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Abstract

The DHARMA domain-specific middleware system is
intended to allow hydrologic field engineers to tackle
water-management problems on a scale previously im-
possible without sophisticated computational manage-
ment systems. DHARMA provides automatic data ac-
quisition via the Internet; data fusion from online, lo-
cal, and cached resources; smart caching of interme-
diate results; parallel process execution; automatic
transformation and piping of data between different
hydrologic simulation models; and interfaces with ex-
isting metacomputing systems. Our target watershed
model, WEPP, is limited to very small watersheds with
current computer technology. A revolutionary change
in hydrologic modeling on the watershed scale is being
brought about by applying various watershed models
to large watersheds, such as the Lake Decatur Water-
shed which covers 925 square miles.

Even with unlimited hardware, the current version of
WEPP can not be applied directly to the Lake Decatur
Watershed because WEPP is limited to a maximum of
75 hillslopes. To address this issue, we have integrated
support for heterogeneous simulation models in our
software; for example, we can use WEPP to model in-
dividual hillslopes and SITES to model the connecting
channels (reaches) and dams structures, playing to the
strengths of both models.

In this paper, we discuss the evolving software archi-
tecture of DHARMA and its interaction with the cluster
and Grid infrastructures. We also present experimen-
tal results showing the performance of DHARMA using
Globus over three Beowulf clusters.
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1 Introduction

The DHARMA project attacks two fundamental prob-
lems in today’s hydrological research environment,
particularly in the biological and environmental sci-
ences. First, the inability of researchers to perform
even simple investigations due to the inaccessibility
and essential difficulty in acquiring and utilizing the
necessary data. Often the data and simulation mod-
els are available via the Internet, but through a com-
bination of obscurity, incompatibility, and inefficiency
are essentially unusable. Second, local computing re-
sources are inadequate to support modeling systems at
the level desired, but interfacing to remote resources
can require complex software installations and proce-
dures. DHARMA addresses these problems through
significantly easier access to the computational power
and data acquisition capabilities of the Internet.

The objective of the DHARMA project is to expand
the applicability of the WEPP (Water Erosion Predic-
tion Project) hillslope model and the SITES (Water Re-
source Site Analysis) dam simulation to large water-
sheds, specifically applying the extended model to the
925 sq. mile Lake Decatur watershed in Illinois.

DHARMA has the following major points of function-
ality: automatic data acquisition of geotemporal cli-
matic data from online databases; data merging nec-
essary for the computation to occur, from online, lo-
cal, and cached resources; automatic transformation
and piping of data between heterogeneous hydrologi-
cal simulations; smart caching of intermediate results
to allow for reuse in future simulation cycles; task
graph acquisition from the UI layer, and optimization
through application-specific knowledge and dynamic
results caching strategies; and interfacing with com-
puting resource managers, such as Globus and Con-
dor [5, 7].

To address these issues, we:
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• use the eXtensible Markup Language (XML) and
DTDs as a lingua franca between simulations, re-
mote data sources, and DHARMA components.

• realize our primary goal is flexibility and ease in
data acquisition and data transfer between sim-
ulations, which cannot be sacrificed for utility-
limiting performance enhancements.

• allow DHARMA to have multiple interfaces
to existing metacomputing systems, and use
DHARMA to package up the computation into a
tidy set for computation by these systems.

• develop heuristics for scheduling task graphs, in-
terfaces for the various resources, and application-
specific caching techniques.

The paper is organized as follows: Section 2 discusses
the DHARMA software architecture and various im-
plementation issues relating to the Grid. Section 3
presents our experimental results, and Section 4 dis-
cusses related work and conclusions, as well as future
directions.

Data

XML

Data

HTML

Tier 1: Computation
- stores data
- provides computation

- Condor-based

Tier 2:
Core Logic

- Job generation

- scheduling
- access control
- data management
- cache support

- auto data
  acquisition

Tier 3: Display
- define jobs
- display results

- Ex: Internet Explorer,

WAP-enabled cellphone

WEPP
Windows UI

Java UI

Web UI

Figure 1. DHARMA layers diagram.

2 DHARMA Architecture

We now give an overview of the DHARMA archi-
tecture, as illustrated in Figure 1. Our architecture
generally follows the standard n-tier model with a
user interface, task logic, and, differing from the stan-
dard three-tier model, a cluster-based computation/data
layer. This includes the multiple user interfaces, the
job manager, automated data acquisition, and execu-
tion engine.

The Dharma UI There are three possible interfaces
that can be used to run a simulation in our system.
The three interfaces are the WEPP Windows Interface,
the Dharma Web Interface and the Drag and Drop In-
terface. Each of these interfaces retrieve data from
the user and interact with the middleware in a differ-
ent manner. The primary interface that will be used
when the project is fully functional will be the Drag

and Drop Interface. The other two interfaces will still
be supported at the end of the project. These interfaces
have been explained in more detail in previous publi-
cations [2].

The Drag and Drop Interface (DND) is an interactive
interface that allows the user to create a diagram that
visually represents a simulation run (Figure 2). The in-
terface is deployed on client machines using Java Web
Start and written in Java. The Drag and Drop inter-
face is a highly extensible user interface that allows the
Dharma project to function for many different simu-
lations. The only modifications that are necessary to
extend the interface are an XML document detailing
the inputs necessary for the creation of a dialog box for
that simulation.

Figure 2. Dharma Drag-and-Drop Inter-
face with SITES and WEPP simulations.

2.1 DHARMA middleware

The middleware component of the DHARMA system
provides task scheduling, dependency management,
simulation-specific data preparation and interpretation,
and fail-safe task execution.

A DHARMA job is modeled as a directed, acyclic
graph. Nodes in the graph correspond to individual
simulation instances. One describes the structural lay-
out of a job with XML documents. For instance, we de-
tail a very small watershed’s specification in Figure 3
that illustrates the use of multiple simulation models
and inter-task dependencies.

Task ManagementOnce a job has been submitted to
the DHARMA system, it is wrapped within a job ex-
ecuter. The job executer then partitions the job into
multiple smaller jobs based on inter-task dependencies.
The sub-job is represented as an independent job al-
lowing us to run DHARMA within DHARMA giving
us parallelism across multiple clusters during a job exe-
cution. Each sub-job is associated with a new task and

2



<job>
<id>0</id>
<task>

<id>0</id>
<type>wepp.simulation.hillslope</type>
<resource>

<id>0</id>
<type>wepp.types.climate</type>
<url>file://grid/dharma/0/shed1.cli</url>
<result>false</result>

</resource>
...

</task>
...
<task>

<id>3</id>
<type>sites.simulation.junction</type>
<dependency dependency="0"/>
<dependency dependency="1"/>
<dependency dependency="2"/>

</task>
</job>

Figure 3. XML specification for a job

added into pools of runnable and non runnable tasks
based on the their inter-dependencies.

For each available cluster, a sub middleware server is
started along with a specified number of clients. All
clients are able to communicate with the server through
RMI. Upon retrieval of a runnable task, or sub-job,
from the parent middleware server, a job exectuer con-
structs wrappers around each individual task and adds
them to a pools of runnable and non-runnable tasks.
Client processes (each a separate JVM on one of a clus-
ter’s machines) then make a API calls to the scheduler
component, so that they may retrieve individual tasks
for execution.

Upon retrieval of a runnable taskt0 from the scheduler
host, a client examines the type tag oft0 and instanti-
ates a “task executor.” This task executor is responsible
for reformatting DHARMA’s idealized XML represen-
tation of hydrological data into the native representa-
tion of t0’s model.

After data have been prepared for the model, the task
executor submits a request for external program invo-
cation to a DHARMA “execution manager.” The ab-
straction of the execution manager allows the task ex-
ecutor to assume that a simulation has been run, with-
out caring whether this happens as a local process, a
Globus job, or some other means of spawning an ex-
ternal process. We discuss this concept more fully in
Section 2.4.

When the execution manager reports the model has fin-
ished, the task executor interprets the results of the sim-
ulation. All relevant data are reformatted as XML and
cached in the metadata manager.

Last, the task executor reports back to the schedul-
ing server thatt0 has finished. The scheduler then
determines which oft0’s dependent children are now

runnable, and moves such tasks to the pool of runnable
tasks.

A correctly compiled task is guaranteed to execute and
finish regardless of lost clients or any other problems
that might arise outside DHARMA’s control. Error re-
covery is handled by the job executers. Each task and
sub-job is given a timeout and a maximum of 2 failed
executions before the job execution is abandoned.

2.2 DHARMA on the Grid

Although performing medium to large simulations may
best be achieved on a local cluster, one wishes to ex-
ploit the full power of the supercomputing grid to com-
pute extremely large results.

To adapt DHARMA to such a task, we have adapted
DHARMA’s notion of resource management to rely
upon services offered by the Globus gatekeeper sys-
tem. We present these modifications in Table 1.

To achieve acceptable computation/communication ra-
tios, DHARMA prefers to schedule interdependent
tasks on the same cluster. This is achieved by first ap-
plying a partioning algorithm to the original job graph.
As discussed earlier, tasks are packaged together into
sub-jobs and sent to remote clusters as a unit for com-
putation.

We have chosen to represent an entire partition as a sin-
gle DHARMA job to avoid the redundancy of creating
a second job-managing service to manage these parti-
tions. This allows us to nest an entire instance of the
DHARMA system inside the infrastructure of the “task
executors”.

Selection of the size of partitions is currently done
manually. There are two main factors that go in to se-
lecting the size of a partition. One problem that we
want to avoid is the situation where a fast cluster is
idle because there are no available partitions while a
slower cluster is busy processing. Reducing the parti-
tion size allows for better load balancing which helps
to alleviate the problem. The overhead of starting up a
partition is constant relative to the size of the partition,
though. Decreasing the partition size will increase the
number of partitions that in turn will increase the over-
all overhead of partitioning. We used experimentation
to determine a good partition size to use.

The partition startup cost is due to marshalling of par-
titions, unmarshalling of partitions, merging of results,
and network transfer time. We have seen a slight in-
crease in performance from the new partitioning algo-
rithm, but in the future, we plan on reducing the costs
further by pipelining execution of partitions to reduce
this overhead. Pipelining will allow a cluster to fetch
and setup one partition while executing another parti-
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Feature Local implementation Grid implementation
Retrieval of results NFS file system HTTP
External program execution Process spawning Globus job
Metadata registration Intra-process API calls RMI/SOAP service

Table 1. Comparison of resources in local/grid modes

Job Manager

1

1

Partitioning Mechanism

Master DHARMA instance

Computation Slave

RMI/SOAP

n

1

Local Task Server

Model

SSH

Per−cluster instance of DHARMA

Computation Slave

RMI/SOAP

n

1

Local Task Server

Model

SSH

Per−cluster instance of DHARMA

Globus Globus

Figure 4. DHARMA in multicluster opera-
tion

tion. With this optimization, the overhead of partition
startup could be greatly reduced allowing us to create
smaller partition sizes.

The execution manager service simply chooses the
Globus Gatekeeper as the means of spawning the ex-
ternal “simulation” that is an entire DHARMA system.

2.3 Metadata Manager

In order to make the system more efficient, we cache
files that are submitted to us by the users when they
submit a job. We also cache the output files that are
created by simulation runs. To solve the problem of
caching we created the Metadata Manager (MDM).
The MDM is responsible for maintaining information
on all of the files that have been cached on the Dharma
servers.

The MDM stores information on all of the files in the
system in a MySQL database. The primary things that
are stored by the MDM are file name, file size, check-
sum of the file, file type, the lat-long box that the file
stores data on, location on servers, and other special-
ized attributes. The manager was designed to be easily
extensible. For each type of file in the system there is

a Java class that represents the data stored on that file.
These classes contain information that is stored about
the files. There are also methods in these classes that
tell a database how to create tables for this type of file
and create queries to get information about these file
types.

To access data in the MDM you must create a SOAP re-
quest that the MDM will process and return the results
of the query. When looking for a file matching some
specific parameters, the user will be returned a list of
URLs to where the files are located on the Dharma
servers. Users of the system are not allowed to directly
access the database that stores the information on the
files for security reasons. The abstraction added by the
MDM provides a security buffer between the metadata
and the outside world. This will also allow us to later
implement the idea of file ownership.

The Meta Data Manager was a necessary buffer be-
tween the metadata and outside world. The main rea-
son for this was security. However, we also had to have
an efficient way to store information on files that we
have cached so that our system would run efficiently.
In our test system, execution times typically drop over
70% compared to uncached execution (1178ms vs.
400ms from job receipt to WEPP startup), indicating
the overhead introduced by our system is small and the
caching is effective.

2.4 The backend

The DHARMA system employs an abstraction mecha-
nism for process creation, which we term the backend.
This affords the middleware task executor a consider-
able degree of flexibility when spawning models. We
have observed the need for submitting process execu-
tion requests in the following ways:

1. Local processes on the host running the task ex-
ecutor

2. Processes scheduled within a local cluster, de-
manding extremely low turnaround time

3. Jobs submitted to the Globus infrastructure for
batch execution on remote computing clusters

To accommodate these disparate needs, we developed a
generic API—the “execution manager”—for the back-
end which is ignorant of the actual means used to
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schedule a process. The middleware makes all re-
quests for program execution strictly to this abstract
API. Providing the varying means of execution then
becomes as simple as writing Java classes to imple-
ment the execution manager API. To date, we have pro-
vided DHARMA with execution managers that lever-
age local process creation; a high-throughput sched-
uler which leverages the Secure Shell Server [8]; and
a wrapper around the Globus job submission API for
moving tasks to remote clusters.

Figure 5. Cluster Configuration

3 Experimental Results

Our experimental results are positive. Recently, we
have started running simulations of the Lake Dectaur
watershed using data from UIUC containing approx-
imately 3200 hillslopes over its 920 sq. miles. We
have also used sample data and randomly generated
task graphs with WEPP hillslope leaf nodes and SITES
interior nodes for larger test runs. Preliminary runs of
the Lake Decatur simulation have been successful - the
first time ever that a watershed this large has been mod-
eled using WEPP. We estimate a total of approximately
10,000 hillslopes will be required for a fully-detailed
model of the Lake Decatur watershed. The project to
gather this data is underway at UIUC, and is antici-
pated to finish sometime this year.

Overhead for the system is somewhat steep, given
its distributed nature and the degree of data conver-
sion/translation necessary for the heterogeneous sim-
ulations. There are three clusters including in our sim-
ulation runs (Figure 5). We use three Beowulf clus-
ters, each running Globus as an interface to Condor on
Linux [5, 9]. “narnia” is primarily composed of 16 dual
Athlon MP processors with 1.5-1.8Ghz. processors in
addition to 3 dual Pentium III’s all with 1GB RAM
per processor, while “beocat” consists of three quad-
processor and one dual-processor Pentium III Xeons
(approx. 600Mhz.,1GB RAM/processor). The Be-
owulf clusters are internally connected by gigabit Eth-

ernet, and linked by the campus gigabit Ethernet back-
bone, which typically has 600-800Mbps. available.
The third cluster is at the Information and Telecommu-
nication Technology Center (ITTC) at the University
of Kansas, which consists of 8 PIII’s with 1GB each
connected by Fast Ethernet internally and 155Mpbs In-
ternet2 to the KSU campus. Currently, our middleware
server runs on a dual 2.4GHz Xeon machine with 2GB
RAM and our metadata server runs on a dual 1.8GHz
Xeon with 4GB RAM.
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Figure 6. Cluster runtimes.

Tasks consist of a mixture of hillslopes simulated
through WEPP, and channels/impoundments simulated
via SITES. Each SITES task for reach routing a simple
channel takes< 1 s. to run, while each hillslope re-
quires approximately 4 s. of computation. Starting up
the client and remote servers under Globus and Con-
dor takes approximately 30 s., and starting up a 10K
node job takes approximately 60-90 s. As can be seen
in Figure 6, scalability is approximately as expected.
Adding the cluster from ITTC in general degraded per-
formance due to the low computation/communication
ratio for our tasks. Compute nodes were typically run-
ning at 100% CPU utilization, while the master nodes,
file server, and database were typically sitting at ¡1%
utilization. A typical 10K node run with both clusters
takes 2300 s., produces 7,998 files containing 244MB
of data, transfers 130MB of information between clus-
ters, and makes over 20,000 RMI calls to the MDM
and 86,000 database queries. Numbers for runs up to
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100K nodes are proportional to those in Figure 6, with
runtimes of 4-5 hours.

A great deal of effort was required to modify our
architecture to achieve acceptable performance under
a Grid-based system, even given the relatively high
bandwidth and low latencies in our test configuration.
Initial results treating Globus identically to our high-
throughput scheduler (see [2] for details) were atro-
cious, due to the high overhead and poor computa-
tion/communication ratio. The current results still suf-
fer from the effects of the overhead, but are more ac-
ceptable due to the node batch partitioning scheme
and aggressive data caching. We note that in the
future, our scheduler will need to become more so-
phisticated to make optimal use of local clusters with
our high-throughput/low-overhead scheduler for small
jobs, while using remote resources for large simulation
runs.

4 Related work and conclusions

Presenting a simple interface to the researcher and
educator, with its seamless and transparent access to
distributed databases, is a difficult technological chal-
lenge. Various other distributed computation systems
have previously been developed but almost invariably
are aimed at automating the distribution of existing
scientific programming and data. Systems such as
SWEB++, AppLeS, and Globus all will schedule com-
putation quite competently [1, 3, 5]. However, they
fail to address the most fundamental difficulty in con-
ducting any sort of operation on distributed data sets –
the acquisition and matching of data to the models be-
ing used. Furthermore, the interface presented to the
user is often more suited to the professional program-
mer rather than a researcher in the physical sciences.
Systems devoted to universal data access, such as the
WebHLA and DATORR projects, lack the domain-
specific knowledge to acquire and optimally use the
necessary hydrological data [6, 4].

In this paper we have discussed the DHARMA system,
which, through the use of standards from the compu-
tational Grid and the WWW, meets our goals of in-
creasing user capabilities while maintaining simplicity
of use. We show how we have implemented Grid in-
tegration, multi-level caching, and an extensible set of
user interfaces to bring hydrologists into a new era.

In the near future we are extending DHARMA in two
directions. First, we are working to incorporate the
HEC-RAS river modeling tool. This will significantly
increase the accuracy of our channel simulation, and,
due to the fact that HEC-RAS allows for backflows
where two channels meet, forcing us to extend our de-
pendency graphs to include cycles. Second, we are de-

veloping the tools to automatically set the job aggre-
gation size to increase our overall execution efficiency.
We also plan to explore using the new Globus toolkit
3.0.
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