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Abstract. Explicit-State Model Checking is a well-studied technique for the ver-
ification of concurrent programs. Due to exponential costs associated with model
checking, researchers often focus on applying model checking to software units
rather than whole programs. Recently, we have introduced a framework that al-
lows developers to specify and model check rich properties of Java software units
using the Java Modeling Language (JML). An often overlooked problem in re-
search on model checking software units is the problem ofenvironment genera-
tion: how does one develop code for a test harness (representing the behaviors of
contexts in which a unit may eventually be deployed) for the purpose of driving
the unit being checked along relevant execution paths?
In this paper, we build on previous work in the testing community and we focus on
the use of coverage information to assess the appropriateness of environments and
to guide the design/modification of environments for model checking software
units. A novel aspect of our work is the inclusion ofspecification coverageof
JML specifications in addition to code coverage in an approach for assessing the
quality of both environments and specifications. To study these ideas, we have
built a framework calledMAnTA on top of the Bogor Software Model Checking
Framework that allows the integration of a variety of coverage analysis with the
model checking process. We show how we have used this framework to add two
different types of coverage analysis to our model checker (Bogor) and how it
helped us find coverage holes in several examples. We make an initial effort to
describe a methodology for using code and specification to aid development of
appropriate environments and JML specifications for model checking Java units.

1 Introduction

Building concurrent object-oriented software to high levels of assurance is often very
challenging due to the difficulty of reasoning about possible concurrent task interleav-
ings and interference of interactions with shared data structures. Over the past several
years, several projects have demonstrated how model checking technology can be ap-
plied to detect flaws in several types of software systems [1, 10, 12] including concur-
rent object-oriented systems [6, 3, 19]. Model checking is very useful for the analysis
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of concurrent systems because it can explore all the program states represented by pos-
sible execution interleavings of the threads in a system, spotting very intricate errors.
However, the exhaustive nature of model checking makes it difficult to scale to large
systems. This lack of scalability is due mainly to the state-space explosion problem:
as systems become more complex, the state space grows exponentially, making it very
difficult to analyze large systems without having the analysis exhaust available memory.

For these reasons, many reseachers believe that it is most natural to apply model
checking to software units, or modules, instead of whole systems. Specifically, soft-
ware model checking is often envisioned as part of a development and quality assur-
ance methodology in which it is incorporated withunit testing. When model checking
a software unit, one typically desires to specify/check as much of the unit’s behavior as
possible in the hope of detecting as many bugs as possible. In the past, model check-
ers have only supported checking of temporal property specifications with simple state
predicates and assertions. To enhance the ability of developers to specify meaningful
properties of software units, we have recently extended Bogor[20], our software model
checking framework, to support checking of rich specifications [19], written in JML
(Java Modeling Language, [16]). Using JML, developers can specify class invariants
and method pre/post-conditions that contain detailed constraints on variables and data
structures using various forms of universal and existential quantification over heap-
allocated data.

To apply model checking to software units (with or without JML specifications),
a developer needs to follow an approach that is similar in many respects to the steps
involved in traditional unit testing. In unit testing, one develops atest harnessthat
makes method calls into the unit for specific sets of parameter values and examines
the results of the method calls for invalid results (indicating failed test). When applying
model checking to software modules, one must similarly use a test harness (also termed
a closing environmentor anenvironment) to drive the unit through particular execu-
tion paths. The scale and complexity of a software unit’s interface may vary greatly:
a unit may consist of multiple classes and interfaces that expose fields and methods
through a variety of mechanisms, such as, reference, method call, inheritance and inter-
face implementation. Consequently, a general environment for a unit must be designed
to accommodate all legal modes of external interaction. The environment will sequence
those interactions to represent the behavior of program contexts in which the unit will
be used in a larger piece of software.

Since model checking aims to exhaustively explore program execution paths, it is
important for the environment used in model checking units to generate, to as large an
extent as possible, the execution paths through the unit that will occur when the unit is
actually deployed as part of a larger software system. Constructing such environments
for the purpose of model checking is surprisingly difficult. For example, [18] note that
it took several months to construct an environment that correctly modeled the context
of the DEOS real-time operating system scheduler. Furthermore, in recent work, Engler
and Musuvathi [7] describe proper environment construction as one of the main im-
pediments to applying model checking as opposed to other techniques including static
analysis for bug-finding in source code. Our work on the Bandera Environment Gen-
eration tools [22, 21] provides basic support that addresses many of the challenges en-
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countered in the DEOS case study, but it does not treat the complexities that arise when
model checking units with JML specifications. In this setting one encounters additional
questions: how complete is the test harness when it comes to stressing all the behaviors
referred to by the specification?, and dually, how complete are the specifications with
respect to all the behaviors that are exercised by the test harness upon the module?

Since an environment determines the behaviors of the system that are explored dur-
ing model checking it directly influences the cost of checking and the ability to find
bugs. In this paper, we seek to build on extensive work done in the testing community
and emphasize various types ofcoverageas a means of (a) determining the suitability
of an environment, and (b) guiding the construction and refinement of environments. A
variety of strategies for developing environments based on coverage are possible, for
example, generalizing a given environment to increase coverage or adding additional
environments that provide complementary coverage. Previous work on model checking
has used code coverage information to guide heuristic search strategies [9] and to deter-
mine the completeness of analysis of large software systems including TCP implemen-
tations [17]. In this paper, we view the collection and use of coverage information as an
integral part of a model checker’s implementation and application, focusing specifically
on its interaction with the checking of strong specifications written in JML. In partic-
ular, we use coverage information to not only determine adequacy of the environment,
but we also distinguish the notions ofcode coverageandspecification coveragefor the
purpose of addressing several interesting questions about the relationships between the
code of the unit, the specification of the unit, and the environment(s) used to check a
unit.

– In addition to determining the code coverage for a given unit with respect to an
environment, what are appropriate notions of coverage for a specification?

– For effective bug-finding with respect to a specification, are both high specification
coverage and code coverage required?

– If there is a mismatch between code and specification coverage, what revisions of
the environment, code or specification might this suggest?

– How is the cost of checking and the ability to find bugs sensitive to the number and
generality of environments used to achieve a given level of coverage?

To experiment with these ideas, and to begin to answer some of these questions, we have
built an extensible framework in Bogor calledMAnTA (Model-checkingAnalysis of
Test-harnessAdequacy) for implementing the collection of a variety of forms of cov-
erage information. We describe how we have used MAnTA to implement two cover-
age estimation procedures and show how we have used them to find coverage holes in
some of our models, triggering the refinement of the test harnesses for these systems.
We summarize lessons learned and attempt to lay out a methodology that uses cover-
age information to help developers build environments that are appropriate for model
checking units with strong specifications such as can be written in JML.

The rest of the paper is organized as follows. Section 3 discusses the general archi-
tecture of the MAnTA framework, its major components, and how it can be configured
for effective estimation of coverage metrics in Bogor. In section 4 we show the results
of experiments conducted using MAnTA to implement two different types of coverage
estimation analyses and briefly discuss the benefits and implications of these results to
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the application of coverage metrics in model checking. Section 5 presents some preced-
ing work in the area of coverage metrics estimation for model checking as well as some
other related works. Finally, in section 6 we conclude giving some conclusions drawn
from the experiences in this research.

2 The Need for Coverage Metrics in Model Checking

Slogans associated with model checking proclaim that it represents “exhaustiveverifi-
cation” and that it “explores all possible states” have misled many users to believe that
if a model checker completes with no specification violations reported then the system
is free of errors. We believe that it is commonplace for errors in specifications and en-
vironment encodings to lead to “successful” checks that are essentially meaningless,
since they explore only a tiny portion of the behavior of the system.

Consider Figure 1 which shows excerpts of a concurrent implementation of a linked
list from [15]. To analyze this code we must construct an environment. In general one
strives to develop environments that:

– are concurrent in order to expose errors related to unanticipated interleavings
– are non-deterministic in ordering method calls in order to expose errors related to

unanticipated calling sequences

Unfortunately, the degree of concurrency and non-determinism in an environment are
precisely the factors that lead to exponential explosion in the cost of model checking.
For these reasons, users of model checkers typically develop restricted environments
that have a limited number of threads where each thread implements only a specific
pattern of method calls. We took this approach when developing the environment shown
in Figure 2.

When we fed the linked queue code with the driver to the model checker, the model
checker reported no specification violations. Upon examining MAnTA’s output, we
found that the code coverage was rather low. The problem lies in the methodrun()
of the classProcess . All processing done by each thread reduces to inserting an item
into the list and then removing an item from the list. After some assessment, it is not
so hard to see that by doing this, every thread is guaranteed that prior to extracting an
element from the list, on any execution trace, the list is never empty.

The linked queue class implements a blocking discipline when a client tries to ex-
tract an object and the list is empty: it will block the client thread and make it wait
until there is something (see methodtake() ). However, as shown in Figure 3, all the
code that implements the blocking behavior of the list is never executed by our given
test harness (the figure shows all the code that was not covered by the test harness in
a shaded area). This code was never exercised because the method is never called in a
context where the list is empty. Thus, when using a model checker to analyze code units
which are closed with the addition of an environment , a “no violations” result from the
model checker cannot by itself give confidence that the unit being analyzed satisfies its
specification.

Using the results of MAnTA, we were able to redesign the environment to increase
the level of coverage significantly. In this case, we generalized the environment to allow
for more general calling sequences in the thread.
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pub l i c c l a s s LinkedQueue{
f i n a l /∗@ n o n n u l l @∗ / Objec t putLock ;
/∗@ n o n n u l l @∗ / LinkedNode head ;
/∗@ n o n n u l l @∗ / LinkedNode l a s t ;
i n t wa i t i ngFo rTake = 0 ; . . .
/ /@ i n v a r i a n t wa i t i ngForTake>= 0;
/ /@ i n v a r i a n t \ reach ( head ) . has ( l a s t ) ;
/∗@ be hav io r

@ a s s i g n a b l e head , l a s t , putLock ,
@ wa i t i ngForTake ;
@ e n s u r e s\ f r e s h ( head , pu tLock ) &&
@ head . n e x t == n u l l ; @∗ /

pub l i c LinkedQueue ( ){
putLock = new Objec t ( ) ;
l a s t = head =new LinkedNode (n u l l ) ;
}
/∗@ be hav io r

@ e n s u r e s\ r e s u l t<==>
@ head . n e x t == n u l l ; @∗ /

pub l i c boolean isEmpty ( ) {
synchron ized ( head )

re turn head . nex t = =n u l l ;
}
/∗@ be hav io r

@ r e q u i r e s n ! = n u l l ;
@ a s s i g n a b l e l a s t , l a s t . n e x t ; @∗ /

vo id i n s e r t 2 ( LinkedNode n ){
l a s t . nex t = n ;
l a s t = n ;
}
/∗@ be hav io r

@ r e q u i r e s x ! = n u l l ;
@ e n s u r e s t r u e ;
@ a l s o be hav io r
@ r e q u i r e s x == n u l l ;
@ s i g n a l s ( E x c e p t i o n e ) e i n s t a n c e o f
@ I l l e g a l A r g u m e n t E x c e p t i o n ; @∗ /

pub l i c vo id pu t ( Ob jec t x ) {
i f ( x = = n u l l )
throw new I l l e g a l A r g u m e n t E x c e p t i o n ( ) ;

i n s e r t ( x ) ;
}

synchron ized Objec t e x t r a c t ( ){
synchron ized ( head ) re turn e x t r a c t 2 ( ) ;
}
/∗@ b eha v io r

@ a s s i g n a b l e head , head . n e x t . v a l u e ;
@ e n s u r e s\ r e s u l t == n u l l
@ | | ( \ e x i s t s LinkedNode n ;
@ \o ld (\ reach ( head ) ) . has ( n ) ;
@ n . v a l u e == \ r e s u l t
@ && !( \ reach ( head ) . has ( n ) ) ) ; @∗ /

Ob jec t e x t r a c t 2 ( ){
Objec t x = n u l l ;
LinkedNode f i r s t = head . nex t ;
i f ( f i r s t ! = n u l l ) {
x = f i r s t . v a l u e ;
f i r s t . v a l u e = n u l l ;
head = f i r s t ;
}
re turn x ;
}
/∗@ b eha v io r

@ r e q u i r e s x ! = n u l l ;
@ e n s u r e s l a s t . v a l u e == x
@ && \ f r e s h ( l a s t ) ; @∗ /

vo id i n s e r t ( Ob jec t x ){
synchron ized ( putLock ) {

LinkedNode p = new LinkedNode ( x ) ;
synchron ized ( l a s t ) i n s e r t 2 ( p ) ;
i f ( wa i t i ngFo rTake > 0)
putLock . n o t i f y ( ) ;

l ocSpec2 :
re turn ;
} }

}
c l a s s LinkedNode {

pub l i c Objec t v a l u e ;
pub l i c LinkedNode nex t ; . . .
/∗@ b eha v io r e n s u r e s v a l u e == x &&

@ n e x t == n u l l ; @∗ /
pub l i c LinkedNode ( Ob jec t x ){

v a l u e = x ;
}
}

Fig. 1.A Concurrent Linked-list-based Queue Example (excerpts)

With a model checker alone, there is no tool support to indicate potential problems
with the environment. We believe that this problem is especially important in our con-
text where we are model checking JML specifications which typically specify more
details about a program’s state than specification languages traditionally used in model
checking. Accordingly, we seek to develop forms of automated tool support not only for
environment generation (as in our earlier work [21]), but also for providing feedback on
the quality of environments in terms of both code coverage andspecification coverage.

3 MAnTA Architecture

With MAnTA, we seek to provide a flexible framework that will allow different cov-
erage metrics to be included as an integral part of the model checking process. Users
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package l i n k e d q u e u e ;

pub l i c c l a s s L inkedQueueDr iver{

/∗@ be hav io r
@ e n s u r e s t r u e ;
@∗ /

pub l i c s t a t i c vo id main ( S t r i n g [ ] a r g s ){
LinkedQueue l q =new LinkedQueue ( ) ;
new P r o c e s s ( l q ) . s t a r t ( ) ;
new P r o c e s s ( l q ) . s t a r t ( ) ;
}
}

c l a s s P r o c e s s ex tends Thread {
/∗@ i n s t a n c e i n v a r i a n t l q ! = n u l l ; @∗ /
f i n a l LinkedQueue l q ;

/∗@ b eha v io r
@ r e q u i r e s l q ! = n u l l ;
@ a s s i g n a b l e t h i s . l q ;
@ e n s u r e s t h i s . l q == l q ;
@∗ /

P r o c e s s ( LinkedQueue l q ){
t h i s . l q = l q ;
}

/∗@also
@ b eha v io r
@ d i v e r g e s t r u e ;
@ e n s u r e s f a l s e ;
@∗ /

pub l i c vo id run ( ) {
Objec t d a t a =new Ob jec t ( ) ;
whi le ( t rue ) {

l q . pu t ( d a t a ) ;
d a t a = l q . t a k e ( ) ;
}
}
}

Fig. 2.A test harness for the concurrent linked queue program.

pub l i c Objec t t a k e ( ){
Objec t x = e x t r a c t ( ) ;
i f ( x ! = n u l l )

re turn x ;

e l s e {
synchron ized ( putLock ) {

t r y {
++ wa i t i ngFo rTake ;
f o r ( ; ; ) {

x = e x t r a c t ( ) ;
i f ( x ! = n u l l ) {
−−wa i t i ngFo rTake ;
re turn x ;

} e l s e {
putLock . wa i t ( ) ;

}
}

} ca tch ( I n t e r r u p t e d E x c e p t i o n ex ){
−−wa i t i ngFo rTake ;
putLock . n o t i f y ( ) ;
/ / throw ex ;
throw new Runt imeExcept ion ( ) ;

}
}

}

}

Fig. 3.Portion of methodtake() not executed by test harness.
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Fig. 4. Bogor Architecture.

can add an extra layer of confidence to the verification process simply by activating
Bogor’s default coverage analyses through MAnTA options. In addition, users can eas-
ily include their own implementation of coverage estimation algorithms to customize
coverage information for specific reasoning goals or to experiment with new coverage
algorithms. Indeed, one of our primary goals in developing the MAnTA framework is
to support our continuing research on exploiting coverage metrics in model checking.

MAnTA is built on top of the Bogor software model checking framework. Figure 4
shows the architecture of Bogor, as presented in [19]. The framework is composed of
loosely coupled modules, each one enclosing a different aspect of the model checking
process. TheISearchercontrols the exploration of the state space graph. TheIExpEval-
uator is the module that computes the value of side-effect free expressions by accessing
the heap and all relevant local activation records. Each module can easily be extended to
add extra functionality. For example, in the work by Dwyer et al. in [5], theISearcher
was extended to add partial order reductions to the model checker. Also, in [20], the
IActionTakerwas extended to allow the verification of methods’ frame conditions.

Building on this flexibility, MAnTA accumulates coverage information by moni-
toring specific events in any of the Bogor modules. This is achieved with the use of
an Observer pattern [8]: MAnTA modules can subscribe to relevant events of specific
Bogor modules. For example, the module for structural coverage described in section
4.1 subscribes to theITransformermodule and observes each transition that is executed,
using this information to perform the analysis. Similarly, the specification analysis mod-
ule in section 4.2 observes the commands executed by theIActionTakerlooking for the
execution of assertions.

Figure 5 shows the simple architecture of the MAnTA framework. TheIManta-
Managermodule takes care of initialization and finalization of all the modules that
implement specific coverage estimation analyses. TheIMantaCoverageAnalyzerinter-
face provides the point of implementation for different coverage estimation algorithms.
To incorporate a particular coverage analysis into MAnTA, one simply specifies the
implementing classes and the manager loads them during the initialization period.
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Fig. 5. MAnTA Architecture.

3.1 An Example

We illustrate the configuration aspects of the framework with the linked queue exam-
ple from Figure 1. Suppose we wanted to model check this program and implement
two types of coverage analysis – the structural and specification analyses that we will
describe in detail in Sections 4.1 and 4.2. First we specify options in the Bogor configu-
ration file that indicate the implementation of the analysis manager (we will choose the
default manager) and indicate the number of analysis modules that will be executed.

IMantaManager =DefaultMantaManager
IMantaManager . analyzers . size =2

Now, we have to specify the implementation classes that MAnTA will use for each
analysis. Notice that MAnTA does not need to know about the specifics of every anal-
ysis. All it needs to know is the name of the classes that implement the analyses to be
able to load them:

IMantaManager . analyzers .0=MantaEdgeCoverageAnalyzer
IMantaManager . analyzers .1=MantaSimpleBooleanCoverageAnalyzer

Finally we specify the options for each of the analyzers. Structural coverage does
not require an option. The specification coverage analyzer takes a few options from
the configuration file that indicate particular locations to be monitored. For example,
suppose we want to monitor the post-condition of the methodinsert(Object) in
the linked queue program. We specify the following options:

MantaSimpleBooleanCoverageAnalyzer . analyzeAll =false
MantaSimpleBooleanCoverageAnalyzer . monitoredLocations . size =1
MantaSimpleBooleanCoverageAnalyzer . monitoredLocations .0=insert ( ) , locSpec2
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The first option tells the analyzer that we are interested in specific locations and not
in all the specification formulas. The second and third options specify the size of the
set of locations that we want to monitor and the method name and location label for
the program point that we want to monitor. To be able to refer to a specific location we
simply label the program point with a Java label as shown in Figure 1. However, it is not
mandatory to refer to specific locations in order to monitor them. A common analysis
will involve monitoring all the pre and post-conditions (and invariants). To do so, the
three lines shown previously turn into:

MantaSimpleBooleanCoverageAnalyzer . analyzeAll =true

which tells the analyzer to monitor all pre-conditions, post-conditions and invariants
checking.

At the end of the model checking run, the coverage manager invokes a finalization
method on each module and collects the results. The coverage analyses results are re-
ported from the analyzers to the manager in the form of anIMantaCoverageInformation
object. This interface provides an uniform way to present the results, regardless of the
type of analysis.

4 Case Studies

We have applied MAnTA to analyze coverage information during model checking of
a collection of six Java programs with JML specifications. Model checking Java pro-
grams with Bogor is achieved by compiling Java byte codes into BIR (Bandera Inter-
mediate Representation) [19]; BIR is a guarded-assignment language with primitives
for defining all of the object-oriented features of Java. There is a direct correspondence
between Java source lines, byte codes and sequences of BIR transitions. This facili-
tates the mapping of analysis results, including coverage information, calculated on the
BIR model back to the input Java program. Figure 6 shows the BIR translation of the
methodput(Object) in the linked queue example. JML specifications are encoded
as embedded assertions in the BIR model. Assertions are inserted during the translation
process and correspond to JML pre and post-conditions, and invariants checking; only
partial support for assertion generation from JML is implemented in the current toolset.
For more details, we refer the reader to [20].

MAnTA, as a Bogor extension, operates on BIR models. In this section we describe
our experiences with MAnTA while implementing two coverage analyses. The first ex-
ample shows the implementation of structural coverage based on branch coverage. We
report some interesting findings concerning some of our existing models and issues with
their test harnesses. The second example is the implementation of a boolean satisfaction
analysis. We report results for the same set of systems as the structural analysis case.

4.1 Structural Coverage Estimation with MAnTA

The first type of coverage analysis that we implemented on top of MAnTA was branch
coverage. The classical definition of branch coverage is ensuring that each branch of
a decision point (for example, an if statement) is executed at least once. For the BIR
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f u n c t i o n {| LinkedQueue . pu t ( j a v a . l ang . Ob jec t )|}
( ( | LinkedQueue| ) [ | r0 | ] ,

(| j a v a . l ang . Ob jec t| ) [ | r1 | ] )
{

(| j a v a . l ang . I l l e g a l A r g u m e n t E x c e p t i o n| ) [ | $r2 | ] ;
(| j a v a . l ang . Ob jec t| ) [ | $r3 | ] ;
boolean spec1 ;
boolean spec2 ;
l o c locSpec0 : l i v e{}
do i n v i s i b l e
{
}
goto l ocSpec1 ;

l o c locSpec1 : l i v e{ spec1 , spec2}
do
{

a s s e r t ( [| r0 | ] . / | LinkedQueue . head|\ ! = n u l l ) ;
a s s e r t ( [| r0 | ] . / | LinkedQueue . l a s t|\ ! = n u l l ) ;
a s s e r t ( [| r0 | ] . / | LinkedQueue . putLock|\ ! = n u l l ) ;
a s s e r t ( [| r0 | ] . / | LinkedQueue . wa i t i ngFo rTake|\ >= 0);
a s s e r t ( Se t . c o n t a i n s<(| j a v a . l ang . Ob jec t|)>
( S t a t e . reachSe t<(| j a v a . l ang . Ob jec t|)>

( [ | r0 | ] . / | LinkedQueue . head|\ ) ,
[ | r0 | ] . / | LinkedQueue . l a s t|\ ) ) ;

spec1 : = [| r1 | ] ! = n u l l ;
spec2 : = [| r1 | ] = = n u l l ;
a s s e r t ( spec1| | spec2 ) ;
}
goto l o c2 ;

l o c l oc2 : l i v e { [ | r1 | ] , [ | r0 | ] , spec1 , spec2}
when [| r1 | ] ! = n u l l do
{
}
goto l o c6 ;
when ! ( [| r1 | ] ! = n u l l ) do
{
}
goto l o c3 ;

l o c l oc3 : l i v e { [ | $r2 | ] , spec1 , spec2}
do i n v i s i b l e
{

[ | $r2 | ] : = new ( | j a v a . l ang . I l l e g a l A r g u m e n t E x c e p t i o n| ) ;
}
goto l o c4 ;

l o c l oc4 : l i v e { [ | $r2 | ] , spec1 , spec2}
i nvoke
{| j a v a . l ang . I l l e g a l A r g u m e n t E x c e p t i o n.< i n i t >()|}

( [ | $r2 | ] ) goto l o c5 ;

l o c l oc5 : l i v e { spec1 , spec2}
do
{

throw [ | $r2 | ] ;
}
goto l o c5 ;

l o c l oc6 : l i v e { spec1 , spec2}
i nvoke v i r t u a l
+|LinkedQueue . i n s e r t ( j a v a . l ang . Ob jec t )|+

( [ | r0 | ] , [ | r1 | ] ) goto l ocSpec2b ;
l o c locSpec2b : l i v e{ spec1 , spec2}
do i n v i s i b l e
{
}
goto l ocSpec2 ;

l o c locSpec2 : l i v e{ spec1 , spec2}
do
{

a s s e r t ( [| r0 | ] . / | LinkedQueue . head|\ ! = n u l l ) ;
a s s e r t ( [| r0 | ] . / | LinkedQueue . l a s t|\ ! = n u l l ) ;
a s s e r t ( [| r0 | ] . / | LinkedQueue . putLock|\ ! = n u l l ) ;
a s s e r t ( [| r0 | ] . / | LinkedQueue . wa i t i ngFo rTake|\ >= 0);
a s s e r t ( Se t . c o n t a i n s<(| j a v a . l ang . Ob jec t|)>
( S t a t e . reachSe t<(| j a v a . l ang . Ob jec t|)>

( [ | r0 | ] . / | LinkedQueue . head|\ ) ,
[ | r0 | ] . / | LinkedQueue . l a s t|\ ) ) ;

}
goto l o c7 ;

l o c l oc7 : l i v e {}
do
{
}
re turn ;

l o c locSpec3 : l i v e{ [ | $r3|]}
do i n v i s i b l e
{

a s s e r t ( [| $r3 | ] i n s t a n c e o f
(| j a v a . l ang . I l l e g a l A r g u m e n t E x c e p t i o n| ) && ( spec2 && ! spec1 ) ) ;

throw [ | $r3 | ] ;
}
goto l ocSpec3 ;

ca tch ( | j a v a . l ang . Ob jec t| ) [ | $r3 | ] a t
loc2 , loc3 , loc4 , loc5 , loc6 , l oc7goto l ocSpec3 ;

}

Fig. 6.A Concurrent Linked-list-based Queue Example (excerpts)

program model this is achieved by determining the proportion of transitions that are
exercised during model checking. The information returned by the analysis is the per-
centage of transitions executed and information about the actual transitions that were
not executed (location within the model, etc.).

The implementation of this analysis was very straightforward. As with each MAnTA
analysis, the module implementing the analysis must implement the coverage ana-
lyzer interface of Figure 5. During the initialization period, the module constructs a
setNotExecuted , containing references to all the possible transitions in the system.
This module subscribe to theITransformer; every time a transition is executed, the tran-
former notifies the analyzer, and the analyzer removes the transition reference from the
setNotExecuted .

We tested this coverage analysis implementation in all the models used in our work
for [20]. All these programs are annotated with JML [16], which is one of the speci-
fication languages that we used for verifying properties in Bogor. Table 1 summarizes
the results we obtained for each program. Most of the model checks exhibited high
structural coverage. The reason none of the numbers are over 90% is because there is
some dead code in each model that is generated by our compiler. We estimate that those
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Model Total Number Number of Coverage
of TransitionsUnexplored TransitionsPercentage

LinkedQueue 231 103 55.41%
BoundedBuffer 163 31 81.21%

RWVSN 238 34 85.71%
DiningPhilosophers 210 28 86.67%
ReplicatedWorkers 585 195 66.67%

Table 1.Percentage of structural coverage for all the systems analyzed.

models with coverage around 85% have around 95% coverage. They would not have
100% or close to it in part because our BIR models also model exceptional code, which
is not exercised by our environments. It is possible, of course, to trigger exceptional
code by defining appropriate environments. Two examples achieved significantly lower
levels of coverage:LinkedQueue, from Figure 1, andReplicatedWorkers.

When we model checked theLinkedQueueexample with the structural coverage
enabled we found a couple of surprises. First, we found an error in the model – specifi-
cally, in a fragment of the model derived from translating one of the JML specification
annotations by hand to overcome a limitation in our compiler. An error in the hand
translation yielded an assertion check that was short-circuited and, hence, never been
checked. Second, as shown in Table 1, the coverage percentage for this program was
very low (55.4%). It turns out that the environment for this program was inadequate for
exercising certain implementation behaviors. As discussed in section 2, this was caused
by failure to execute code in methodtake() .

The other program that also had low structural coverage is theReplicatedWorkers.
This time the low coverage was due to the fact that our compiler generates BIR code for
abstract classes. Bogor only needs the concrete classes to perform the checking, there-
fore all the code generated from the abstract classes is never executed. Based on these
observations, we are modifying the code generation of the compiler and the manner in
which coverage information is accumulated to (a) avoid reporting spurious coverage
problems (e.g., like those associated with abstract classes) and (b) incorporate options
that allow the user to selectively mask non-coverage reports for different types of code
such as exception handlers.

4.2 Boolean Coverage Estimation with MAnTA

Structural analysis was very useful in spotting environment limitations. However, as we
mentioned in section 1, we are also interested in analyses that help extract information
coverage at the specification level.

Coverage analysis at the specification level has been found useful in the past for
specification refinement. For example, Hoskote et al. [13] show how they used a cov-
erage analysis similar to the one described in [4] to refine the specification of several
circuits from a microprocessor design. In our case, we are very interested in this type of
analysis because of our goal of checking strong JML specifications. The type of spec-
ifications that can be expressed in JML are very rich in terms of expressing complex
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Model Total Number of Number of Unsatisfied
Monitored Formulas Formulas

LinkedQueue 20 2
BoundedBuffer 15 0

RWVSN 14 0
DiningPhilosophers 40 0
ReplicatedWorkers 25 0

Table 2.Number of formulas not satisfied during model checking.

/∗@ be hav io r
@ r e q u i r e s x ! = n u l l ;
@ e n s u r e s t r u e ;
@ a l s o be hav io r
@ r e q u i r e s x == n u l l ;
@ s i g n a l s ( E x c e p t i o n e ) e i n s t a n c e o f
@ I l l e g a l A r g u m e n t E x c e p t i o n ; @∗ /

pub l i c vo id pu t ( Ob jec t x ) {
i f ( x = = n u l l )
throw new I l l e g a l A r g u m e n t E x c e p t i o n ( ) ;

i n s e r t ( x ) ;
}

/∗@ b eha v io r
@ a s s i g n a b l e head , head . n e x t . v a l u e ;
@ e n s u r e s\ r e s u l t == n u l l
@ | | ( \ e x i s t s LinkedNode n ;
@ \o ld (\ reach ( head ) ) . has ( n ) ;
@ n . v a l u e == \ r e s u l t
@ && !( \ reach ( head ) . has ( n ) ) ) ; @∗ /

Ob jec t e x t r a c t 2 ( ){
Objec t x = n u l l ;
LinkedNode f i r s t = head . nex t ;
i f ( f i r s t ! = n u l l ) {
x = f i r s t . v a l u e ;
f i r s t . v a l u e = n u l l ;
head = f i r s t ;
}
re turn x ;
}

Fig. 7. Methods inLinkedQueue that had unsatisfied formulas.

properties of heap allocated data, and in covering all the different behavioral cases of
a method. Writing this type of specification is very hard and demands a lot of exper-
tise. Even when written by an expert, the potential for overlooking or over-constraining
aspects of method behavior is significant. We believe that coverage analysis can be
successfully used for specification debugging.

In this section we describe an analysis we implemented for this purpose. This ad-
ditional coverage estimation analysis is a simple boolean satisfaction analysis. Again,
the implementation only involved developing the logic of the coverage analysis module
and configuring the coverage framework to interact with the model checker. The cov-
erage criterion was a simple monitoring policy: for each boolean expression, determine
whether there are sub-formulas of the expression that are never satisfied. If there are
such formulas, then report them as possible coverage problem, along with their posi-
tion in the source code.

Table 2 summarizes the results of the analyses. The only program that showed lack
of coverage under this criterion was theLinkedQueueexample. Figure 7 shows the two
methods that had a problem of low coverage.

This analysis uncovers problems in different methods than the structural coverage
analysis. For methodput() the tool reports that the conditionx == null is never
satisfied in the precondition. This is to be expected since this condition corresponds
to exceptional behavior. In some sense, the structural coverage test also uncovered the
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same issue because it reported that thethrow instruction was never executed. But the
boolean analysis gives a more direct indication of the conditions that led to thethrow
code not being covered.

For theextract2() method the tool reports that\result == null never
holds in the postcondition. After looking carefully we note that this condition corre-
sponds to the case when the list is empty. We already determined, with the information
from the previous test, that the list was never made empty. However, the problem has
now been exposed at a different point. In the first test, we spotted the problemfrom the
code. Now, we do sofrom the specification. This phenomenon suggests that these two
techniques are complementary in the types of coverage problems they can find. They
uncovered the same problem from different perspectives.

4.3 Discussion

The basic forms of coverage analyses we implemented have demonstrated that indi-
vidual coverage analyses can be effectively integrated with model checking to provide
useful information about the quality of environments. We believe that multiple coverage
analyses, when aggregated, can yield additional benefit on top of what can be obtained
by using them independently.

To see this, let us consider together the results obtained in Sections 4.1 and 4.2. For
theLinkedQueueexample, both analyses showed that there was a behavior, namely the
blocking behavior of the list, that was not being exposed. On one hand, the structural
analysis spotted this problem by pointing directly at the portion of code that was not
being executed. On the other, the boolean analysis uncovered the same problem, but
this time pointing at a specification case that was never enabled. Independently, the two
analysis would give the same benefit: find a gap in the coverage produced by an envi-
ronment. However, when run together they provide two extra benefits and we discuss
them in turn.

First, the obvious extra benefit is the increase in the reliability of the reports given
by each analysis. Certainly, if both analysis point at the same problem, then the chances
are higher that the problem is actually a concern and not just some superficial issue (as
discussed previously, some analyses may report spurious or superficial coverage prob-
lems, as is the case for structural analysis when it pointed to transitions corresponding
to abstract classes). The second benefit, not so apparent, but extremely useful, is in the
way in which, when working together, these two analyses can help not only by provid-
ing estimation of coverage, guiding in that way the refinement of the test harness, but
also in the verification process itself by uncovering potential errors, both in the imple-
mentation and in the specification.

To see this last point keep in mind the duality of these two approaches. For each por-
tion of the model not covered, every analysis should report some information in the form
of transitions not-executed and conditions not-enabled, for structural and boolean anal-
ysis, respectively. Now, consider Figure 8-a. Suppose further that it is model checked
with an environment such that the method is always called in a state whereb == true .
Obviously, the boolean satisfaction analysis will report that the pre-condition!b is
never true. However, the structural analysis will report complete coverage. This mis-
match suggests that the implementation is missing code that represents the specification
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/∗@ be hav io r
@ r e q u i r e s b ;
@ e n s u r e s a == 1 ;
@also
@ be hav io r
@ r e q u i r e s ! b ;
@ e n s u r e s a == 2 ;
@∗ /

pub l i c vo id m( boolean b ) {
i f ( b )
a = 1 ;

}

( a )

/∗@ b eha v io r
@ r e q u i r e s b ;
@ e n s u r e s a == 1 ;
@∗ /

pub l i c vo id m( boolean b ) {
i f ( b ) {
a = 1 ;
} e l s e {

a = 2 ;
}

( b )

Fig. 8.Example methods that show how structural and boolean analysis can be comple-
mented for finding bugs and debugging the specification.

that is not covered, otherwise that code would be reported as not executed. Or if the code
is not missing, then it must contain bugs because it does not match the specification. In
fact, when we examine this code we can see that the implementation is incomplete.
Results from analyses that separate would be disconnected information, together have
helped to find a bug.

Notice that a model checker would not be able to find this bug because the environ-
ment is incomplete in the first place. And the boolean analysis by itself only suggests
that the environment should be refined. Indeed, after refining the environment the model
checker would spot the error, but this would require another model checking run. On
the other hand, by analyzing the information from the coverage analyses, we can find
the same bug with much less effort.

Similarly, if we look at Figure 8-b, and if we consider the same environment, we
see that in this case we have the opposite situation. Now, the structural analysis would
report that a portion of the method is never executed. However, the boolean satisfaction
analysis would report that the specification is completely covered. Indeed, the imple-
mentation is correct with respect to the specification. However, the mismatch between
the two analysis suggests the possibility that the specification is not complete. This must
be true for otherwise there would be some portion of the specification that would not be
covered because the state space that it represents is never explored. If the specification
is already totally satisfied, it means that it is insensitive to the code that was not exe-
cuted. In fact, when we look at the specification we see that, indeed, the specification is
incomplete: it does not handle the case whenb == false . All this would lead to a
refinement of the specification to include the case that is not handled (if that is what we
really want). In this case, the benefit is not in finding bugs in the implementation, but in
specification debugging.

Coverage-enabled Model CheckingAll the concepts presented above suggest a gen-
eral methodology for software verification using model checking extended with these
coverage analyses:
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– Run the model checker on the system to be verified with the two coverage analysis
extensions described in this work.

– If the structural analysis reports complete coverage, but the boolean analysis reports
incomplete coverage, then there is potential for an incomplete implementation (a
bug caused by missing code for a specification case).

– If the structural analysis reports incomplete coverage, but the boolean analysis re-
ports complete coverage, then there is potential for an incomplete specification (at
the very least, the specification is insensitive to the code that was not covered).

– If both analyses report incomplete coverage, there should be a correspondence of
non-covered cases from one analysis to the other (as in our example in sections
4.1 and 4.2). If such correspondence exists, then the coverage problems can be at-
tributed to the test harness. Otherwise, there is potential for implementation/specifi-
cation incompleteness, depending on which analysis has an unmatched non-coverage
case.

Note that this extra benefit cannot be achieved if only the model checker is run,
or if the analyses are included but done independently. For example, suppose we have
the case where the specification is incomplete and it does not cover some code that,
additionally, is not executed by the test harness. The model checker would not detect
the problem because from the point of view of the model checker there is no problem:
the implementation satisfies the specification. The boolean analysis alone would not
report any problem, and the structural analysis would simply point out that the test
harness must be refined to cover the code not-executed.

Also, notice that this methodology will only detect incomplete specification cases
when it is accompanied by the same incompleteness in the test harness. For example,
in figure 8-b, if the test harness does cover the case whenb == false , then both
analyses, structural and boolean, achieve 100% coverage and nothing can be inferred.
Spotting these specification incompleteness cases is another interesting direction that
we want to pursue.

5 Related Work

Although coverage estimation has not received as much attention as other areas in
model checking, there is still some work that has been done to address this problem.
Among the most significant works in this area is the work done by Chockler et al. [4].
However, their definition of the coverage problem is slightly different. The concern in
their work is the following: given a model and a specification, how much of the system
state space is relevant to the specification. For example, consider the simple transition
system in Figure 9. The specification shown with the system holds in the initial state
because any of the two outgoing paths lead to the state whereq is always true. How-
ever, the third state, wherer is true, is totally insensitive to this specification. Under this
definition of coverage we say that the node is not covered by the specification, so we
have to refine the properties. To find these states, this technique would change the value
of specific variables (for example,p) in each state and run the model checker. Those
nodes in which the property does not fail, are nodes insensitive to the specification, and
thus not covered.
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p q
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p −> <>( [] q )

Fig. 9. Simple transition system and a specification to be verified.

The information obtained with this type of analysis gives a rough estimation of the
proportion of behaviors covered by the specification. This approach, although useful,
has several shortcomings. First of all, some specifications necessarily refer to only a
portion of the states, due to the nature of the property they express. In this case, the
specification does not need to be refined and the coverage information is not very use-
ful. Second, the cost of the analysis is the same as that of model checking itself (two
model checks must be run – the first “regular” check, and then a second in which the
values of the basic propositions are negated). However, as we show in this paper, by
simply adding some book-keeping procedures to the model checker algorithm, some
very useful coverage information can be gathered to support model refinement, at a
much lower cost. For example, the structural analysis we implement simply needs to
keep track of the transitions that are executed.

The combination of specification and structural coverage analysis yields results that
are similar to that obtained by [4], but with much less effort. In that work, the analysis
detects portions of the state space that are not covered by any aspect of the specification,
pointing directly at those points of the state space. However, to do this an execution
separate from the verification run must be made, which is as expensive as the model
checking itself. On the other hand, our approach can be run while model checking the
system, and the analysis information is done by monitoring the checking process. This
monitoring is very inexpensive (with respect to one analysis, although the cost will
grow as more analyses are attached to the framework). Nevertheless, our system won’t
point directly at the regions of the state space that are not covered and requires insight
from the user to find this regions, once the evidence of the potential problem is found.

Another idea, explored by the same researchers mentioned in the previous para-
graph, is the concept of vacuity checking [14]. This is a boolean satisfaction analysis.
The idea is to verify that there are no formulas in the system that are being trivially
satisfied, that is, that are proven correct by the model checker, but their truth is inde-
pendent of the model. They show, surprisingly enough, how vacuity checking is harder
to perform than one might imagine and that it can be very common in several models.
Again, the usefulness of this analysis is limited just to some cases. Although vacuous
formulas in specifications might be more common than expected, the calculation tends
to be fairly expensive, yielding information about just one specific type of errors. For
example, the approach described in the previous paragraph would also detect this for-
mulas because the whole system would be insensitive to the formula. To see this, just
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consider what happens ifp is made false in the initial state of the system in Figure 9.
In this case, the formula is vacuously satisfied in all the states of the system, and would
be detected because every state would be insensitive to this formula. Although it would
be more expensive, the cost would be amortized by all the other type of errors that this
approach would also find.

Musuvathi and Engler have used some coverage metrics in the verification of a TCP
implementation using model checking [17]. Their coverage metric is based on simple
line coverage, that is, whether a line of code is executed or not. However, their usage of
the metric and motivation is quite different from ours. They use the coverage metrics to
evaluate the effectiveness of the state space reduction techniques implemented in their
model checker. However, they do note how identifying unexplored portions of the state
space can help refine the test harness used to model check a system. Similarly, SPIN
[11] has had for some time a feature through which it reports statements that are never
reached.

In another similar line of work, Groce and Visser explore the use of coverage metrics
to make heuristic-based model checking [9]. The coverage metric they use is branch
coverage, which is exactly the one used in our structural coverage analysis. However,
the purpose of this work is to use the information to both estimate the effectiveness of
partial checksand use the branch coverage measure as a value function to guide the
search in heuristic model checking.

Although the coverage metrics reported in the works mentioned in the previous two
paragraphs are equivalent to our structural coverage, there are several differences in the
usage of the metrics and in the motivations. The main difference is that, while those fo-
cus on using the metric to obtain a measure of how much of the state space is explored
(useful in bounded search or when the model checker runs out of memory, i.e., partial
checks), our focus is to use the metric to refine test harnesses used to model check open
systems. Also, we have integrated the structural coverage with a specification cover-
age and proposed exploiting this integration to enhance the verification. This has to do
with the main motivation for our work: we want to checkstrong specificationsin soft-
ware units and are deeply interested in verifying the depth to which the specifications
are covered. Our interest in refining the test harnesses is focused towards increasing
specification coverage rather than code coverage. This is why we have integrated the
structural analysis with a boolean analysis for the specification.

The Bandera Environment Generator (BEG) project [21], takes another approach
to providing tool support for deriving appropriate test harnesses and environments. It
focuses on automatically generating test harnesses from high-level specifications of
orderings of calls to the module being tested and from information gathered from au-
tomated static analysis (e.g., about side-effects and aliases) of the code being analyzed.
It lets the user specify: (a) the components that are relevant for the verification, (b)
constraints over these components, and (c) certain assumptions about the environment
(such as the order in which methods in the unit being analyzed should be called), and
then generates an environment made up of stubs and driving code that then is translated
to the model checker language. Although the work in BEG is certainly relevant to the
coverage issue, it is rather complementary to the work presented herein: BEG tries to
generate adequate environments that achieve good coverage from user provided infor-
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mation (such as a regular expression indicating a pattern of method calls to the unit
under test), whereas MAnTA estimates the coverage achieved by a given environment
(whether it is generated automatically or by hand). For example, even though the user
provides a regular expression to specify the ordering of unit method calls in the test
harness, this ordering may still not give good coverage (and MAnTA can be used to
detect these situations).

The coverage problem has been studied extensively by the testing community [2].
In this case, all the studies made in test coverage, for example [23], are directly relevant
to the work presented in this paper. Several notions of structural coverage have been
developed by the testing community. For example, there is the concept of node cover-
age, branch coverage, path coverage, etc. All this work includes potential lessons to be
applied in monitoring coverage in model checking.

6 Conlusions

This paper presented MAnTA – a coverage analysis framework built on top of the Bo-
gor software model checking framework to guide effective construction of environ-
ments for model checking. MAnTA allows a variety of coverage analyses of both code
(e.g., branch coverage) and specification (e.g., boolean satisfaction of method pre/post-
conditions) to be integrated in the model checking process. Since model checking is
exhaustive (i.e., all interleavings are considered), thus, the results of the coverage anal-
yses can pinpoint deficiencies in the environments used in the system. For example, a
branch analysis can be used to determine code regions that are not exercised due to the
specificity of the environment. Another example, the exercised behaviors of a particular
method may not be sufficient because it always satisfya specificpre-condition of the
method instead ofeachof the pre-condition of the method.

MAnTA eases the incorporation of these kinds of coverage analyses by providing
a plugable API for adding new coverage analysis. We showed the effectiveness of the
framework by easily incorporating widely used coverage analyses in the testing com-
munity as well as by implementing a novel specification coverage analysis. We showed
how the analyses can uncover common deficiencies in test harnesses with respect to
code and specification. Therefore, we believe that MAnTA can be used to guide ana-
lysts when constructing environments such as usually done in unit testing.
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