (p1,£1,3)

(pL.pl.1) (pL.pl.3)

o2p2.) | p2p23)

\%pi&k@i

(pl,pl.2)

1,p2,2
(p2,p1@) (B p2.,2)

(p2,p2.2)
(epl.2)  (ple2)

@2,p1,3) || @2p12) (p1.d2,2)

@1,p1,3)/ \@d1,p1.2) (p1,£1,2)

1 seen := {sp}
2 pushStack(sg)
3 DFS(so)

DFS(s)
4 workSet(s) := enabled(s)

5 while workSet(s) is not empty

6 let a € workSet(s)

7 workSet(s) := workSet(s) \ {a}

8 s’ = a(s)

9 if s’ & seen then

10 seen := seen U {s'}
11 pushStack(s')

12 DFS(s")

13 popStack()

end DFS

How would you
modify this algorithm
to construct the
product on the fly?
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= Alphabet of property is always a subset of
alphabet of system

Zproperty C Zsystem

= This means we can drive transitions in the
property automaton from transitions in
the system automaton

-naton Checking

1 seen := {sp}
2 pushStack(sg)

3 DFS(sg) —— -
See if this transition is

DFS(s) a symbol in the

4 workSet(s) := enab,

5 while wor is not empty property alphabet

6 let a € workSet(s)

7 workSet(s) := workSet(s) \ {a}

8 s’ = a(s) .

9  if s & seen then If so them drive a

10 seen := seen U {s'} transition in the

1 pushStack(s') roperty automaton

12 DFS(s) property

13 popStack()

end DFS




-maton Checking

1 seen := {(s0,p0)}
2 ack((s0,10))

New property state DFS((s0.r0))

component

DFS((s,p))

4 workSet(s) := enabled(s)

5 while workSet(s) is not empty
Conditional update of 6 let a € workSet(s)
property state 7 workSet(s) := workSet(s) \ {a}

s’ = a(s)
8.1 p = (aexp) ? 8(p,a) : p

/
Test for acceptance state 8.2y assert(p’ ¢ Fp)
9 if (s',p") & seen then

of violation property

10 seen := seen U {(s,p')}
11 pushStack((s',p’))

12 DFS((s',p'))

13 popStack()

end DEFS

-ety Checking

= Bogor-lite has been extended to check
properties specified as deterministic FSAs
= i.e., single transition on any given symbol

= You specify a function that encodes the
FSA for the violation
=« Option: fsaFunctionId=<function-id>

= where locations with name “bads...”
indicate errors
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ystem

thread MAIN() {

loc open: live {}
do { } // open
goto run;

loc run: live {}
do { } // run, call close
goto close;

loc close: live {}
do { } // close
goto open;

roperty

extension Property for edu.ksu.cis.projects.bogor.ext.lite.property.Property
{ expdef boolean transformation(string, string); }

function FSASpec() {

loc init: live {}
when Property.transformation("MAIN", "open") do { } goto opened;
when Property.transformation("MAIN", "close") do { } goto bad$State;

loc opened: live {}
when Property.transformation("MAIN", "open") do { } goto bad$State;
when Property.transformation("MAIN", "close") do { } goto init;

loc bad$State: live {} // bad state
do { } goto bad$State;




= Take your instrumentation examples from
last lecture and encode those properties
as violation automata

= Check them with the Bogor-lite support
for on-the-fly product construction
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