
A technical discussion of RUP

Using the IBM Rational Unified Process
for Small Projects:

Gary Pollice

Expanding Upon eXtreme Programming

Table of Contents

Abstract ... 1
Introduction... 1

A SHORT STORY.. 1
OVERVIEW... 2

Project Start — Inception .. 3
AN APPROVED BUSINESS CASE.. 4
RISK LIST .. 5
PRELIMINARY PROJECT PLAN .. 5
PROJECT ACCEPTANCE PLAN... 5
A PLAN FOR THE INITIAL ELABORATION ITERATION .. 5
INITIAL USE-CASE MODEL .. 5

Elaboration.. 6
Construction.. 7

IS IT REALLY ALL ABOUT THE CODE? ... 10
Transition .. 10
Summary ... 12
Appendix: The Rational Unified Process.. 12
Appendix: eXtreme Programming .. 14

Using the Rational Unified Process for Small Projects: Expanding Upon eXtreme Programming

1

Abstract
The IBM Rational Unified Process® (RUP®

) is a complete software-development process framework that
comes with several out-of-the-box instances. Processes derived from RUP vary from lightweight—
addressing the needs of small projects with short product cycles—to more comprehensive processes
addressing the broader needs of large, possibly distributed, project teams. Projects of all types and sizes
have successfully used RUP. This white paper describes how to apply RUP in a lightweight manner to
small projects. We describe how to effectively apply eXtreme Programming (XP) techniques within the
broader context of a complete project.

Introduction

A Short Story
One morning, a manager came to me and asked if I could spend a few weeks setting up a simple
information system for a new venture the company was starting. I was bored with my current project and
yearned for the excitement of a start-up, so I jumped at the chance—I could move fast and develop great
new solutions, unburdened by the bureaucracy and procedures of the large organization in which I worked.

Things started great. For the first 6 months, I worked mostly on my own—long, fun hours. My productivity
was incredible and I did some of the best work of my career. The development cycles were fast and I
typically produced some major new parts of the system every few weeks. Interactions with the users were
simple and direct—we were all part of one close-knit team, and we could dispense with formalities and
documentation. There was also little formality of design; the code was the design, and the design was the
code. Things were great!

Things were great, for a while. As the system grew, there was more work to do. Existing code had to
evolve as the problems changed and we refined our notions of what we needed to do. I hired several people
to help with development. We worked as a single unit, often in pairs on parts of the problem. It enhanced
communication and we could dispense with the formality.

A year passed.

We continued to add people. The team grew to three, then five, then seven. Every time a new person
started, there was a lengthy learning curve and, without the benefit of experience, it became more difficult
to understand and explain the whole system, even as an overview. We started capturing the white-board
diagrams that showed the overall structure of the system, and the major concepts and interfaces more
formally.

We still used testing as the primary vehicle for verifying that the system did what it needed to do. With
many new people on the “user” side, we found that the informal requirements and personal relationships
that worked in the early days of the project were no longer enough. It took longer to figure out what we
were supposed to build. As a result, we kept written records of discussions so we did not have to
continually recall what we had decided. We also found that describing the requirements and usage
scenarios helped to educate new users on the system.

As the system grew in size and complexity, something unexpected happened—the architecture of the
system required conscious attention. In the early days, the architecture could exist largely in my head, then
later on a few scribbled notes or on flip charts. However, with more people on the project it was harder to
keep the architecture under control. Since not everyone had the same historical perspective as I did, they
were unable to see the implications of a particular change to the architecture. We had to define the
architectural constraints on the system in more precise terms. Any changes that might affect the

Using the Rational Unified Process for Small Projects: Expanding Upon eXtreme Programming

2

architecture required team consensus and, ultimately, my approval. We discovered this the hard way, and
there were some difficult lessons learned before we really admitted to ourselves that architecture was
important.

This is a true story. It describes only some of the painful experiences of this project. The experiences are
unusual only in one respect: several of us were there from beginning to end, over a period of years. Usually
people come and go on a project, and do not see the downstream impact of their actions.

This project could have been helped with a little bit of process. Too much process gets in the way, but lack
of process brings new risks. Like the person who invests in high-risk stocks seeing only the high returns,
groups who use too little process, ignoring key risks in their project environment, are “hoping for the best
but unprepared for the worst.”

Overview
This paper discusses how to apply process to projects like the one just described. We focus on getting the
“right level” of process. Understanding the challenges faced by the development team and the business
environment in which it operates, derives the right level of process formality. Once we understand these
challenges, we supply just enough process to mitigate the risks. There is no one-size-fits-all process,
lightweight or otherwise. In the following sections, we explore the idea that the right level of process is a
function of risk.

We focus on how to get the right level of process by using two popular methodologies: the Rational
Unified Process or RUP and eXtreme Programming (XP). We show how to tailor the RUP to a small
project and how it addresses many areas not considered by XP. The combination gives a project team the
guidance needed for mitigating the risks and achieving their goal of delivering a software product.

RUP is a process framework developed by IBM Rational. It‘s an iterative development methodology
based upon six industry-proven best practices (see RUP appendix). Over time, a RUP-based project goes
through four phases: Inception, Elaboration, Construction, and Transition. Each phase contains one or more
iterations. In each iteration, you expend effort in various amounts to each of several disciplines (or
workflows) such as Requirements, Analysis and Design, Testing, and so forth. The key driver for RUP is
risk mitigation. RUP has been refined by use in thousands of projects with thousands of IBM Rational customers
and partners. The following diagram illustrates the flow through a typical iteration:

Typical Iteration Flow

As an example of how risk can shape a process, we might ask if we should model the business. If there is
some significant risk that failing to understand the business will cause us to build the wrong system, we
should probably perform some amount of business modeling. Do we need to be formal about the modeling

Using the Rational Unified Process for Small Projects: Expanding Upon eXtreme Programming

3

effort? That depends upon our audience—if a small team will use the result informally, we might just make
some informal notes. If others in the organization are going to use the results or review them, we probably
have to invest some extra effort, and focus more on the correctness and understandability of the
presentation.

You can customize RUP to fit the needs of almost any project. If none of the out-of-the-box processes, or
roadmaps, fits your specific needs, you can easily produce your own roadmap. A roadmap describes how
the project plans to use the process and, therefore, represents a specific process instance for that project.
What this means is that RUP can be as light or as heavy as necessary, which we illustrate in this paper.

XP is a lightweight code-centric process for small projects (see XP appendix). It is the brainchild of Kent
Beck and came to the software industry’s attention on the C3 payroll project at Chrysler Corporation
around 1997. Like the RUP, it is based upon iterations that embody several practices such as Small
Releases, Simple Design, Testing, and Continuous Integration. XP promotes several techniques that are
effective for the appropriate projects and circumstances; however, there are hidden assumptions, activities,
and roles.

RUP and XP come from different philosophies. RUP is a framework of process components, methods, and
techniques that you can apply to any specific software project; we expect the user to specialize RUP. XP,
on the other hand, is a more constrained process that needs additions to make it fit a complete development
project. These differences explain the perception in the overall software development community: the big
system people see RUP as the answer to their problems; the small system community sees XP as the
solution to their problems. Our experience indicates that most software projects are somewhere in
between—trying to achieve the right level of process for their situation. Neither end of the spectrum is
sufficient for them.

When you combine the breadth of RUP with some of the XP techniques, you achieve the right amount of
process that appeals to all members of a project and addresses all major project risks. For a small project
team working in a relatively high-trust environment where the user is an integral part of the team XP can
work very well. As the team becomes more distributed and the code base grows, or the architecture is not
well defined, you need something else. You need more than XP for projects that have a “contractual” style
of user interaction. RUP is a framework from which you can extend XP with a more robust set of
techniques when they are required.

The remainder of this paper describes a small process based on the four phases of RUP. In each, we
identify the activities and artifacts produced.1 Although RUP and XP identify different roles and
responsibilities, we do not address these differences here. For any organization or project, the actual project
members must be associated with the proper roles in the process.

Project Start — Inception
Inception is significant for new development efforts, where you must address important business and
requirement risks before the project can proceed. For projects focused on enhancements to an existing
system, the Inception phase is shorter, but is still focused on ensuring that the project is both worth doing
and possible.

During Inception, you make the business case for building the software. The Vision is a key artifact
produced during Inception. It is a high-level description of the system. It tells everyone what the system is,
and may also tell who will use it, why it will be used, what features must be present, and what constraints

1 XP defines three phases: Exploration, Commitment, and Steering. These do not map well to RUP phases so we
choose to use the four RUP phases to describe the process.

Using the Rational Unified Process for Small Projects: Expanding Upon eXtreme Programming

4

exist. The Vision may be very short, perhaps only a paragraph or two. Often the Vision contains the critical
features the software must provide to the customer.

The following example shows a very short Vision written for the project to re-engineer the Rational
external Web site.

To drive Rational’s position as the worldwide leader in e-development (tools, services, and best
practices), by enhancing customer relationships through a dynamic, personalized Web presence
providing visitor self-service, support, and targeted content. The new process and enabling
technologies will empower content providers to speed publishing and quality of content through a
simplified, automated solution.

Four essential Inception activities specified in RUP are:

Formulate the scope of the project. If we are going to produce a system, we need to know what it is and
how it will satisfy the stakeholders. In this activity, we capture the context and most important
requirements in enough detail to derive acceptance criteria for the product.

Plan and prepare the business case. With the Vision as a guide, we define our risk mitigation strategy,
develop an initial project plan, and identify known cost, schedule, and profitability trade-offs.

Synthesize a candidate architecture. If the system under consideration is something with little novelty
and has a well-understood architecture, you may skip this step. As soon as we know what the customer
requires, we allocate time to investigate potential candidate architectures. New technology brings with it
the potential for new and improved solutions to software problems. Spending time early in the process to
evaluate buy versus build trade-offs, as well as selecting technologies, and perhaps developing an initial
prototype, can reduce some major risks for the project.

Prepare the project environment. Any project needs a project environment. Whether you use some of the
XP techniques, such as pair programming, or more traditional techniques you need to determine the
physical resources, software tools, and procedures the team will follow.

It does not take a lot of “process time” to perform Inception on a small project. You can often complete
Inception in a couple of days or less. The following sections describe the expected artifacts, other than the
Vision, of this phase.

An approved Business Case
Stakeholders have the chance to agree that, from a business perspective, the project is worth doing. RUP
and XP agree that it is better to find out early that the project is not worth doing rather than spend valuable
resources on a doomed project. XP, as it is described in Planning Extreme Programming2, is fuzzy on how
projects come into being and what roles are involved (it seems clearest in the context of an existing
business or system), but in its Exploration phase XP deals with equivalent RUP Inception artifacts.

Whether you consider the business issues informally as in XP, or make the business case a first-class
project artifact, as with RUP, you need to consider them.

2 This is one of the three book currently published on eXtreme Programming.

Using the Rational Unified Process for Small Projects: Expanding Upon eXtreme Programming

5

Risk List
You maintain the Risk List throughout the project. This can be a simple list of risks with planned mitigation
strategies. The risks are prioritized. Anyone associated with the project can see what the risks are and how
you address them at any point in time. Kent Beck describes a set of risks that XP addresses and how it
addresses them, but no general approach to risk handling is provided.3

Preliminary Project Plan
Resource estimates, scope, and phase plans are included in this plan. On any project, these estimates
continually change and you must monitor them.

Project Acceptance Plan
Whether you have a formal plan or not depends upon the type of project. You must decide how the
customer will evaluate the success of the project. On an XP project, this takes the form of acceptance tests
created by the customer. In a more general process, the customer may not actually construct the tests, but
the criteria for acceptance must be driven by the customer directly or through another role, such as the
System Analyst, who interacts directly with the customer. There may be other acceptance criteria such as
the production of end-user documentation and help, which XP does not cover.

A plan for the initial Elaboration iteration
In a RUP-based project, you plan each iteration in detail at the end of the previous iteration. At iteration
end, you evaluate the progress against the criteria designated at the start of the iteration. XP provides some
good techniques for monitoring and measuring the success of an iteration. The metrics are simple and you
can easily incorporate them into the iteration plan and evaluation criteria.

Initial Use-Case Model
While this may sound formal and intimidating, it is quite straightforward. Use cases correspond to the
“stories” written by the customer in XP. The difference is that a use case is a complete set of actions
initiated by an actor, someone or something outside of the system, that provides visible value. The use case
may contain several XP stories. In order to define the scope of the project, RUP recommends identifying
the use cases and actors during Inception. Focusing on complete sets of actions from the user’s point of
view helps partition the system into parts that provide value. This helps determine the appropriate
implementation features so we have something to deliver to the customer at the end of each iteration
(except possibly the early Inception and Elaboration iterations).

Both RUP and XP help us ensure that we are not in the position of having 80% of the complete system
done, but nothing completed in deliverable form. We always want to be able to release the system to
provide some value to the customer.

The use-case model, at this point, identifies use cases and actors with little or no supporting detail. It can be
simple text or UML (Unified Modeling Language) diagrams drawn by hand or with a drawing tool. This
model helps us ensure that we have included the right features for the stakeholders and have not forgotten
anything, and allows us to easily see the whole system. Use cases are prioritized based upon several factors
such as risk, importance to the customer, and technical difficulty.

None of the artifacts for Inception needs to be overly formal or large. Make them as simple or as formal as
you need. XP contains guidance on planning and system acceptance while RUP adds a little more during
the early part of a project. This small addition may pay big dividends by addressing a more complete set of
risks.

3 In eXtreme Programming eXplained, Kent Beck describes eight risks and how XP addresses the risks (pp. 3-5). We
invite the reader to look at them and determine if they are sufficient. We believe there are many other risks and a
general risk-handling strategy is a necessary part of any process.

Using the Rational Unified Process for Small Projects: Expanding Upon eXtreme Programming

6

Elaboration
The goal of the Elaboration phase is to baseline the architecture of the system to provide a stable basis for
the bulk of the design and implementation effort in the Construction phase. The architecture evolves out of
a consideration of the most significant requirements (those that have a great impact on the architecture of
the system) and an assessment of risk. The stability of the architecture is evaluated through one or more
architectural prototypes.

In RUP, design activities focus on the notion of system architecture and, for software-intensive systems,
software architecture. Using component architectures is one of the six best practices of software
development embodied in RUP, which recommends spending time developing and maintaining the
architecture. The time spent on this effort mitigates the risks associated with a brittle and inflexible system.

XP replaces the notion of architecture by “metaphor.” The metaphor captures part of the architecture,
whereas the rest of the architecture evolves as a natural result of code development. XP assumes that
architecture emerges from producing the simplest design and continually refactoring the code.

In RUP, architecture is more than metaphor. During Elaboration, you construct executable architectures,
from which it is possible to reduce many of the risks associated with meeting non-functional requirements
such as performance, reliability, and robustness. In reading the XP literature, it is possible to infer that
some of what RUP prescribes for Elaboration, specifically undue concentration on what XP calls
infrastructure, is wasted effort. XP says that effort expended building infrastructure in advance of the need
for it, leads to overly complex solutions and the production of things that have no value to the customer. In
RUP, architecture and infrastructure are not identical.

The approach to architecture is quite different between RUP and XP. RUP advises that you pay attention to
architecture to avoid the risks associated with increased scope over time, additional project size, and the
addition of new technologies. XP assumes an existing architecture or that the architecture is simple enough
or understood well enough that it can evolve as you code. XP advises not to design for tomorrow, but to
implement for today. The belief is that tomorrow will take care of itself if you keep the design as simple as
possible. RUP invites you to assess the risks of such a proposition. If the system or parts of it have to be
rewritten in the future, XP indicates that it is still better and often less expensive than planning for the
possibility now. For some systems, this will be true and, using RUP, your consideration of risk during the
Elaboration phase will lead you to this conclusion. RUP does not assert this truth for all systems and
experience suggests that for larger, more complex and unprecedented systems, it can be disastrous.
While it is true that paying too much attention to future possibilities that may never occur can be wasteful,
paying the right amount of attention to the future is a prudent thing to do. How many companies can afford
to continually rewrite or even refactor code?

On any project, you should do at least these three activities during Elaboration:

Define, validate, and baseline the architecture. Use the risk list to develop the candidate architecture
from the Inception phase. We are interested in making sure the envisioned software is feasible. If there is
little novelty in the chosen technology or little complexity to the system, this task will not take long. If you
are adding to an existing system, the task may not be necessary if no changes to the existing architecture
are needed. When there are real architectural risks present, you do not want to leave the architecture to
chance.

As a part of this activity, you may perform some component selection and make buy/build/reuse decisions.
If this requires a lot of effort, you may break this out into a separate activity.

Using the Rational Unified Process for Small Projects: Expanding Upon eXtreme Programming

7

Refine the Vision. During the Inception phase, you developed a Vision. As you determine the feasibility of
the project, and the stakeholders have time to review and comment on the system, there may be changes to
the Vision document and requirements. Revisions to it and the requirements typically occur during
Elaboration. By the end of Elaboration, you have established a solid understanding of the most critical use
cases that drive architectural and planning decisions. Stakeholders need to agree that the current vision
could happen if you execute the current plan to develop the complete system, in the context of the current
architecture. The amount of change should lessen during subsequent iterations, but you will want to
allocate some amount of time in each iteration for requirements management.

Create and baseline iteration plans for the Construction phase. Fill in the details of your plan now. At
the end of each Construction iteration, you revisit the plans and adjust as necessary. Adjustments usually
occur because the effort was incorrectly estimated, the business environment changed, or the requirements
changed. Prioritize the use cases, scenarios, and technical efforts, and then assign them to iterations. At the
end of each iteration you plan to have a working product that provides value to your stakeholders.

You may perform other activities during Elaboration. We recommend establishing the testing environment
and starting to develop tests. While detailed code may not exist, you may still design and perhaps
implement integration tests. Programmers should be ready to develop unit tests and know how to use the
testing tools selected for the project. XP recommends writing the test before the code. This is a good idea,
especially when you are adding to an existing body of code. However you choose to do your testing, the
time to establish a regular testing regimen is in Elaboration.

The Elaboration phase described by RUP contains elements of the Exploration and Commitment phases of
XP. The XP approach to dealing with technical risks, such as novelty and complexity, is the “spike”
solution, i.e. taking some time to experiment in order to estimate effort. This technique is effective in many
cases, when there is a larger risk not embodied in a single use case or story, you need to apply a little more
effort to ensure system success and accurate effort estimation.

You usually update artifacts, such as Requirements and the Risk List from the Inception phase, during
Elaboration. Artifacts that may appear during Elaboration are:

Software Architecture Document (SAD). The SAD is a composite artifact that provides a single source of
technical information throughout the project. At the end of Elaboration, it may contain detailed descriptions
for the architecturally significant use cases and identification of key mechanisms and design elements.
When the project enhances an existing system, you may use a prior SAD or you may decide there is little
risk in not having the document. In all cases, you should perform the thought processes that lead to the
document.

Iteration Plans for Construction. You plan the number of Construction iterations during Elaboration.
Each iteration has specific use cases, scenarios, and other work items assigned to it. This information is
captured and baselined in the iteration plans. Review and approve plans as part of the exit criteria for
Elaboration.

On very small, brief projects, you might merge the Elaboration iteration with Inception and Construction.
The essential activities are still performed, but resources for iteration planning and reviews are reduced.

Construction
The goal of Construction is to complete the development of the system. The Construction phase is, in some
sense, a manufacturing process, where you emphasize managing resources and controlling operations to
optimize costs, schedules, and quality. In this sense, the management mindset undergoes a transition from

Using the Rational Unified Process for Small Projects: Expanding Upon eXtreme Programming

8

the development of intellectual property during Inception and Elaboration, to the development of
deployable products during Construction and Transition.

XP concentrates on Construction. The Construction phase is where you produce code. The XP phases are
for planning purposes, but the focus of XP is on building the code.

Each Construction iteration has three essential activities:

Manage resources and control process. Everyone needs to know who will do what and when. You must
make sure that the workload does not exceed your capacity and that work is progressing according to
schedule.

Develop and test components. You build the components required to satisfy the use cases, scenarios, and
other functionality for the iteration. You test them with unit and integration tests.

Assess the iteration. Upon iteration completion, you need to determine if you satisfied the goals of the
iteration. If not, you need to re-prioritize and manage the scope to meet your delivery date.

Different types of systems require different techniques. RUP offers the software engineer different
guidelines and help to build the right components. Requirements, in the form of use cases and
supplementary (non-functional) requirements, are detailed enough for the engineer to do the work. Several
activities in RUP provide guidance on designing, implementing, and testing different kinds of components.
An experienced software engineer does not need to look at these activities in detail. A less experienced
engineer will find a wealth of help on best practices. Each team member can go as shallow or as deep into
the process as needed. They all, however, look at a single process knowledge base.

In XP, stories drive the implementation. In the book Extreme Programming Installed, Jeffries, et al say that
the stories are “promises for conversation” with the programmers.4 Continual, effective communication is
good. Although there are always details that need clarification, if the stories are not detailed enough for
programmers to do most of their work, they are not ready. Use cases must be detailed enough for
programmers to implement the use case. In many cases, programmers help write the technical details of the
use case. Jeffries, et al also say that the conversations will be documented and attached to the story. RUP
suggests this as well, except in the form of a use-case specification, which can be as informal as needed.
Capture and management of the outcome of the conversations is a task you must manage.

The XP forté is Construction. There are some nuggets of wisdom and guidance appropriate for most teams.
The most noteworthy XP practices are:

Testing – Programmers continually write tests to go along with their code. The tests reflect the stories. XP
urges you to write the tests first, which is an excellent practice because it forces you to deeply understand
the stories and ask more questions where necessary. Whether you write them before or after you code, write
them! Add them to your test suite and make sure to run them every time code changes.

Refactoring – Restructure the system continually, without changing its behavior, to make it simpler or add
flexibility. You need to determine if this is a good practice for your team. What is simple to one person
may be complex to another. There is an example where two very smart engineers on a project spent every
evening rewriting the other’s code because they thought it was too complex. As a by-product, they

4 This description is attributed to Allistair Cockburn.

Using the Rational Unified Process for Small Projects: Expanding Upon eXtreme Programming

9

continually broke the builds the next day for the rest of the team. Testing helps, but the team would have
been better off had they not gotten into the coding wars.

Pair programming – XP claims that pair programming produces better code in less time. There is
evidence that this is the case.5 There are many human and environmental factors to consider if you
implement this practice. Are the programmers willing to try this? Is your physical environment such that
there is room for two programmers to work effectively at a single workstation? What do you do with
programmers who are telecommuting or in other locations?

Continuous integration – Integrate and build the system often, perhaps more than once a day. This is a
great way to ensure the structural integrity of the code and it allows for continual quality monitoring
through integration testing.

Collective ownership – Anyone has permission to change any code at any time. XP relies on the fact that a
good set of unit tests will reduce the risk of this practice. The benefits of having everybody familiar with
everything does not scale beyond some point—ten thousand lines of code; twenty thousand; surely less
than fifty thousand?

Simple design – As with refactoring, the design of the system is continually modified to remove
complexity. Once again, you need to determine how large this might scale up to before it does not work. If
you spend time during Elaboration designing the architecture, we believe that the simple design will
emerge and become stable much sooner.

Coding standards – This is always a good practice. It does not matter what the standards are as long as
you have them and everyone agrees to use them.

RUP and XP both agree that you must manage (or steer) iterations. Metrics can provide good planning
information since they help you choose what is best for your team. There are three things to measure: time,
size, and defects. From this you can obtain all sorts of interesting statistics. XP provides simple metrics to
use to determine progress and predict accomplishment. These metrics center around the number of stories
finished, the number of tests passed, and the trends in these statistics. XP makes a strong case for using a
minimal amount of metrics since looking at more will not necessarily improve your project’s chances for
success. RUP provides guidelines on what you might measure and how to measure, and gives examples of
metrics. In all cases, metrics must be simple, objective, easy to collect, easy to interpret, and difficult to
misinterpret.

What artifacts appear during Construction iterations? Depending upon whether the iteration is an early or
late Construction iteration, you might create any of the following:

Component – A component represents a piece of software code (source, binary, or executable), or a file
containing information; for example, a startup file or a ReadMe file. A component can also be an aggregate
of other components, such as an application consisting of several executables.

Training materials – Based on use cases, produce a preliminary draft of user manuals and other training
materials as early as possible if the system has a strong user interface aspect.

5 Strengthening the Case for Pair Programming, IEEE Software, July/August, 2000.

Using the Rational Unified Process for Small Projects: Expanding Upon eXtreme Programming

10

Deployment Plan – The customer needs a system. The Deployment Plan describes the set of tasks
necessary to install, test, and effectively transition the product to the user community. For Web-centric
systems, we have found that the Deployment Plan has increased importance.

Transition Phase Iteration Plan. As you approach the time to deploy the software to your users, you
complete and review the Transition Phase Iteration Plan.

Is it really all about the code?
Besides the differences in approach to architecture between RUP and XP, there are others. One is the way
you communicate the design. XP indicates that the code is the design and the design is the code. It is true
that the code is always in agreement with itself. We believe that some effort to capture and communicate
the design, other than the code, is time well spent. This short story might illuminate this.

One engineer had two experiences on software projects where the design was in the code and it was the
only place to find design information. Both of these projects were compiler related: one was to improve and
maintain an optimizer for an Ada compiler, and the other was a project to port the front-end of a compiler
to a new platform and link a third-party code generator to it.

Compiler technology is complicated, but well known. On both projects, the engineer wanted an overview
of the design and implementation of the compiler (or optimizer). In each case he received a pile of source
code listings, several inches thick, and was told to “look in there.” He would have given anything for a few
well-constructed diagrams with some supporting text. The optimizer project was never completed. The
compiler project did get finished successfully, with great code quality because of an extensive set of tests
developed along with the code. The engineer spent days walking through the code in a debugger to try to
understand what it did. The personal cost of minor burnout and the cost to the team was not worth it. We
did not have the option of stopping after 40 hours as XP suggests and we expended a lot of heroic effort to
get the job done.

The principal problem with having only the code is that the code—no matter how well documented—does
not tell you the problem it solves, it only conveys the solution to the problem. Some documentation of the
requirements goes a long way to explain the original goals long after the original users and developers have
moved on. To maintain a system, you often need to know what the original project team had in mind. Some
high-level design documents are similar – often the code is at too low a level of abstraction to really tell
what the system, as a whole, is trying to do. This is especially true in Object-Oriented systems in which the
thread of execution is hard or impossible to follow by just looking at the classes. Design documents guide
you about where to look when there are problems later—and there are always problems later.

The moral of the story is that some time spent capturing and maintaining design documents really does
help. It reduces the risk of misunderstanding and it can speed up the development. The XP approach is to
spend a few minutes sketching out the design or to use CRC cards.6 The team does not maintain these, but
goes to work on the code. There is an implicit assumption that the tasks are simple enough that we already
know how to proceed. Even if we do, the next person coming along might not be so lucky. RUP suggests
you spend a little more time capturing and maintaining these design artifacts.

Transition
The focus of Transition is to ensure that software is available for its end users. The Transition phase
includes testing the product in preparation for release and making minor adjustments based on user
feedback. At this point in the lifecycle, user feedback needs to focus mainly on fine-tuning the product,
configuring, installing, and usability issues.

6 CRC (Class, Responsibility, and Collaboration) cards were developed by Kent Beck and Ward Cunningham to teach
practitioners the principles of Object-Oriented design.

Using the Rational Unified Process for Small Projects: Expanding Upon eXtreme Programming

11

Release early and often is a great idea. But, what do we mean by a release? XP is vague about this and does
not address the manufacturing issues necessary to release commercial software. You may be able to
shortcut some of the issues on an internal project; but even then, you need documentation, training, and so
forth. What about support and change management? Is it realistic to expect that the on-site customer will
control these too? Bruce Conrad points out in his InfoWorld review of XP7 that customers may not want to
get software that is continually changing. You must weigh the benefit of getting changes to the customer
quickly with the disadvantages of change and possible destabilization.

When you decide to release, you need to provide your end-user with more than just code. The activities and
artifacts in Transition guide you through this part of the software development process. The activities
center on getting a usable product to your customer. The essential Transition activities are the following:

Finalize end-user support material. This activity can be as simple as checking items off a list, but you
need to make sure that your organization is prepared to support your customer.

Test the product deliverable in a customer environment. If you can simulate the customer environment
at your location, do so. Otherwise, go to the customer and install your software to ensure that it works. You
do not want to be in the unenviable position of saying to the customer “but it worked on our system”.

Fine tune the product based upon customer feedback. If possible, plan one or more beta-testing periods
where you deliver the software to a limited number of customers. If you do this, you need to manage the
beta-testing period and consider the customer feedback in your “end game”.

Deliver the final product to the end user. Depending upon the type of software product and release, there
are many details about packaging, manufacturing, and other production issues to address. Rarely do you
just put the software in a directory and send out mail letting your customer community know that the
software is there for them.

As with most of the other phases, the amount of formality and complexity of your process will vary.
However, if you do not pay attention to deployment details, you can negate weeks and months of good
development effort and end up with a product that is a failure in your target marketplace.

You can produce several artifacts during the Transition phase. If your product is one that will have future
releases (and how many do not?), you will have begun identifying features and defect fixes for the next
release. The essential artifacts for any project are:

Deployment Plan – Finalize the Deployment Plan you started in the Construction phase and use it as the
roadmap for customer delivery.

Release Notes – It is a rare software product that does not have last minute instructions for the end user.
Plan on it and have a usable, consistent format for your notes.

Training Materials and Documentation – There is a broad spectrum of forms these materials can take.
Will you provide everything on-line? Will you have a tutorial? Is your product help complete and usable?
Do not assume that your customer will know what you know. Your success depends on helping them
succeed.

7 http://www.infoworld.com/articles/mt/xml/00/07/24/000724mtextreme.xml

Using the Rational Unified Process for Small Projects: Expanding Upon eXtreme Programming

12

Summary
Building software is more than writing code. A software development process must focus on all activities
necessary to deliver quality to your customers. A complete process does not have to be heavy. We have
shown how you can have a small, yet complete, process by focusing on the essential activities and artifacts
for your project. Perform an activity or produce an artifact if it helps mitigate risk on your project. Use as
much, or as little, process and formality as you need for your project team and your organization.

RUP and XP are not necessarily exclusive. By incorporating techniques from both methods, you can arrive
at a process that helps you deliver better quality software quicker than you do today. Robert Martin
describes a process called the dX process, which he claims to be RUP compliant.8 It is an instance of a
process built from the RUP framework.

A good software process incorporates industry-proven best practices. Best practices are those that have
been tested over time, in real software development organizations. XP is a method that is the focus of much
attention today. It is code-centric and offers a promise of minimal process overhead and maximal
productivity. There are many techniques in XP that warrant consideration and adoption in the right
situations.

XP focuses on stories, tests, and code—it discusses planning at some length, but treats the capture of plans
lightly. XP implies that you may produce other things such as “do a CRC design with a few cards, or
sketch some UML…” or “Don’t produce documents or other artifacts that aren’t being used …”, but treats
them in passing. RUP invites you to consider producing only what is useful and required as you formulate
and update the development plan, and it identifies what these things might be.

RUP is a process that addresses the complete software development lifecycle. It focuses on best practices
that have evolved on thousands of projects. We encourage the investigation and invention of new
techniques that lead to best practices. As new best practices emerge, we look forward to incorporating them
into RUP.

Appendix: The Rational Unified Process
The Rational Unified Process or RUP provides a disciplined approach to software development. It is a
process product, developed and maintained by IBM Rational. It comes with several out-of-the-box
roadmaps for different types of software projects. RUP also provides information to help you use other
Rational tools for software development, but it does not require the Rational tools for effective application
to an organization; integrations with other vendors’ offerings are possible.

RUP provides guidance for all aspects of a software project. It does not require you to perform any specific
activity or produce any specific artifact. It does provide information and guidelines for you to decide what
is applicable to your organization. It also provides guidelines that help you tailor the process if none of the
out-of-the-box roadmaps suits your project or organization.

RUP emphasizes the adoption of certain best practices of modern software development, as a way to
reduce the risk inherent in developing new software. These best practices are:

1. Develop iteratively
2. Manage requirements

8 http://www.objectmentor.com/publications/RUPvsXP.pdf. This is a chapter from an unpublished book by Martin,
Booch, and Newkirk.

Using the Rational Unified Process for Small Projects: Expanding Upon eXtreme Programming

13

3. Use component-based architectures
4. Model visually
5. Continuously verify quality
6. Control change

These best practices are woven into the Rational Unified Process definitions of:

Roles – sets of activities performed and artifacts owned.

Disciplines – focus areas of software engineering effort such as Requirements, Analysis and Design,
Implementation, and Test.

Activities – definitions of the way artifacts are produced and evaluated.

Artifacts – the work products used, produced or modified in the performance of activities

RUP is an iterative process that identifies four phases of any software development project. Over time, the
project goes through Inception, Elaboration, Construction, and Transition phases. Each phase contains one
or more iterations where you produce an executable, but perhaps incomplete system (except possibly in the
Inception phase). During each iteration you perform activities from several disciplines in varying levels of
detail. The following is an overview diagram of the RUP.

RUP Overview Diagram

The Rational Unified Process, An Introduction, Second Edition is a good overview of the RUP. You can
find further information and an evaluation of the RUP on the Rational Web site at:
www.rational.com

Using the Rational Unified Process for Small Projects: Expanding Upon eXtreme Programming

14

Appendix: eXtreme Programming
eXtreme Programming (XP) is a software development discipline developed by Kent Beck in 1996. It is
based upon four values: communication, simplicity, feedback, and courage. It stresses continual
communication between the customer and development team members by having an on-site customer while
development progresses. The on-site customer decides what will be built and in what order. You embody
simplicity by continually refactoring code and producing a minimal set of non-code artifacts. Many short
releases and continual unit testing are the feedback mechanisms. Courage means doing the right thing, even
when it is not the most popular thing to do. It means being honest about what you can and cannot do.

Twelve XP practices support the four values. They are:

The planning game. Determine the features in the next release through a combination of prioritized stories
and technical estimates.

Small releases. Release the software often to the customer with small incremental versions.

Metaphor. The metaphor is a simple shared story or description of how the system works.

Simple design. Keep the design simple by keeping the code simple. Continually look for complexity in the
code and remove it at once.

Testing. The customer writes tests to test the stories. Programmers write tests to test anything that can
break in the code. You write tests before you write code.

Refactoring. This is a simplifying technique to remove duplication and complexity from code.

Pair programming. Teams of two programmers at a single computer develop all of the code. One writes
the code, or drives, while the other reviews the code for correctness and understandability at the same time.

Collective ownership. Everyone owns all of the code. This means everyone has the ability to change any
code at any time.

Continuous integration. Build and integrate the system several times a day whenever any implementation
task is completed.

Forty-hour week. Programmers cannot work at peak efficiency if they are tired. Overtime is never allowed
for two consecutive weeks.

On-site customer. A real customer works in the development environment full-time to help define the
system, write tests, and answer questions.

Coding standards. The programmers adopt a consistent coding standard.

Using the Rational Unified Process for Small Projects: Expanding Upon eXtreme Programming

15

There are currently three books available that describe XP:

1. eXtreme Programming Explained
2. Extreme Programming Installed
3. Planning Extreme Programming

Several Web sites are available for further information on XP.

IBM software integrated solutions
IBM Rational supports a wealth of other offerings from IBM software. IBM
software solutions can give you the power to achieve your priority business
and IT goals.

• DB2® software helps you leverage information with solutions for data
enablement, data management, and data distribution.

• Lotus® software helps your staff be productive with solutions for
authoring, managing, communicating, and sharing knowledge.

• Tivoli® software helps you manage the technology that runs your e-
business infrastructure.

• WebSphere® software helps you extend your existing business-critical
processes to the Web.

• Rational® software helps you improve your software development
capability with tools, services, and best practices.

Rational software from IBM
Rational software from IBM helps organizations create business value by
improving their software development capability. The Rational software
development platform integrates software engineering best practices, tools,
and services. With it, organizations thrive in an on demand world by being
more responsive, resilient, and focused. Rational's standards-based, cross-
platform solution helps software development teams create and extend
business applications, embedded systems and software products. Ninety-
eight of the Fortune 100 rely on Rational tools to build better software,
faster. Additional information is available at www.rational.com and
www.therationaledge.com, the monthly e-zine for the Rational community.

Rational is a wholly owned subsidiary of
IBM Corp. (c) Copyright Rational
Software Corporation, 2003. All rights
reserved.

IBM Corporation
Software Group
Route 100
Somers, NY 10589
U.S.A.

Printed in the United States of America
01-03 All Rights Reserved.
Made in the U.S.A.

IBM the IBM logo, DB2, Lotus, Tivoli
and WebSphere are trademarks of
International Business Machines
Corporation in the United States, other
countries, or both.

Rational, and the Rational Logo are
trademarks or registered trademarks of
Rational Software Corporation in the
United States, other countries or both.

Microsoft and Windows NT are
registered trademarks of Microsoft
Corporationin the United States, other
countries, or both.

Java and all Java-based trademarks are
trademarks of Sun Microsystems, Inc. in
the United States, other countries, or
both.

ActionMedia, LANDesk, MMX, Pentium
and ProShare are trademarks of Intel
Corporation in the United States, other
countries, or both.

UNIX is a trademark of The Open Group
in the United States, other countries or
both.

Other company, product or service
names may be trademarks or service
marks of others.

The IBM home page on the Internet can
be found at ibm.com

